1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00

[training] feat: enable quantization for hidream lora training. (#11494)

* feat: enable quantization for hidream lora training.

* better handle compute dtype.

* finalize.

* fix dtype.

---------

Co-authored-by: Linoy Tsaban <57615435+linoytsaban@users.noreply.github.com>
This commit is contained in:
Sayak Paul
2025-05-05 20:44:35 +05:30
committed by GitHub
parent ee1516e5c7
commit 071807c853
3 changed files with 68 additions and 17 deletions

View File

@@ -117,3 +117,30 @@ We provide several options for optimizing memory optimization:
* `--use_8bit_adam`: When enabled, we will use the 8bit version of AdamW provided by the `bitsandbytes` library.
Refer to the [official documentation](https://huggingface.co/docs/diffusers/main/en/api/pipelines/) of the `HiDreamImagePipeline` to know more about the model.
## Using quantization
You can quantize the base model with [`bitsandbytes`](https://huggingface.co/docs/bitsandbytes/index) to reduce memory usage. To do so, pass a JSON file path to `--bnb_quantization_config_path`. This file should hold the configuration to initialize `BitsAndBytesConfig`. Below is an example JSON file:
```json
{
"load_in_4bit": true,
"bnb_4bit_quant_type": "nf4"
}
```
Below, we provide some numbers with and without the use of NF4 quantization when training:
```
(with quantization)
Memory (before device placement): 9.085089683532715 GB.
Memory (after device placement): 34.59585428237915 GB.
Memory (after backward): 36.90267467498779 GB.
(without quantization)
Memory (before device placement): 0.0 GB.
Memory (after device placement): 57.6400408744812 GB.
Memory (after backward): 59.932212829589844 GB.
```
The reason why we see some memory before device placement in the case of quantization is because, by default bnb quantized models are placed on the GPU first.

View File

@@ -16,6 +16,7 @@
import argparse
import copy
import itertools
import json
import logging
import math
import os
@@ -27,14 +28,13 @@ from pathlib import Path
import numpy as np
import torch
import torch.utils.checkpoint
import transformers
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import DistributedDataParallelKwargs, ProjectConfiguration, set_seed
from huggingface_hub import create_repo, upload_folder
from huggingface_hub.utils import insecure_hashlib
from peft import LoraConfig, set_peft_model_state_dict
from peft import LoraConfig, prepare_model_for_kbit_training, set_peft_model_state_dict
from peft.utils import get_peft_model_state_dict
from PIL import Image
from PIL.ImageOps import exif_transpose
@@ -47,6 +47,7 @@ from transformers import AutoTokenizer, CLIPTokenizer, LlamaForCausalLM, Pretrai
import diffusers
from diffusers import (
AutoencoderKL,
BitsAndBytesConfig,
FlowMatchEulerDiscreteScheduler,
HiDreamImagePipeline,
HiDreamImageTransformer2DModel,
@@ -282,6 +283,12 @@ def parse_args(input_args=None):
default="meta-llama/Meta-Llama-3.1-8B-Instruct",
help="Path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--bnb_quantization_config_path",
type=str,
default=None,
help="Quantization config in a JSON file that will be used to define the bitsandbytes quant config of the DiT.",
)
parser.add_argument(
"--revision",
type=str,
@@ -1056,6 +1063,14 @@ def main(args):
args.pretrained_model_name_or_path, args.revision, subfolder="text_encoder_3"
)
# For mixed precision training we cast all non-trainable weights (vae, text_encoder and transformer) to half-precision
# as these weights are only used for inference, keeping weights in full precision is not required.
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
# Load scheduler and models
noise_scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(
args.pretrained_model_name_or_path, subfolder="scheduler", revision=args.revision, shift=3.0
@@ -1064,20 +1079,31 @@ def main(args):
text_encoder_one, text_encoder_two, text_encoder_three, text_encoder_four = load_text_encoders(
text_encoder_cls_one, text_encoder_cls_two, text_encoder_cls_three
)
vae = AutoencoderKL.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="vae",
revision=args.revision,
variant=args.variant,
)
quantization_config = None
if args.bnb_quantization_config_path is not None:
with open(args.bnb_quantization_config_path, "r") as f:
config_kwargs = json.load(f)
if "load_in_4bit" in config_kwargs and config_kwargs["load_in_4bit"]:
config_kwargs["bnb_4bit_compute_dtype"] = weight_dtype
quantization_config = BitsAndBytesConfig(**config_kwargs)
transformer = HiDreamImageTransformer2DModel.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="transformer",
revision=args.revision,
variant=args.variant,
quantization_config=quantization_config,
torch_dtype=weight_dtype,
force_inference_output=True,
)
if args.bnb_quantization_config_path is not None:
transformer = prepare_model_for_kbit_training(transformer, use_gradient_checkpointing=False)
# We only train the additional adapter LoRA layers
transformer.requires_grad_(False)
@@ -1087,14 +1113,6 @@ def main(args):
text_encoder_three.requires_grad_(False)
text_encoder_four.requires_grad_(False)
# For mixed precision training we cast all non-trainable weights (vae, text_encoder and transformer) to half-precision
# as these weights are only used for inference, keeping weights in full precision is not required.
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
if torch.backends.mps.is_available() and weight_dtype == torch.bfloat16:
# due to pytorch#99272, MPS does not yet support bfloat16.
raise ValueError(
@@ -1109,7 +1127,12 @@ def main(args):
text_encoder_three.to(**to_kwargs)
text_encoder_four.to(**to_kwargs)
# we never offload the transformer to CPU, so we can just use the accelerator device
transformer.to(accelerator.device, dtype=weight_dtype)
transformer_to_kwargs = (
{"device": accelerator.device}
if args.bnb_quantization_config_path is not None
else {"device": accelerator.device, "dtype": weight_dtype}
)
transformer.to(**transformer_to_kwargs)
# Initialize a text encoding pipeline and keep it to CPU for now.
text_encoding_pipeline = HiDreamImagePipeline.from_pretrained(
@@ -1695,10 +1718,11 @@ def main(args):
accelerator.wait_for_everyone()
if accelerator.is_main_process:
transformer = unwrap_model(transformer)
if args.upcast_before_saving:
transformer.to(torch.float32)
else:
transformer = transformer.to(weight_dtype)
if args.bnb_quantization_config_path is None:
if args.upcast_before_saving:
transformer.to(torch.float32)
else:
transformer = transformer.to(weight_dtype)
transformer_lora_layers = get_peft_model_state_dict(transformer)
HiDreamImagePipeline.save_lora_weights(

View File

@@ -179,7 +179,7 @@ class BitsAndBytesConfig(QuantizationConfigMixin):
This is a wrapper class about all possible attributes and features that you can play with a model that has been
loaded using `bitsandbytes`.
This replaces `load_in_8bit` or `load_in_4bit`therefore both options are mutually exclusive.
This replaces `load_in_8bit` or `load_in_4bit` therefore both options are mutually exclusive.
Currently only supports `LLM.int8()`, `FP4`, and `NF4` quantization. If more methods are added to `bitsandbytes`,
then more arguments will be added to this class.