mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
[training] add ds support to lora hidream (#11737)
* [training] add ds support to lora hidream * Apply style fixes --------- Co-authored-by: J石页 <jiangshuo9@h-partners.com> Co-authored-by: Sayak Paul <spsayakpaul@gmail.com> Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
This commit is contained in:
@@ -29,7 +29,7 @@ from pathlib import Path
|
||||
import numpy as np
|
||||
import torch
|
||||
import transformers
|
||||
from accelerate import Accelerator
|
||||
from accelerate import Accelerator, DistributedType
|
||||
from accelerate.logging import get_logger
|
||||
from accelerate.utils import DistributedDataParallelKwargs, ProjectConfiguration, set_seed
|
||||
from huggingface_hub import create_repo, upload_folder
|
||||
@@ -1181,13 +1181,15 @@ def main(args):
|
||||
transformer_lora_layers_to_save = None
|
||||
|
||||
for model in models:
|
||||
if isinstance(model, type(unwrap_model(transformer))):
|
||||
if isinstance(unwrap_model(model), type(unwrap_model(transformer))):
|
||||
model = unwrap_model(model)
|
||||
transformer_lora_layers_to_save = get_peft_model_state_dict(model)
|
||||
else:
|
||||
raise ValueError(f"unexpected save model: {model.__class__}")
|
||||
|
||||
# make sure to pop weight so that corresponding model is not saved again
|
||||
weights.pop()
|
||||
if weights:
|
||||
weights.pop()
|
||||
|
||||
HiDreamImagePipeline.save_lora_weights(
|
||||
output_dir,
|
||||
@@ -1197,13 +1199,20 @@ def main(args):
|
||||
def load_model_hook(models, input_dir):
|
||||
transformer_ = None
|
||||
|
||||
while len(models) > 0:
|
||||
model = models.pop()
|
||||
if not accelerator.distributed_type == DistributedType.DEEPSPEED:
|
||||
while len(models) > 0:
|
||||
model = models.pop()
|
||||
|
||||
if isinstance(model, type(unwrap_model(transformer))):
|
||||
transformer_ = model
|
||||
else:
|
||||
raise ValueError(f"unexpected save model: {model.__class__}")
|
||||
if isinstance(unwrap_model(model), type(unwrap_model(transformer))):
|
||||
model = unwrap_model(model)
|
||||
transformer_ = model
|
||||
else:
|
||||
raise ValueError(f"unexpected save model: {model.__class__}")
|
||||
else:
|
||||
transformer_ = HiDreamImageTransformer2DModel.from_pretrained(
|
||||
args.pretrained_model_name_or_path, subfolder="transformer"
|
||||
)
|
||||
transformer_.add_adapter(transformer_lora_config)
|
||||
|
||||
lora_state_dict = HiDreamImagePipeline.lora_state_dict(input_dir)
|
||||
|
||||
@@ -1655,7 +1664,7 @@ def main(args):
|
||||
progress_bar.update(1)
|
||||
global_step += 1
|
||||
|
||||
if accelerator.is_main_process:
|
||||
if accelerator.is_main_process or accelerator.distributed_type == DistributedType.DEEPSPEED:
|
||||
if global_step % args.checkpointing_steps == 0:
|
||||
# _before_ saving state, check if this save would set us over the `checkpoints_total_limit`
|
||||
if args.checkpoints_total_limit is not None:
|
||||
|
||||
Reference in New Issue
Block a user