The original specification for this called for the deserialization function
to have signature "deserialize(serialtype) returns transtype", which is a
security violation if transtype is INTERNAL (which it always would be in
practice) and serialtype is not (which ditto). The patch blithely overrode
the opr_sanity check for that, which was sloppy-enough work in itself,
but the indisputable reason this cannot be allowed to stand is that CREATE
FUNCTION will reject such a signature and thus it'd be impossible for
extensions to create parallelizable aggregates.
The minimum fix to make the signature type-safe is to add a second, dummy
argument of type INTERNAL. But to lock it down a bit more and make misuse
of INTERNAL-accepting functions less likely, let's get rid of the ability
to specify a "serialtype" for an aggregate and just say that the only
useful serialtype is BYTEA --- which, in practice, is the only interesting
value anyway, due to the usefulness of the send/recv infrastructure for
this purpose. That means we only have to allow "serialize(internal)
returns bytea" and "deserialize(bytea, internal) returns internal" as
the signatures for these support functions.
In passing fix bogus signature of int4_avg_combine, which I found thanks
to adding an opr_sanity check on combinefunc signatures.
catversion bump due to removing pg_aggregate.aggserialtype and adjusting
signatures of assorted built-in functions.
David Rowley and Tom Lane
Discussion: <27247.1466185504@sss.pgh.pa.us>
When doing partial aggregation, the args list of the upper (combining)
Aggref node is replaced by a Var representing the output of the partial
aggregation steps, which has either the aggregate's transition data type
or a serialized representation of that. However, nodeAgg.c blindly
continued to use the args list as an indication of the user-level argument
types. This broke resolution of polymorphic transition datatypes at
executor startup (though it accidentally failed to fail for the ANYARRAY
case, which is likely the only one anyone had tested). Moreover, the
constructed FuncExpr passed to the finalfunc contained completely wrong
information, which would have led to bogus answers or crashes for any case
where the finalfunc examined that information (which is only likely to be
with polymorphic aggregates using a non-polymorphic transition type).
As an independent bug, apply_partialaggref_adjustment neglected to resolve
a polymorphic transition datatype before assigning it as the output type
of the lower-level Aggref node. This again accidentally failed to fail
for ANYARRAY but would be unlikely to work in other cases.
To fix the first problem, record the user-level argument types in a
separate OID-list field of Aggref, and look to that rather than the args
list when asking what the argument types were. (It turns out to be
convenient to include any "direct" arguments in this list too, although
those are not currently subject to being overwritten.)
Rather than adding yet another resolve_aggregate_transtype() call to fix
the second problem, add an aggtranstype field to Aggref, and store the
resolved transition type OID there when the planner first computes it.
(By doing this in the planner and not the parser, we can allow the
aggregate's transition type to change from time to time, although no DDL
support yet exists for that.) This saves nothing of consequence for
simple non-polymorphic aggregates, but for polymorphic transition types
we save a catalog lookup during executor startup as well as several
planner lookups that are new in 9.6 due to parallel query planning.
In passing, fix an error that was introduced into count_agg_clauses_walker
some time ago: it was applying exprTypmod() to something that wasn't an
expression node at all, but a TargetEntry. exprTypmod silently returned
-1 so that there was not an obvious failure, but this broke the intended
sensitivity of aggregate space consumption estimates to the typmod of
varchar and similar data types. This part needs to be back-patched.
Catversion bump due to change of stored Aggref nodes.
Discussion: <8229.1466109074@sss.pgh.pa.us>
This is necessary infrastructure for supporting parallel aggregation
for aggregates whose transition type is "internal". Such values
can't be passed between cooperating processes, because they are
just pointers.
David Rowley, reviewed by Tomas Vondra and by me.
In commit 1d97c19a0f748e94 and later c1d9579dd8bf3c92, we extended
pull_var_clause's API by adding enum-type arguments. That's sort of a pain
to maintain, though, because it means every time we add a new behavior we
must touch every last one of the call sites, even if there's a reasonable
default behavior that most of them could use. Let's switch over to using a
bitmask of flags, instead; that seems more maintainable and might save a
nanosecond or two as well. This commit changes no behavior in itself,
though I'm going to follow it up with one that does add a new behavior.
In passing, remove flatten_tlist(), which has not been used since 9.1
and would otherwise need the same API changes.
Removing these enums means that optimizer/tlist.h no longer needs to
depend on optimizer/var.h. Changing that caused a number of C files to
need addition of #include "optimizer/var.h" (probably we can thank old
runs of pgrminclude for that); but on balance it seems like a good change
anyway.
A pending patch requires exporting a function returning Bitmapset from
catalog/pg_constraint.c. As things stand, that would mean including
nodes/bitmapset.h in pg_constraint.h, which might be hazardous for the
client-side includability of that header. It's not entirely clear whether
any client-side code needs to include pg_constraint.h, but it seems prudent
to assume that there is some such code somewhere. Therefore, split off the
function definitions into a new file pg_constraint_fn.h, similarly to what
we've done for some other catalog header files.
Aggregate nodes now have two new modes: a "partial" mode where they
output the unfinalized transition state, and a "finalize" mode where
they accept unfinalized transition states rather than individual
values as input.
These new modes are not used anywhere yet, but they will be necessary
for parallel aggregation. The infrastructure also figures to be
useful for cases where we want to aggregate local data and remote
data via the FDW interface, and want to bring back partial aggregates
from the remote side that can then be combined with locally generated
partial aggregates to produce the final value. It may also be useful
even when neither FDWs nor parallelism are in play, as explained in
the comments in nodeAgg.c.
David Rowley and Simon Riggs, reviewed by KaiGai Kohei, Heikki
Linnakangas, Haribabu Kommi, and me.
If there are two different aggregates in the query with same inputs, and
the aggregates have the same initial condition and transition function,
only calculate the state value once, and only call the final functions
separately. For example, AVG(x) and SUM(x) aggregates have the same
transition function, which accumulates the sum and number of input tuples.
For a query like "SELECT AVG(x), SUM(x) FROM x", we can therefore
accumulate the state function only once, which gives a nice speedup.
David Rowley, reviewed and edited by me.
Policy USING and WITH CHECK expressions were using EXPR_KIND_WHERE for
parse analysis, which results in inappropriate ERROR messages when
the expression contains unsupported constructs such as aggregates.
Create a new ParseExprKind called EXPR_KIND_POLICY and tailor the
related messages to fit.
Reported by Noah Misch. Reviewed by Dean Rasheed, Alvaro Herrera,
and Robert Haas. Back-patch to 9.5 where RLS was introduced.
This SQL standard functionality allows to aggregate data by different
GROUP BY clauses at once. Each grouping set returns rows with columns
grouped by in other sets set to NULL.
This could previously be achieved by doing each grouping as a separate
query, conjoined by UNION ALLs. Besides being considerably more concise,
grouping sets will in many cases be faster, requiring only one scan over
the underlying data.
The current implementation of grouping sets only supports using sorting
for input. Individual sets that share a sort order are computed in one
pass. If there are sets that don't share a sort order, additional sort &
aggregation steps are performed. These additional passes are sourced by
the previous sort step; thus avoiding repeated scans of the source data.
The code is structured in a way that adding support for purely using
hash aggregation or a mix of hashing and sorting is possible. Sorting
was chosen to be supported first, as it is the most generic method of
implementation.
Instead of, as in an earlier versions of the patch, representing the
chain of sort and aggregation steps as full blown planner and executor
nodes, all but the first sort are performed inside the aggregation node
itself. This avoids the need to do some unusual gymnastics to handle
having to return aggregated and non-aggregated tuples from underlying
nodes, as well as having to shut down underlying nodes early to limit
memory usage. The optimizer still builds Sort/Agg node to describe each
phase, but they're not part of the plan tree, but instead additional
data for the aggregation node. They're a convenient and preexisting way
to describe aggregation and sorting. The first (and possibly only) sort
step is still performed as a separate execution step. That retains
similarity with existing group by plans, makes rescans fairly simple,
avoids very deep plans (leading to slow explains) and easily allows to
avoid the sorting step if the underlying data is sorted by other means.
A somewhat ugly side of this patch is having to deal with a grammar
ambiguity between the new CUBE keyword and the cube extension/functions
named cube (and rollup). To avoid breaking existing deployments of the
cube extension it has not been renamed, neither has cube been made a
reserved keyword. Instead precedence hacking is used to make GROUP BY
cube(..) refer to the CUBE grouping sets feature, and not the function
cube(). To actually group by a function cube(), unlikely as that might
be, the function name has to be quoted.
Needs a catversion bump because stored rules may change.
Author: Andrew Gierth and Atri Sharma, with contributions from Andres Freund
Reviewed-By: Andres Freund, Noah Misch, Tom Lane, Svenne Krap, Tomas
Vondra, Erik Rijkers, Marti Raudsepp, Pavel Stehule
Discussion: CAOeZVidmVRe2jU6aMk_5qkxnB7dfmPROzM7Ur8JPW5j8Y5X-Lw@mail.gmail.com
Before 9.4, such an aggregate couldn't be declared, because its final
function would have to have polymorphic result type but no polymorphic
argument, which CREATE FUNCTION would quite properly reject. The
ordered-set-aggregate patch found a workaround: allow the final function
to be declared as accepting additional dummy arguments that have types
matching the aggregate's regular input arguments. However, we failed
to notice that this problem applies just as much to regular aggregates,
despite the fact that we had a built-in regular aggregate array_agg()
that was known to be undeclarable in SQL because its final function
had an illegal signature. So what we should have done, and what this
patch does, is to decouple the extra-dummy-arguments behavior from
ordered-set aggregates and make it generally available for all aggregate
declarations. We have to put this into 9.4 rather than waiting till
later because it slightly alters the rules for declaring ordered-set
aggregates.
The patch turned out a bit bigger than I'd hoped because it proved
necessary to record the extra-arguments option in a new pg_aggregate
column. I'd thought we could just look at the final function's pronargs
at runtime, but that didn't work well for variadic final functions.
It's probably just as well though, because it simplifies life for pg_dump
to record the option explicitly.
While at it, fix array_agg() to have a valid final-function signature,
and add an opr_sanity test to notice future deviations from polymorphic
consistency. I also marked the percentile_cont() aggregates as not
needing extra arguments, since they don't.
Until now, when executing an aggregate function as a window function
within a window with moving frame start (that is, any frame start mode
except UNBOUNDED PRECEDING), we had to recalculate the aggregate from
scratch each time the frame head moved. This patch allows an aggregate
definition to include an alternate "moving aggregate" implementation
that includes an inverse transition function for removing rows from
the aggregate's running state. As long as this can be done successfully,
runtime is proportional to the total number of input rows, rather than
to the number of input rows times the average frame length.
This commit includes the core infrastructure, documentation, and regression
tests using user-defined aggregates. Follow-on commits will update some
of the built-in aggregates to use this feature.
David Rowley and Florian Pflug, reviewed by Dean Rasheed; additional
hacking by me
This patch introduces generic support for ordered-set and hypothetical-set
aggregate functions, as well as implementations of the instances defined in
SQL:2008 (percentile_cont(), percentile_disc(), rank(), dense_rank(),
percent_rank(), cume_dist()). We also added mode() though it is not in the
spec, as well as versions of percentile_cont() and percentile_disc() that
can compute multiple percentile values in one pass over the data.
Unlike the original submission, this patch puts full control of the sorting
process in the hands of the aggregate's support functions. To allow the
support functions to find out how they're supposed to sort, a new API
function AggGetAggref() is added to nodeAgg.c. This allows retrieval of
the aggregate call's Aggref node, which may have other uses beyond the
immediate need. There is also support for ordered-set aggregates to
install cleanup callback functions, so that they can be sure that
infrastructure such as tuplesort objects gets cleaned up.
In passing, make some fixes in the recently-added support for variadic
aggregates, and make some editorial adjustments in the recent FILTER
additions for aggregates. Also, simplify use of IsBinaryCoercible() by
allowing it to succeed whenever the target type is ANY or ANYELEMENT.
It was inconsistent that it dealt with other polymorphic target types
but not these.
Atri Sharma and Andrew Gierth; reviewed by Pavel Stehule and Vik Fearing,
and rather heavily editorialized upon by Tom Lane
There's no inherent reason why an aggregate function can't be variadic
(even VARIADIC ANY) if its transition function can handle the case.
Indeed, this patch to add the feature touches none of the planner or
executor, and little of the parser; the main missing stuff was DDL and
pg_dump support.
It is true that variadic aggregates can create the same sort of ambiguity
about parameters versus ORDER BY keys that was complained of when we
(briefly) had both one- and two-argument forms of string_agg(). However,
the policy formed in response to that discussion only said that we'd not
create any built-in aggregates with varying numbers of arguments, not that
we shouldn't allow users to do it. So the logical extension of that is
we can allow users to make variadic aggregates as long as we're wary about
shipping any such in core.
In passing, this patch allows aggregate function arguments to be named, to
the extent of remembering the names in pg_proc and dumping them in pg_dump.
You can't yet call an aggregate using named-parameter notation. That seems
like a likely future extension, but it'll take some work, and it's not what
this patch is really about. Likewise, there's still some work needed to
make window functions handle VARIADIC fully, but I left that for another
day.
initdb forced because of new aggvariadic field in Aggref parse nodes.
This is SQL-standard with a few extensions, namely support for
subqueries and outer references in clause expressions.
catversion bump due to change in Aggref and WindowFunc.
David Fetter, reviewed by Dean Rasheed.
Formerly we relied on checking after-the-fact to see if an expression
contained aggregates, window functions, or sub-selects when it shouldn't.
This is grotty, easily forgotten (indeed, we had forgotten to teach
DefineIndex about rejecting window functions), and none too efficient
since it requires extra traversals of the parse tree. To improve matters,
define an enum type that classifies all SQL sub-expressions, store it in
ParseState to show what kind of expression we are currently parsing, and
make transformAggregateCall, transformWindowFuncCall, and transformSubLink
check the expression type and throw error if the type indicates the
construct is disallowed. This allows removal of a large number of ad-hoc
checks scattered around the code base. The enum type is sufficiently
fine-grained that we can still produce error messages of at least the
same specificity as before.
Bringing these error checks together revealed that we'd been none too
consistent about phrasing of the error messages, so standardize the wording
a bit.
Also, rewrite checking of aggregate arguments so that it requires only one
traversal of the arguments, rather than up to three as before.
In passing, clean up some more comments left over from add_missing_from
support, and annotate some tests that I think are dead code now that that's
gone. (I didn't risk actually removing said dead code, though.)
This patch implements the standard syntax of LATERAL attached to a
sub-SELECT in FROM, and also allows LATERAL attached to a function in FROM,
since set-returning function calls are expected to be one of the principal
use-cases.
The main change here is a rewrite of the mechanism for keeping track of
which relations are visible for column references while the FROM clause is
being scanned. The parser "namespace" lists are no longer lists of bare
RTEs, but are lists of ParseNamespaceItem structs, which carry an RTE
pointer as well as some visibility-controlling flags. Aside from
supporting LATERAL correctly, this lets us get rid of the ancient hacks
that required rechecking subqueries and JOIN/ON and function-in-FROM
expressions for invalid references after they were initially parsed.
Invalid column references are now always correctly detected on sight.
In passing, remove assorted parser error checks that are now dead code by
virtue of our having gotten rid of add_missing_from, as well as some
comments that are obsolete for the same reason. (It was mainly
add_missing_from that caused so much fudging here in the first place.)
The planner support for this feature is very minimal, and will be improved
in future patches. It works well enough for testing purposes, though.
catversion bump forced due to new field in RangeTblEntry.
All expression nodes now have an explicit output-collation field, unless
they are known to only return a noncollatable data type (such as boolean
or record). Also, nodes that can invoke collation-aware functions store
a separate field that is the collation value to pass to the function.
This avoids confusion that arises when a function has collatable inputs
and noncollatable output type, or vice versa.
Also, replace the parser's on-the-fly collation assignment method with
a post-pass over the completed expression tree. This allows us to use
a more complex (and hopefully more nearly spec-compliant) assignment
rule without paying for it in extra storage in every expression node.
Fix assorted bugs in the planner's handling of collations by making
collation one of the defining properties of an EquivalenceClass and
by converting CollateExprs into discardable RelabelType nodes during
expression preprocessing.
This adds collation support for columns and domains, a COLLATE clause
to override it per expression, and B-tree index support.
Peter Eisentraut
reviewed by Pavel Stehule, Itagaki Takahiro, Robert Haas, Noah Misch
other columns to be referenced without listing them in GROUP BY, so long as
the primary key column(s) are listed in GROUP BY.
Eventually we should also allow functional dependency on a UNIQUE constraint
when the columns are marked NOT NULL, but that has to wait until NOT NULL
constraints are represented in pg_constraint, because we need to have
pg_constraint OIDs for all the conditions needed to ensure functional
dependency.
Peter Eisentraut, reviewed by Alex Hunsaker and Tom Lane
to transformAggregateCall, instead of abusing fields in Aggref to carry them
temporarily. No change in functionality but hopefully the code is a bit
clearer now. Per gripe from Gokulakannan Somasundaram.
This patch allows the frame to start from CURRENT ROW (in either RANGE or
ROWS mode), and it also adds support for ROWS n PRECEDING and ROWS n FOLLOWING
start and end points. (RANGE value PRECEDING/FOLLOWING isn't there yet ---
the grammar works, but that's all.)
Hitoshi Harada, reviewed by Pavel Stehule
non-kluge method for controlling the order in which values are fed to an
aggregate function. At the same time eliminate the old implementation
restriction that DISTINCT was only supported for single-argument aggregates.
Possibly release-notable behavioral change: formerly, agg(DISTINCT x)
dropped null values of x unconditionally. Now, it does so only if the
agg transition function is strict; otherwise nulls are treated as DISTINCT
normally would, ie, you get one copy.
Andrew Gierth, reviewed by Hitoshi Harada
patch. This includes the ability to force the frame to cover the whole
partition, and the ability to make the frame end exactly on the current row
rather than its last ORDER BY peer. Supporting any more of the full SQL
frame-clause syntax will require nontrivial hacking on the window aggregate
code, so it'll have to wait for 8.5 or beyond.
There are some unimplemented aspects: recursive queries must use UNION ALL
(should allow UNION too), and we don't have SEARCH or CYCLE clauses.
These might or might not get done for 8.4, but even without them it's a
pretty useful feature.
There are also a couple of small loose ends and definitional quibbles,
which I'll send a memo about to pgsql-hackers shortly. But let's land
the patch now so we can get on with other development.
Yoshiyuki Asaba, with lots of help from Tatsuo Ishii and Tom Lane
most node types used in expression trees (both before and after parse
analysis). This allows us to place an error cursor in many situations
where we formerly could not, because the information wasn't available
beyond the very first level of parse analysis. There's a fair amount
of work still to be done to persuade individual ereport() calls to actually
include an error location, but this gets the initdb-forcing part of the
work out of the way; and the situation is already markedly better than
before for complaints about unimplementable implicit casts, such as
CASE and UNION constructs with incompatible alternative data types.
Per my proposal of a few days ago.
into nodes/nodeFuncs, so as to reduce wanton cross-subsystem #includes inside
the backend. There's probably more that should be done along this line,
but this is a start anyway.
as per my recent proposal:
1. Fold SortClause and GroupClause into a single node type SortGroupClause.
We were already relying on them to be struct-equivalent, so using two node
tags wasn't accomplishing much except to get in the way of comparing items
with equal().
2. Add an "eqop" field to SortGroupClause to carry the associated equality
operator. This is cheap for the parser to get at the same time it's looking
up the sort operator, and storing it eliminates the need for repeated
not-so-cheap lookups during planning. In future this will also let us
represent GROUP/DISTINCT operations on datatypes that have hash opclasses
but no btree opclasses (ie, they have equality but no natural sort order).
The previous representation simply didn't work for that, since its only
indicator of comparison semantics was a sort operator.
3. Add a hasDistinctOn boolean to struct Query to explicitly record whether
the distinctClause came from DISTINCT or DISTINCT ON. This allows removing
some complicated and not 100% bulletproof code that attempted to figure
that out from the distinctClause alone.
This patch doesn't in itself create any new capability, but it's necessary
infrastructure for future attempts to use hash-based grouping for DISTINCT
and UNION/INTERSECT/EXCEPT.
were accepted by prior Postgres releases. This takes care of the loose end
left by the preceding patch to downgrade implicit casts-to-text. To avoid
breaking desirable behavior for array concatenation, introduce a new
polymorphic pseudo-type "anynonarray" --- the added concatenation operators
are actually text || anynonarray and anynonarray || text.