1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00

[Training] Better image interpolation in training scripts (#11206)

* initial

* Update examples/dreambooth/train_dreambooth_lora_sdxl.py

Co-authored-by: hlky <hlky@hlky.ac>

* update

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: hlky <hlky@hlky.ac>
This commit is contained in:
Álvaro Somoza
2025-04-08 02:56:07 -04:00
committed by GitHub
parent fbf61f465b
commit 723dbdd363

View File

@@ -669,6 +669,16 @@ def parse_args(input_args=None):
),
)
parser.add_argument(
"--image_interpolation_mode",
type=str,
default="lanczos",
choices=[
f.lower() for f in dir(transforms.InterpolationMode) if not f.startswith("__") and not f.endswith("__")
],
help="The image interpolation method to use for resizing images.",
)
if input_args is not None:
args = parser.parse_args(input_args)
else:
@@ -790,7 +800,12 @@ class DreamBoothDataset(Dataset):
self.original_sizes = []
self.crop_top_lefts = []
self.pixel_values = []
train_resize = transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR)
interpolation = getattr(transforms.InterpolationMode, args.image_interpolation_mode.upper(), None)
if interpolation is None:
raise ValueError(f"Unsupported interpolation mode {interpolation=}.")
train_resize = transforms.Resize(size, interpolation=interpolation)
train_crop = transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size)
train_flip = transforms.RandomHorizontalFlip(p=1.0)
train_transforms = transforms.Compose(