* add vae
* Initial commit for Flux 2 Transformer implementation
* add pipeline part
* small edits to the pipeline and conversion
* update conversion script
* fix
* up up
* finish pipeline
* Remove Flux IP Adapter logic for now
* Remove deprecated 3D id logic
* Remove ControlNet logic for now
* Add link to ViT-22B paper as reference for parallel transformer blocks such as the Flux 2 single stream block
* update pipeline
* Don't use biases for input projs and output AdaNorm
* up
* Remove bias for double stream block text QKV projections
* Add script to convert Flux 2 transformer to diffusers
* make style and make quality
* fix a few things.
* allow sft files to go.
* fix image processor
* fix batch
* style a bit
* Fix some bugs in Flux 2 transformer implementation
* Fix dummy input preparation and fix some test bugs
* fix dtype casting in timestep guidance module.
* resolve conflicts.,
* remove ip adapter stuff.
* Fix Flux 2 transformer consistency test
* Fix bug in Flux2TransformerBlock (double stream block)
* Get remaining Flux 2 transformer tests passing
* make style; make quality; make fix-copies
* remove stuff.
* fix type annotaton.
* remove unneeded stuff from tests
* tests
* up
* up
* add sf support
* Remove unused IP Adapter and ControlNet logic from transformer (#9)
* copied from
* Apply suggestions from code review
Co-authored-by: YiYi Xu <yixu310@gmail.com>
Co-authored-by: apolinΓ‘rio <joaopaulo.passos@gmail.com>
* up
* up
* up
* up
* up
* Refactor Flux2Attention into separate classes for double stream and single stream attention
* Add _supports_qkv_fusion to AttentionModuleMixin to allow subclasses to disable QKV fusion
* Have Flux2ParallelSelfAttention inherit from AttentionModuleMixin with _supports_qkv_fusion=False
* Log debug message when calling fuse_projections on a AttentionModuleMixin subclass that does not support QKV fusion
* Address review comments
* Update src/diffusers/pipelines/flux2/pipeline_flux2.py
Co-authored-by: YiYi Xu <yixu310@gmail.com>
* up
* Remove maybe_allow_in_graph decorators for Flux 2 transformer blocks (#12)
* up
* support ostris loras. (#13)
* up
* update schdule
* up
* up (#17)
* add training scripts (#16)
* add training scripts
Co-authored-by: Linoy Tsaban <linoytsaban@gmail.com>
* model cpu offload in validation.
* add flux.2 readme
* add img2img and tests
* cpu offload in log validation
* Apply suggestions from code review
* fix
* up
* fixes
* remove i2i training tests for now.
---------
Co-authored-by: Linoy Tsaban <linoytsaban@gmail.com>
Co-authored-by: linoytsaban <linoy@huggingface.co>
* up
---------
Co-authored-by: yiyixuxu <yixu310@gmail.com>
Co-authored-by: Daniel Gu <dgu8957@gmail.com>
Co-authored-by: yiyi@huggingface.co <yiyi@ip-10-53-87-203.ec2.internal>
Co-authored-by: dg845 <58458699+dg845@users.noreply.github.com>
Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
Co-authored-by: apolinΓ‘rio <joaopaulo.passos@gmail.com>
Co-authored-by: yiyi@huggingface.co <yiyi@ip-26-0-160-103.ec2.internal>
Co-authored-by: Linoy Tsaban <linoytsaban@gmail.com>
Co-authored-by: linoytsaban <linoy@huggingface.co>
* fix bug when offload and cache_latents both enabled
* fix bug when offload and cache_latents both enabled
* fix bug when offload and cache_latents both enabled
* fix bug when offload and cache_latents both enabled
* fix bug when offload and cache_latents both enabled
* fix bug when offload and cache_latents both enabled
* fix bug when offload and cache_latents both enabled
* fix bug when offload and cache_latents both enabled
* fix bug when offload and cache_latents both enabled
* feat: support lora in qwen image and training script
* up
* up
* up
* up
* up
* up
* add lora tests
* fix
* add tests
* fix
* reviewer feedback
* up[
* Apply suggestions from code review
Co-authored-by: Aryan <aryan@huggingface.co>
---------
Co-authored-by: Aryan <aryan@huggingface.co>
* 1. add pre-computation of prompt embeddings when custom prompts are used as well
2. save model card even if model is not pushed to hub
3. remove scheduler initialization from code example - not necessary anymore (it's now if the base model's config)
4. add skip_final_inference - to allow to run with validation, but skip the final loading of the pipeline with the lora weights to reduce memory reqs
* pre encode validation prompt as well
* Update examples/dreambooth/train_dreambooth_lora_hidream.py
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
* Update examples/dreambooth/train_dreambooth_lora_hidream.py
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
* Update examples/dreambooth/train_dreambooth_lora_hidream.py
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
* pre encode validation prompt as well
* Apply style fixes
* empty commit
* change default trained modules
* empty commit
* address comments + change encoding of validation prompt (before it was only pre-encoded if custom prompts are provided, but should be pre-encoded either way)
* Apply style fixes
* empty commit
* fix validation_embeddings definition
* fix final inference condition
* fix pipeline deletion in last inference
* Apply style fixes
* empty commit
* layers
* remove readme remarks on only pre-computing when instance prompt is provided and change example to 3d icons
* smol fix
* empty commit
---------
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>