mirror of
https://github.com/postgres/postgres.git
synced 2025-04-27 22:56:53 +03:00
The original specification for this called for the deserialization function to have signature "deserialize(serialtype) returns transtype", which is a security violation if transtype is INTERNAL (which it always would be in practice) and serialtype is not (which ditto). The patch blithely overrode the opr_sanity check for that, which was sloppy-enough work in itself, but the indisputable reason this cannot be allowed to stand is that CREATE FUNCTION will reject such a signature and thus it'd be impossible for extensions to create parallelizable aggregates. The minimum fix to make the signature type-safe is to add a second, dummy argument of type INTERNAL. But to lock it down a bit more and make misuse of INTERNAL-accepting functions less likely, let's get rid of the ability to specify a "serialtype" for an aggregate and just say that the only useful serialtype is BYTEA --- which, in practice, is the only interesting value anyway, due to the usefulness of the send/recv infrastructure for this purpose. That means we only have to allow "serialize(internal) returns bytea" and "deserialize(bytea, internal) returns internal" as the signatures for these support functions. In passing fix bogus signature of int4_avg_combine, which I found thanks to adding an opr_sanity check on combinefunc signatures. catversion bump due to removing pg_aggregate.aggserialtype and adjusting signatures of assorted built-in functions. David Rowley and Tom Lane Discussion: <27247.1466185504@sss.pgh.pa.us>
2046 lines
58 KiB
C
2046 lines
58 KiB
C
/*-------------------------------------------------------------------------
|
|
*
|
|
* parse_agg.c
|
|
* handle aggregates and window functions in parser
|
|
*
|
|
* Portions Copyright (c) 1996-2016, PostgreSQL Global Development Group
|
|
* Portions Copyright (c) 1994, Regents of the University of California
|
|
*
|
|
*
|
|
* IDENTIFICATION
|
|
* src/backend/parser/parse_agg.c
|
|
*
|
|
*-------------------------------------------------------------------------
|
|
*/
|
|
#include "postgres.h"
|
|
|
|
#include "catalog/pg_aggregate.h"
|
|
#include "catalog/pg_constraint_fn.h"
|
|
#include "catalog/pg_type.h"
|
|
#include "nodes/makefuncs.h"
|
|
#include "nodes/nodeFuncs.h"
|
|
#include "optimizer/tlist.h"
|
|
#include "optimizer/var.h"
|
|
#include "parser/parse_agg.h"
|
|
#include "parser/parse_clause.h"
|
|
#include "parser/parse_coerce.h"
|
|
#include "parser/parse_expr.h"
|
|
#include "parser/parsetree.h"
|
|
#include "rewrite/rewriteManip.h"
|
|
#include "utils/builtins.h"
|
|
#include "utils/lsyscache.h"
|
|
|
|
|
|
typedef struct
|
|
{
|
|
ParseState *pstate;
|
|
int min_varlevel;
|
|
int min_agglevel;
|
|
int sublevels_up;
|
|
} check_agg_arguments_context;
|
|
|
|
typedef struct
|
|
{
|
|
ParseState *pstate;
|
|
Query *qry;
|
|
PlannerInfo *root;
|
|
List *groupClauses;
|
|
List *groupClauseCommonVars;
|
|
bool have_non_var_grouping;
|
|
List **func_grouped_rels;
|
|
int sublevels_up;
|
|
bool in_agg_direct_args;
|
|
} check_ungrouped_columns_context;
|
|
|
|
static int check_agg_arguments(ParseState *pstate,
|
|
List *directargs,
|
|
List *args,
|
|
Expr *filter);
|
|
static bool check_agg_arguments_walker(Node *node,
|
|
check_agg_arguments_context *context);
|
|
static void check_ungrouped_columns(Node *node, ParseState *pstate, Query *qry,
|
|
List *groupClauses, List *groupClauseVars,
|
|
bool have_non_var_grouping,
|
|
List **func_grouped_rels);
|
|
static bool check_ungrouped_columns_walker(Node *node,
|
|
check_ungrouped_columns_context *context);
|
|
static void finalize_grouping_exprs(Node *node, ParseState *pstate, Query *qry,
|
|
List *groupClauses, PlannerInfo *root,
|
|
bool have_non_var_grouping);
|
|
static bool finalize_grouping_exprs_walker(Node *node,
|
|
check_ungrouped_columns_context *context);
|
|
static void check_agglevels_and_constraints(ParseState *pstate, Node *expr);
|
|
static List *expand_groupingset_node(GroupingSet *gs);
|
|
static Node *make_agg_arg(Oid argtype, Oid argcollation);
|
|
|
|
|
|
/*
|
|
* transformAggregateCall -
|
|
* Finish initial transformation of an aggregate call
|
|
*
|
|
* parse_func.c has recognized the function as an aggregate, and has set up
|
|
* all the fields of the Aggref except aggargtypes, aggdirectargs, args,
|
|
* aggorder, aggdistinct and agglevelsup. The passed-in args list has been
|
|
* through standard expression transformation and type coercion to match the
|
|
* agg's declared arg types, while the passed-in aggorder list hasn't been
|
|
* transformed at all.
|
|
*
|
|
* Here we separate the args list into direct and aggregated args, storing the
|
|
* former in agg->aggdirectargs and the latter in agg->args. The regular
|
|
* args, but not the direct args, are converted into a targetlist by inserting
|
|
* TargetEntry nodes. We then transform the aggorder and agg_distinct
|
|
* specifications to produce lists of SortGroupClause nodes for agg->aggorder
|
|
* and agg->aggdistinct. (For a regular aggregate, this might result in
|
|
* adding resjunk expressions to the targetlist; but for ordered-set
|
|
* aggregates the aggorder list will always be one-to-one with the aggregated
|
|
* args.)
|
|
*
|
|
* We must also determine which query level the aggregate actually belongs to,
|
|
* set agglevelsup accordingly, and mark p_hasAggs true in the corresponding
|
|
* pstate level.
|
|
*/
|
|
void
|
|
transformAggregateCall(ParseState *pstate, Aggref *agg,
|
|
List *args, List *aggorder, bool agg_distinct)
|
|
{
|
|
List *argtypes = NIL;
|
|
List *tlist = NIL;
|
|
List *torder = NIL;
|
|
List *tdistinct = NIL;
|
|
AttrNumber attno = 1;
|
|
int save_next_resno;
|
|
ListCell *lc;
|
|
|
|
/*
|
|
* Before separating the args into direct and aggregated args, make a list
|
|
* of their data type OIDs for use later.
|
|
*/
|
|
foreach(lc, args)
|
|
{
|
|
Expr *arg = (Expr *) lfirst(lc);
|
|
|
|
argtypes = lappend_oid(argtypes, exprType((Node *) arg));
|
|
}
|
|
agg->aggargtypes = argtypes;
|
|
|
|
if (AGGKIND_IS_ORDERED_SET(agg->aggkind))
|
|
{
|
|
/*
|
|
* For an ordered-set agg, the args list includes direct args and
|
|
* aggregated args; we must split them apart.
|
|
*/
|
|
int numDirectArgs = list_length(args) - list_length(aggorder);
|
|
List *aargs;
|
|
ListCell *lc2;
|
|
|
|
Assert(numDirectArgs >= 0);
|
|
|
|
aargs = list_copy_tail(args, numDirectArgs);
|
|
agg->aggdirectargs = list_truncate(args, numDirectArgs);
|
|
|
|
/*
|
|
* Build a tlist from the aggregated args, and make a sortlist entry
|
|
* for each one. Note that the expressions in the SortBy nodes are
|
|
* ignored (they are the raw versions of the transformed args); we are
|
|
* just looking at the sort information in the SortBy nodes.
|
|
*/
|
|
forboth(lc, aargs, lc2, aggorder)
|
|
{
|
|
Expr *arg = (Expr *) lfirst(lc);
|
|
SortBy *sortby = (SortBy *) lfirst(lc2);
|
|
TargetEntry *tle;
|
|
|
|
/* We don't bother to assign column names to the entries */
|
|
tle = makeTargetEntry(arg, attno++, NULL, false);
|
|
tlist = lappend(tlist, tle);
|
|
|
|
torder = addTargetToSortList(pstate, tle,
|
|
torder, tlist, sortby,
|
|
true /* fix unknowns */ );
|
|
}
|
|
|
|
/* Never any DISTINCT in an ordered-set agg */
|
|
Assert(!agg_distinct);
|
|
}
|
|
else
|
|
{
|
|
/* Regular aggregate, so it has no direct args */
|
|
agg->aggdirectargs = NIL;
|
|
|
|
/*
|
|
* Transform the plain list of Exprs into a targetlist.
|
|
*/
|
|
foreach(lc, args)
|
|
{
|
|
Expr *arg = (Expr *) lfirst(lc);
|
|
TargetEntry *tle;
|
|
|
|
/* We don't bother to assign column names to the entries */
|
|
tle = makeTargetEntry(arg, attno++, NULL, false);
|
|
tlist = lappend(tlist, tle);
|
|
}
|
|
|
|
/*
|
|
* If we have an ORDER BY, transform it. This will add columns to the
|
|
* tlist if they appear in ORDER BY but weren't already in the arg
|
|
* list. They will be marked resjunk = true so we can tell them apart
|
|
* from regular aggregate arguments later.
|
|
*
|
|
* We need to mess with p_next_resno since it will be used to number
|
|
* any new targetlist entries.
|
|
*/
|
|
save_next_resno = pstate->p_next_resno;
|
|
pstate->p_next_resno = attno;
|
|
|
|
torder = transformSortClause(pstate,
|
|
aggorder,
|
|
&tlist,
|
|
EXPR_KIND_ORDER_BY,
|
|
true /* fix unknowns */ ,
|
|
true /* force SQL99 rules */ );
|
|
|
|
/*
|
|
* If we have DISTINCT, transform that to produce a distinctList.
|
|
*/
|
|
if (agg_distinct)
|
|
{
|
|
tdistinct = transformDistinctClause(pstate, &tlist, torder, true);
|
|
|
|
/*
|
|
* Remove this check if executor support for hashed distinct for
|
|
* aggregates is ever added.
|
|
*/
|
|
foreach(lc, tdistinct)
|
|
{
|
|
SortGroupClause *sortcl = (SortGroupClause *) lfirst(lc);
|
|
|
|
if (!OidIsValid(sortcl->sortop))
|
|
{
|
|
Node *expr = get_sortgroupclause_expr(sortcl, tlist);
|
|
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_UNDEFINED_FUNCTION),
|
|
errmsg("could not identify an ordering operator for type %s",
|
|
format_type_be(exprType(expr))),
|
|
errdetail("Aggregates with DISTINCT must be able to sort their inputs."),
|
|
parser_errposition(pstate, exprLocation(expr))));
|
|
}
|
|
}
|
|
}
|
|
|
|
pstate->p_next_resno = save_next_resno;
|
|
}
|
|
|
|
/* Update the Aggref with the transformation results */
|
|
agg->args = tlist;
|
|
agg->aggorder = torder;
|
|
agg->aggdistinct = tdistinct;
|
|
|
|
check_agglevels_and_constraints(pstate, (Node *) agg);
|
|
}
|
|
|
|
/*
|
|
* transformGroupingFunc
|
|
* Transform a GROUPING expression
|
|
*
|
|
* GROUPING() behaves very like an aggregate. Processing of levels and nesting
|
|
* is done as for aggregates. We set p_hasAggs for these expressions too.
|
|
*/
|
|
Node *
|
|
transformGroupingFunc(ParseState *pstate, GroupingFunc *p)
|
|
{
|
|
ListCell *lc;
|
|
List *args = p->args;
|
|
List *result_list = NIL;
|
|
GroupingFunc *result = makeNode(GroupingFunc);
|
|
|
|
if (list_length(args) > 31)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_TOO_MANY_ARGUMENTS),
|
|
errmsg("GROUPING must have fewer than 32 arguments"),
|
|
parser_errposition(pstate, p->location)));
|
|
|
|
foreach(lc, args)
|
|
{
|
|
Node *current_result;
|
|
|
|
current_result = transformExpr(pstate, (Node *) lfirst(lc), pstate->p_expr_kind);
|
|
|
|
/* acceptability of expressions is checked later */
|
|
|
|
result_list = lappend(result_list, current_result);
|
|
}
|
|
|
|
result->args = result_list;
|
|
result->location = p->location;
|
|
|
|
check_agglevels_and_constraints(pstate, (Node *) result);
|
|
|
|
return (Node *) result;
|
|
}
|
|
|
|
/*
|
|
* Aggregate functions and grouping operations (which are combined in the spec
|
|
* as <set function specification>) are very similar with regard to level and
|
|
* nesting restrictions (though we allow a lot more things than the spec does).
|
|
* Centralise those restrictions here.
|
|
*/
|
|
static void
|
|
check_agglevels_and_constraints(ParseState *pstate, Node *expr)
|
|
{
|
|
List *directargs = NIL;
|
|
List *args = NIL;
|
|
Expr *filter = NULL;
|
|
int min_varlevel;
|
|
int location = -1;
|
|
Index *p_levelsup;
|
|
const char *err;
|
|
bool errkind;
|
|
bool isAgg = IsA(expr, Aggref);
|
|
|
|
if (isAgg)
|
|
{
|
|
Aggref *agg = (Aggref *) expr;
|
|
|
|
directargs = agg->aggdirectargs;
|
|
args = agg->args;
|
|
filter = agg->aggfilter;
|
|
location = agg->location;
|
|
p_levelsup = &agg->agglevelsup;
|
|
}
|
|
else
|
|
{
|
|
GroupingFunc *grp = (GroupingFunc *) expr;
|
|
|
|
args = grp->args;
|
|
location = grp->location;
|
|
p_levelsup = &grp->agglevelsup;
|
|
}
|
|
|
|
/*
|
|
* Check the arguments to compute the aggregate's level and detect
|
|
* improper nesting.
|
|
*/
|
|
min_varlevel = check_agg_arguments(pstate,
|
|
directargs,
|
|
args,
|
|
filter);
|
|
|
|
*p_levelsup = min_varlevel;
|
|
|
|
/* Mark the correct pstate level as having aggregates */
|
|
while (min_varlevel-- > 0)
|
|
pstate = pstate->parentParseState;
|
|
pstate->p_hasAggs = true;
|
|
|
|
/*
|
|
* Check to see if the aggregate function is in an invalid place within
|
|
* its aggregation query.
|
|
*
|
|
* For brevity we support two schemes for reporting an error here: set
|
|
* "err" to a custom message, or set "errkind" true if the error context
|
|
* is sufficiently identified by what ParseExprKindName will return, *and*
|
|
* what it will return is just a SQL keyword. (Otherwise, use a custom
|
|
* message to avoid creating translation problems.)
|
|
*/
|
|
err = NULL;
|
|
errkind = false;
|
|
switch (pstate->p_expr_kind)
|
|
{
|
|
case EXPR_KIND_NONE:
|
|
Assert(false); /* can't happen */
|
|
break;
|
|
case EXPR_KIND_OTHER:
|
|
|
|
/*
|
|
* Accept aggregate/grouping here; caller must throw error if
|
|
* wanted
|
|
*/
|
|
break;
|
|
case EXPR_KIND_JOIN_ON:
|
|
case EXPR_KIND_JOIN_USING:
|
|
if (isAgg)
|
|
err = _("aggregate functions are not allowed in JOIN conditions");
|
|
else
|
|
err = _("grouping operations are not allowed in JOIN conditions");
|
|
|
|
break;
|
|
case EXPR_KIND_FROM_SUBSELECT:
|
|
/* Should only be possible in a LATERAL subquery */
|
|
Assert(pstate->p_lateral_active);
|
|
|
|
/*
|
|
* Aggregate/grouping scope rules make it worth being explicit
|
|
* here
|
|
*/
|
|
if (isAgg)
|
|
err = _("aggregate functions are not allowed in FROM clause of their own query level");
|
|
else
|
|
err = _("grouping operations are not allowed in FROM clause of their own query level");
|
|
|
|
break;
|
|
case EXPR_KIND_FROM_FUNCTION:
|
|
if (isAgg)
|
|
err = _("aggregate functions are not allowed in functions in FROM");
|
|
else
|
|
err = _("grouping operations are not allowed in functions in FROM");
|
|
|
|
break;
|
|
case EXPR_KIND_WHERE:
|
|
errkind = true;
|
|
break;
|
|
case EXPR_KIND_POLICY:
|
|
if (isAgg)
|
|
err = _("aggregate functions are not allowed in policy expressions");
|
|
else
|
|
err = _("grouping operations are not allowed in policy expressions");
|
|
|
|
break;
|
|
case EXPR_KIND_HAVING:
|
|
/* okay */
|
|
break;
|
|
case EXPR_KIND_FILTER:
|
|
errkind = true;
|
|
break;
|
|
case EXPR_KIND_WINDOW_PARTITION:
|
|
/* okay */
|
|
break;
|
|
case EXPR_KIND_WINDOW_ORDER:
|
|
/* okay */
|
|
break;
|
|
case EXPR_KIND_WINDOW_FRAME_RANGE:
|
|
if (isAgg)
|
|
err = _("aggregate functions are not allowed in window RANGE");
|
|
else
|
|
err = _("grouping operations are not allowed in window RANGE");
|
|
|
|
break;
|
|
case EXPR_KIND_WINDOW_FRAME_ROWS:
|
|
if (isAgg)
|
|
err = _("aggregate functions are not allowed in window ROWS");
|
|
else
|
|
err = _("grouping operations are not allowed in window ROWS");
|
|
|
|
break;
|
|
case EXPR_KIND_SELECT_TARGET:
|
|
/* okay */
|
|
break;
|
|
case EXPR_KIND_INSERT_TARGET:
|
|
case EXPR_KIND_UPDATE_SOURCE:
|
|
case EXPR_KIND_UPDATE_TARGET:
|
|
errkind = true;
|
|
break;
|
|
case EXPR_KIND_GROUP_BY:
|
|
errkind = true;
|
|
break;
|
|
case EXPR_KIND_ORDER_BY:
|
|
/* okay */
|
|
break;
|
|
case EXPR_KIND_DISTINCT_ON:
|
|
/* okay */
|
|
break;
|
|
case EXPR_KIND_LIMIT:
|
|
case EXPR_KIND_OFFSET:
|
|
errkind = true;
|
|
break;
|
|
case EXPR_KIND_RETURNING:
|
|
errkind = true;
|
|
break;
|
|
case EXPR_KIND_VALUES:
|
|
errkind = true;
|
|
break;
|
|
case EXPR_KIND_CHECK_CONSTRAINT:
|
|
case EXPR_KIND_DOMAIN_CHECK:
|
|
if (isAgg)
|
|
err = _("aggregate functions are not allowed in check constraints");
|
|
else
|
|
err = _("grouping operations are not allowed in check constraints");
|
|
|
|
break;
|
|
case EXPR_KIND_COLUMN_DEFAULT:
|
|
case EXPR_KIND_FUNCTION_DEFAULT:
|
|
|
|
if (isAgg)
|
|
err = _("aggregate functions are not allowed in DEFAULT expressions");
|
|
else
|
|
err = _("grouping operations are not allowed in DEFAULT expressions");
|
|
|
|
break;
|
|
case EXPR_KIND_INDEX_EXPRESSION:
|
|
if (isAgg)
|
|
err = _("aggregate functions are not allowed in index expressions");
|
|
else
|
|
err = _("grouping operations are not allowed in index expressions");
|
|
|
|
break;
|
|
case EXPR_KIND_INDEX_PREDICATE:
|
|
if (isAgg)
|
|
err = _("aggregate functions are not allowed in index predicates");
|
|
else
|
|
err = _("grouping operations are not allowed in index predicates");
|
|
|
|
break;
|
|
case EXPR_KIND_ALTER_COL_TRANSFORM:
|
|
if (isAgg)
|
|
err = _("aggregate functions are not allowed in transform expressions");
|
|
else
|
|
err = _("grouping operations are not allowed in transform expressions");
|
|
|
|
break;
|
|
case EXPR_KIND_EXECUTE_PARAMETER:
|
|
if (isAgg)
|
|
err = _("aggregate functions are not allowed in EXECUTE parameters");
|
|
else
|
|
err = _("grouping operations are not allowed in EXECUTE parameters");
|
|
|
|
break;
|
|
case EXPR_KIND_TRIGGER_WHEN:
|
|
if (isAgg)
|
|
err = _("aggregate functions are not allowed in trigger WHEN conditions");
|
|
else
|
|
err = _("grouping operations are not allowed in trigger WHEN conditions");
|
|
|
|
break;
|
|
|
|
/*
|
|
* There is intentionally no default: case here, so that the
|
|
* compiler will warn if we add a new ParseExprKind without
|
|
* extending this switch. If we do see an unrecognized value at
|
|
* runtime, the behavior will be the same as for EXPR_KIND_OTHER,
|
|
* which is sane anyway.
|
|
*/
|
|
}
|
|
|
|
if (err)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_GROUPING_ERROR),
|
|
errmsg_internal("%s", err),
|
|
parser_errposition(pstate, location)));
|
|
|
|
if (errkind)
|
|
{
|
|
if (isAgg)
|
|
/* translator: %s is name of a SQL construct, eg GROUP BY */
|
|
err = _("aggregate functions are not allowed in %s");
|
|
else
|
|
/* translator: %s is name of a SQL construct, eg GROUP BY */
|
|
err = _("grouping operations are not allowed in %s");
|
|
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_GROUPING_ERROR),
|
|
errmsg_internal(err,
|
|
ParseExprKindName(pstate->p_expr_kind)),
|
|
parser_errposition(pstate, location)));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* check_agg_arguments
|
|
* Scan the arguments of an aggregate function to determine the
|
|
* aggregate's semantic level (zero is the current select's level,
|
|
* one is its parent, etc).
|
|
*
|
|
* The aggregate's level is the same as the level of the lowest-level variable
|
|
* or aggregate in its aggregated arguments (including any ORDER BY columns)
|
|
* or filter expression; or if it contains no variables at all, we presume it
|
|
* to be local.
|
|
*
|
|
* Vars/Aggs in direct arguments are *not* counted towards determining the
|
|
* agg's level, as those arguments aren't evaluated per-row but only
|
|
* per-group, and so in some sense aren't really agg arguments. However,
|
|
* this can mean that we decide an agg is upper-level even when its direct
|
|
* args contain lower-level Vars/Aggs, and that case has to be disallowed.
|
|
* (This is a little strange, but the SQL standard seems pretty definite that
|
|
* direct args are not to be considered when setting the agg's level.)
|
|
*
|
|
* We also take this opportunity to detect any aggregates or window functions
|
|
* nested within the arguments. We can throw error immediately if we find
|
|
* a window function. Aggregates are a bit trickier because it's only an
|
|
* error if the inner aggregate is of the same semantic level as the outer,
|
|
* which we can't know until we finish scanning the arguments.
|
|
*/
|
|
static int
|
|
check_agg_arguments(ParseState *pstate,
|
|
List *directargs,
|
|
List *args,
|
|
Expr *filter)
|
|
{
|
|
int agglevel;
|
|
check_agg_arguments_context context;
|
|
|
|
context.pstate = pstate;
|
|
context.min_varlevel = -1; /* signifies nothing found yet */
|
|
context.min_agglevel = -1;
|
|
context.sublevels_up = 0;
|
|
|
|
(void) expression_tree_walker((Node *) args,
|
|
check_agg_arguments_walker,
|
|
(void *) &context);
|
|
|
|
(void) expression_tree_walker((Node *) filter,
|
|
check_agg_arguments_walker,
|
|
(void *) &context);
|
|
|
|
/*
|
|
* If we found no vars nor aggs at all, it's a level-zero aggregate;
|
|
* otherwise, its level is the minimum of vars or aggs.
|
|
*/
|
|
if (context.min_varlevel < 0)
|
|
{
|
|
if (context.min_agglevel < 0)
|
|
agglevel = 0;
|
|
else
|
|
agglevel = context.min_agglevel;
|
|
}
|
|
else if (context.min_agglevel < 0)
|
|
agglevel = context.min_varlevel;
|
|
else
|
|
agglevel = Min(context.min_varlevel, context.min_agglevel);
|
|
|
|
/*
|
|
* If there's a nested aggregate of the same semantic level, complain.
|
|
*/
|
|
if (agglevel == context.min_agglevel)
|
|
{
|
|
int aggloc;
|
|
|
|
aggloc = locate_agg_of_level((Node *) args, agglevel);
|
|
if (aggloc < 0)
|
|
aggloc = locate_agg_of_level((Node *) filter, agglevel);
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_GROUPING_ERROR),
|
|
errmsg("aggregate function calls cannot be nested"),
|
|
parser_errposition(pstate, aggloc)));
|
|
}
|
|
|
|
/*
|
|
* Now check for vars/aggs in the direct arguments, and throw error if
|
|
* needed. Note that we allow a Var of the agg's semantic level, but not
|
|
* an Agg of that level. In principle such Aggs could probably be
|
|
* supported, but it would create an ordering dependency among the
|
|
* aggregates at execution time. Since the case appears neither to be
|
|
* required by spec nor particularly useful, we just treat it as a
|
|
* nested-aggregate situation.
|
|
*/
|
|
if (directargs)
|
|
{
|
|
context.min_varlevel = -1;
|
|
context.min_agglevel = -1;
|
|
(void) expression_tree_walker((Node *) directargs,
|
|
check_agg_arguments_walker,
|
|
(void *) &context);
|
|
if (context.min_varlevel >= 0 && context.min_varlevel < agglevel)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_GROUPING_ERROR),
|
|
errmsg("outer-level aggregate cannot contain a lower-level variable in its direct arguments"),
|
|
parser_errposition(pstate,
|
|
locate_var_of_level((Node *) directargs,
|
|
context.min_varlevel))));
|
|
if (context.min_agglevel >= 0 && context.min_agglevel <= agglevel)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_GROUPING_ERROR),
|
|
errmsg("aggregate function calls cannot be nested"),
|
|
parser_errposition(pstate,
|
|
locate_agg_of_level((Node *) directargs,
|
|
context.min_agglevel))));
|
|
}
|
|
return agglevel;
|
|
}
|
|
|
|
static bool
|
|
check_agg_arguments_walker(Node *node,
|
|
check_agg_arguments_context *context)
|
|
{
|
|
if (node == NULL)
|
|
return false;
|
|
if (IsA(node, Var))
|
|
{
|
|
int varlevelsup = ((Var *) node)->varlevelsup;
|
|
|
|
/* convert levelsup to frame of reference of original query */
|
|
varlevelsup -= context->sublevels_up;
|
|
/* ignore local vars of subqueries */
|
|
if (varlevelsup >= 0)
|
|
{
|
|
if (context->min_varlevel < 0 ||
|
|
context->min_varlevel > varlevelsup)
|
|
context->min_varlevel = varlevelsup;
|
|
}
|
|
return false;
|
|
}
|
|
if (IsA(node, Aggref))
|
|
{
|
|
int agglevelsup = ((Aggref *) node)->agglevelsup;
|
|
|
|
/* convert levelsup to frame of reference of original query */
|
|
agglevelsup -= context->sublevels_up;
|
|
/* ignore local aggs of subqueries */
|
|
if (agglevelsup >= 0)
|
|
{
|
|
if (context->min_agglevel < 0 ||
|
|
context->min_agglevel > agglevelsup)
|
|
context->min_agglevel = agglevelsup;
|
|
}
|
|
/* no need to examine args of the inner aggregate */
|
|
return false;
|
|
}
|
|
if (IsA(node, GroupingFunc))
|
|
{
|
|
int agglevelsup = ((GroupingFunc *) node)->agglevelsup;
|
|
|
|
/* convert levelsup to frame of reference of original query */
|
|
agglevelsup -= context->sublevels_up;
|
|
/* ignore local aggs of subqueries */
|
|
if (agglevelsup >= 0)
|
|
{
|
|
if (context->min_agglevel < 0 ||
|
|
context->min_agglevel > agglevelsup)
|
|
context->min_agglevel = agglevelsup;
|
|
}
|
|
/* Continue and descend into subtree */
|
|
}
|
|
/* We can throw error on sight for a window function */
|
|
if (IsA(node, WindowFunc))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_GROUPING_ERROR),
|
|
errmsg("aggregate function calls cannot contain window function calls"),
|
|
parser_errposition(context->pstate,
|
|
((WindowFunc *) node)->location)));
|
|
if (IsA(node, Query))
|
|
{
|
|
/* Recurse into subselects */
|
|
bool result;
|
|
|
|
context->sublevels_up++;
|
|
result = query_tree_walker((Query *) node,
|
|
check_agg_arguments_walker,
|
|
(void *) context,
|
|
0);
|
|
context->sublevels_up--;
|
|
return result;
|
|
}
|
|
|
|
return expression_tree_walker(node,
|
|
check_agg_arguments_walker,
|
|
(void *) context);
|
|
}
|
|
|
|
/*
|
|
* transformWindowFuncCall -
|
|
* Finish initial transformation of a window function call
|
|
*
|
|
* parse_func.c has recognized the function as a window function, and has set
|
|
* up all the fields of the WindowFunc except winref. Here we must (1) add
|
|
* the WindowDef to the pstate (if not a duplicate of one already present) and
|
|
* set winref to link to it; and (2) mark p_hasWindowFuncs true in the pstate.
|
|
* Unlike aggregates, only the most closely nested pstate level need be
|
|
* considered --- there are no "outer window functions" per SQL spec.
|
|
*/
|
|
void
|
|
transformWindowFuncCall(ParseState *pstate, WindowFunc *wfunc,
|
|
WindowDef *windef)
|
|
{
|
|
const char *err;
|
|
bool errkind;
|
|
|
|
/*
|
|
* A window function call can't contain another one (but aggs are OK). XXX
|
|
* is this required by spec, or just an unimplemented feature?
|
|
*
|
|
* Note: we don't need to check the filter expression here, because the
|
|
* context checks done below and in transformAggregateCall would have
|
|
* already rejected any window funcs or aggs within the filter.
|
|
*/
|
|
if (pstate->p_hasWindowFuncs &&
|
|
contain_windowfuncs((Node *) wfunc->args))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_WINDOWING_ERROR),
|
|
errmsg("window function calls cannot be nested"),
|
|
parser_errposition(pstate,
|
|
locate_windowfunc((Node *) wfunc->args))));
|
|
|
|
/*
|
|
* Check to see if the window function is in an invalid place within the
|
|
* query.
|
|
*
|
|
* For brevity we support two schemes for reporting an error here: set
|
|
* "err" to a custom message, or set "errkind" true if the error context
|
|
* is sufficiently identified by what ParseExprKindName will return, *and*
|
|
* what it will return is just a SQL keyword. (Otherwise, use a custom
|
|
* message to avoid creating translation problems.)
|
|
*/
|
|
err = NULL;
|
|
errkind = false;
|
|
switch (pstate->p_expr_kind)
|
|
{
|
|
case EXPR_KIND_NONE:
|
|
Assert(false); /* can't happen */
|
|
break;
|
|
case EXPR_KIND_OTHER:
|
|
/* Accept window func here; caller must throw error if wanted */
|
|
break;
|
|
case EXPR_KIND_JOIN_ON:
|
|
case EXPR_KIND_JOIN_USING:
|
|
err = _("window functions are not allowed in JOIN conditions");
|
|
break;
|
|
case EXPR_KIND_FROM_SUBSELECT:
|
|
/* can't get here, but just in case, throw an error */
|
|
errkind = true;
|
|
break;
|
|
case EXPR_KIND_FROM_FUNCTION:
|
|
err = _("window functions are not allowed in functions in FROM");
|
|
break;
|
|
case EXPR_KIND_WHERE:
|
|
errkind = true;
|
|
break;
|
|
case EXPR_KIND_POLICY:
|
|
err = _("window functions are not allowed in policy expressions");
|
|
break;
|
|
case EXPR_KIND_HAVING:
|
|
errkind = true;
|
|
break;
|
|
case EXPR_KIND_FILTER:
|
|
errkind = true;
|
|
break;
|
|
case EXPR_KIND_WINDOW_PARTITION:
|
|
case EXPR_KIND_WINDOW_ORDER:
|
|
case EXPR_KIND_WINDOW_FRAME_RANGE:
|
|
case EXPR_KIND_WINDOW_FRAME_ROWS:
|
|
err = _("window functions are not allowed in window definitions");
|
|
break;
|
|
case EXPR_KIND_SELECT_TARGET:
|
|
/* okay */
|
|
break;
|
|
case EXPR_KIND_INSERT_TARGET:
|
|
case EXPR_KIND_UPDATE_SOURCE:
|
|
case EXPR_KIND_UPDATE_TARGET:
|
|
errkind = true;
|
|
break;
|
|
case EXPR_KIND_GROUP_BY:
|
|
errkind = true;
|
|
break;
|
|
case EXPR_KIND_ORDER_BY:
|
|
/* okay */
|
|
break;
|
|
case EXPR_KIND_DISTINCT_ON:
|
|
/* okay */
|
|
break;
|
|
case EXPR_KIND_LIMIT:
|
|
case EXPR_KIND_OFFSET:
|
|
errkind = true;
|
|
break;
|
|
case EXPR_KIND_RETURNING:
|
|
errkind = true;
|
|
break;
|
|
case EXPR_KIND_VALUES:
|
|
errkind = true;
|
|
break;
|
|
case EXPR_KIND_CHECK_CONSTRAINT:
|
|
case EXPR_KIND_DOMAIN_CHECK:
|
|
err = _("window functions are not allowed in check constraints");
|
|
break;
|
|
case EXPR_KIND_COLUMN_DEFAULT:
|
|
case EXPR_KIND_FUNCTION_DEFAULT:
|
|
err = _("window functions are not allowed in DEFAULT expressions");
|
|
break;
|
|
case EXPR_KIND_INDEX_EXPRESSION:
|
|
err = _("window functions are not allowed in index expressions");
|
|
break;
|
|
case EXPR_KIND_INDEX_PREDICATE:
|
|
err = _("window functions are not allowed in index predicates");
|
|
break;
|
|
case EXPR_KIND_ALTER_COL_TRANSFORM:
|
|
err = _("window functions are not allowed in transform expressions");
|
|
break;
|
|
case EXPR_KIND_EXECUTE_PARAMETER:
|
|
err = _("window functions are not allowed in EXECUTE parameters");
|
|
break;
|
|
case EXPR_KIND_TRIGGER_WHEN:
|
|
err = _("window functions are not allowed in trigger WHEN conditions");
|
|
break;
|
|
|
|
/*
|
|
* There is intentionally no default: case here, so that the
|
|
* compiler will warn if we add a new ParseExprKind without
|
|
* extending this switch. If we do see an unrecognized value at
|
|
* runtime, the behavior will be the same as for EXPR_KIND_OTHER,
|
|
* which is sane anyway.
|
|
*/
|
|
}
|
|
if (err)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_WINDOWING_ERROR),
|
|
errmsg_internal("%s", err),
|
|
parser_errposition(pstate, wfunc->location)));
|
|
if (errkind)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_WINDOWING_ERROR),
|
|
/* translator: %s is name of a SQL construct, eg GROUP BY */
|
|
errmsg("window functions are not allowed in %s",
|
|
ParseExprKindName(pstate->p_expr_kind)),
|
|
parser_errposition(pstate, wfunc->location)));
|
|
|
|
/*
|
|
* If the OVER clause just specifies a window name, find that WINDOW
|
|
* clause (which had better be present). Otherwise, try to match all the
|
|
* properties of the OVER clause, and make a new entry in the p_windowdefs
|
|
* list if no luck.
|
|
*/
|
|
if (windef->name)
|
|
{
|
|
Index winref = 0;
|
|
ListCell *lc;
|
|
|
|
Assert(windef->refname == NULL &&
|
|
windef->partitionClause == NIL &&
|
|
windef->orderClause == NIL &&
|
|
windef->frameOptions == FRAMEOPTION_DEFAULTS);
|
|
|
|
foreach(lc, pstate->p_windowdefs)
|
|
{
|
|
WindowDef *refwin = (WindowDef *) lfirst(lc);
|
|
|
|
winref++;
|
|
if (refwin->name && strcmp(refwin->name, windef->name) == 0)
|
|
{
|
|
wfunc->winref = winref;
|
|
break;
|
|
}
|
|
}
|
|
if (lc == NULL) /* didn't find it? */
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_UNDEFINED_OBJECT),
|
|
errmsg("window \"%s\" does not exist", windef->name),
|
|
parser_errposition(pstate, windef->location)));
|
|
}
|
|
else
|
|
{
|
|
Index winref = 0;
|
|
ListCell *lc;
|
|
|
|
foreach(lc, pstate->p_windowdefs)
|
|
{
|
|
WindowDef *refwin = (WindowDef *) lfirst(lc);
|
|
|
|
winref++;
|
|
if (refwin->refname && windef->refname &&
|
|
strcmp(refwin->refname, windef->refname) == 0)
|
|
/* matched on refname */ ;
|
|
else if (!refwin->refname && !windef->refname)
|
|
/* matched, no refname */ ;
|
|
else
|
|
continue;
|
|
if (equal(refwin->partitionClause, windef->partitionClause) &&
|
|
equal(refwin->orderClause, windef->orderClause) &&
|
|
refwin->frameOptions == windef->frameOptions &&
|
|
equal(refwin->startOffset, windef->startOffset) &&
|
|
equal(refwin->endOffset, windef->endOffset))
|
|
{
|
|
/* found a duplicate window specification */
|
|
wfunc->winref = winref;
|
|
break;
|
|
}
|
|
}
|
|
if (lc == NULL) /* didn't find it? */
|
|
{
|
|
pstate->p_windowdefs = lappend(pstate->p_windowdefs, windef);
|
|
wfunc->winref = list_length(pstate->p_windowdefs);
|
|
}
|
|
}
|
|
|
|
pstate->p_hasWindowFuncs = true;
|
|
}
|
|
|
|
/*
|
|
* parseCheckAggregates
|
|
* Check for aggregates where they shouldn't be and improper grouping.
|
|
* This function should be called after the target list and qualifications
|
|
* are finalized.
|
|
*
|
|
* Misplaced aggregates are now mostly detected in transformAggregateCall,
|
|
* but it seems more robust to check for aggregates in recursive queries
|
|
* only after everything is finalized. In any case it's hard to detect
|
|
* improper grouping on-the-fly, so we have to make another pass over the
|
|
* query for that.
|
|
*/
|
|
void
|
|
parseCheckAggregates(ParseState *pstate, Query *qry)
|
|
{
|
|
List *gset_common = NIL;
|
|
List *groupClauses = NIL;
|
|
List *groupClauseCommonVars = NIL;
|
|
bool have_non_var_grouping;
|
|
List *func_grouped_rels = NIL;
|
|
ListCell *l;
|
|
bool hasJoinRTEs;
|
|
bool hasSelfRefRTEs;
|
|
PlannerInfo *root = NULL;
|
|
Node *clause;
|
|
|
|
/* This should only be called if we found aggregates or grouping */
|
|
Assert(pstate->p_hasAggs || qry->groupClause || qry->havingQual || qry->groupingSets);
|
|
|
|
/*
|
|
* If we have grouping sets, expand them and find the intersection of all
|
|
* sets.
|
|
*/
|
|
if (qry->groupingSets)
|
|
{
|
|
/*
|
|
* The limit of 4096 is arbitrary and exists simply to avoid resource
|
|
* issues from pathological constructs.
|
|
*/
|
|
List *gsets = expand_grouping_sets(qry->groupingSets, 4096);
|
|
|
|
if (!gsets)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_STATEMENT_TOO_COMPLEX),
|
|
errmsg("too many grouping sets present (maximum 4096)"),
|
|
parser_errposition(pstate,
|
|
qry->groupClause
|
|
? exprLocation((Node *) qry->groupClause)
|
|
: exprLocation((Node *) qry->groupingSets))));
|
|
|
|
/*
|
|
* The intersection will often be empty, so help things along by
|
|
* seeding the intersect with the smallest set.
|
|
*/
|
|
gset_common = linitial(gsets);
|
|
|
|
if (gset_common)
|
|
{
|
|
for_each_cell(l, lnext(list_head(gsets)))
|
|
{
|
|
gset_common = list_intersection_int(gset_common, lfirst(l));
|
|
if (!gset_common)
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If there was only one grouping set in the expansion, AND if the
|
|
* groupClause is non-empty (meaning that the grouping set is not
|
|
* empty either), then we can ditch the grouping set and pretend we
|
|
* just had a normal GROUP BY.
|
|
*/
|
|
if (list_length(gsets) == 1 && qry->groupClause)
|
|
qry->groupingSets = NIL;
|
|
}
|
|
|
|
/*
|
|
* Scan the range table to see if there are JOIN or self-reference CTE
|
|
* entries. We'll need this info below.
|
|
*/
|
|
hasJoinRTEs = hasSelfRefRTEs = false;
|
|
foreach(l, pstate->p_rtable)
|
|
{
|
|
RangeTblEntry *rte = (RangeTblEntry *) lfirst(l);
|
|
|
|
if (rte->rtekind == RTE_JOIN)
|
|
hasJoinRTEs = true;
|
|
else if (rte->rtekind == RTE_CTE && rte->self_reference)
|
|
hasSelfRefRTEs = true;
|
|
}
|
|
|
|
/*
|
|
* Build a list of the acceptable GROUP BY expressions for use by
|
|
* check_ungrouped_columns().
|
|
*
|
|
* We get the TLE, not just the expr, because GROUPING wants to know the
|
|
* sortgroupref.
|
|
*/
|
|
foreach(l, qry->groupClause)
|
|
{
|
|
SortGroupClause *grpcl = (SortGroupClause *) lfirst(l);
|
|
TargetEntry *expr;
|
|
|
|
expr = get_sortgroupclause_tle(grpcl, qry->targetList);
|
|
if (expr == NULL)
|
|
continue; /* probably cannot happen */
|
|
|
|
groupClauses = lcons(expr, groupClauses);
|
|
}
|
|
|
|
/*
|
|
* If there are join alias vars involved, we have to flatten them to the
|
|
* underlying vars, so that aliased and unaliased vars will be correctly
|
|
* taken as equal. We can skip the expense of doing this if no rangetable
|
|
* entries are RTE_JOIN kind. We use the planner's flatten_join_alias_vars
|
|
* routine to do the flattening; it wants a PlannerInfo root node, which
|
|
* fortunately can be mostly dummy.
|
|
*/
|
|
if (hasJoinRTEs)
|
|
{
|
|
root = makeNode(PlannerInfo);
|
|
root->parse = qry;
|
|
root->planner_cxt = CurrentMemoryContext;
|
|
root->hasJoinRTEs = true;
|
|
|
|
groupClauses = (List *) flatten_join_alias_vars(root,
|
|
(Node *) groupClauses);
|
|
}
|
|
|
|
/*
|
|
* Detect whether any of the grouping expressions aren't simple Vars; if
|
|
* they're all Vars then we don't have to work so hard in the recursive
|
|
* scans. (Note we have to flatten aliases before this.)
|
|
*
|
|
* Track Vars that are included in all grouping sets separately in
|
|
* groupClauseCommonVars, since these are the only ones we can use to
|
|
* check for functional dependencies.
|
|
*/
|
|
have_non_var_grouping = false;
|
|
foreach(l, groupClauses)
|
|
{
|
|
TargetEntry *tle = lfirst(l);
|
|
|
|
if (!IsA(tle->expr, Var))
|
|
{
|
|
have_non_var_grouping = true;
|
|
}
|
|
else if (!qry->groupingSets ||
|
|
list_member_int(gset_common, tle->ressortgroupref))
|
|
{
|
|
groupClauseCommonVars = lappend(groupClauseCommonVars, tle->expr);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check the targetlist and HAVING clause for ungrouped variables.
|
|
*
|
|
* Note: because we check resjunk tlist elements as well as regular ones,
|
|
* this will also find ungrouped variables that came from ORDER BY and
|
|
* WINDOW clauses. For that matter, it's also going to examine the
|
|
* grouping expressions themselves --- but they'll all pass the test ...
|
|
*
|
|
* We also finalize GROUPING expressions, but for that we need to traverse
|
|
* the original (unflattened) clause in order to modify nodes.
|
|
*/
|
|
clause = (Node *) qry->targetList;
|
|
finalize_grouping_exprs(clause, pstate, qry,
|
|
groupClauses, root,
|
|
have_non_var_grouping);
|
|
if (hasJoinRTEs)
|
|
clause = flatten_join_alias_vars(root, clause);
|
|
check_ungrouped_columns(clause, pstate, qry,
|
|
groupClauses, groupClauseCommonVars,
|
|
have_non_var_grouping,
|
|
&func_grouped_rels);
|
|
|
|
clause = (Node *) qry->havingQual;
|
|
finalize_grouping_exprs(clause, pstate, qry,
|
|
groupClauses, root,
|
|
have_non_var_grouping);
|
|
if (hasJoinRTEs)
|
|
clause = flatten_join_alias_vars(root, clause);
|
|
check_ungrouped_columns(clause, pstate, qry,
|
|
groupClauses, groupClauseCommonVars,
|
|
have_non_var_grouping,
|
|
&func_grouped_rels);
|
|
|
|
/*
|
|
* Per spec, aggregates can't appear in a recursive term.
|
|
*/
|
|
if (pstate->p_hasAggs && hasSelfRefRTEs)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_RECURSION),
|
|
errmsg("aggregate functions are not allowed in a recursive query's recursive term"),
|
|
parser_errposition(pstate,
|
|
locate_agg_of_level((Node *) qry, 0))));
|
|
}
|
|
|
|
/*
|
|
* check_ungrouped_columns -
|
|
* Scan the given expression tree for ungrouped variables (variables
|
|
* that are not listed in the groupClauses list and are not within
|
|
* the arguments of aggregate functions). Emit a suitable error message
|
|
* if any are found.
|
|
*
|
|
* NOTE: we assume that the given clause has been transformed suitably for
|
|
* parser output. This means we can use expression_tree_walker.
|
|
*
|
|
* NOTE: we recognize grouping expressions in the main query, but only
|
|
* grouping Vars in subqueries. For example, this will be rejected,
|
|
* although it could be allowed:
|
|
* SELECT
|
|
* (SELECT x FROM bar where y = (foo.a + foo.b))
|
|
* FROM foo
|
|
* GROUP BY a + b;
|
|
* The difficulty is the need to account for different sublevels_up.
|
|
* This appears to require a whole custom version of equal(), which is
|
|
* way more pain than the feature seems worth.
|
|
*/
|
|
static void
|
|
check_ungrouped_columns(Node *node, ParseState *pstate, Query *qry,
|
|
List *groupClauses, List *groupClauseCommonVars,
|
|
bool have_non_var_grouping,
|
|
List **func_grouped_rels)
|
|
{
|
|
check_ungrouped_columns_context context;
|
|
|
|
context.pstate = pstate;
|
|
context.qry = qry;
|
|
context.root = NULL;
|
|
context.groupClauses = groupClauses;
|
|
context.groupClauseCommonVars = groupClauseCommonVars;
|
|
context.have_non_var_grouping = have_non_var_grouping;
|
|
context.func_grouped_rels = func_grouped_rels;
|
|
context.sublevels_up = 0;
|
|
context.in_agg_direct_args = false;
|
|
check_ungrouped_columns_walker(node, &context);
|
|
}
|
|
|
|
static bool
|
|
check_ungrouped_columns_walker(Node *node,
|
|
check_ungrouped_columns_context *context)
|
|
{
|
|
ListCell *gl;
|
|
|
|
if (node == NULL)
|
|
return false;
|
|
if (IsA(node, Const) ||
|
|
IsA(node, Param))
|
|
return false; /* constants are always acceptable */
|
|
|
|
if (IsA(node, Aggref))
|
|
{
|
|
Aggref *agg = (Aggref *) node;
|
|
|
|
if ((int) agg->agglevelsup == context->sublevels_up)
|
|
{
|
|
/*
|
|
* If we find an aggregate call of the original level, do not
|
|
* recurse into its normal arguments, ORDER BY arguments, or
|
|
* filter; ungrouped vars there are not an error. But we should
|
|
* check direct arguments as though they weren't in an aggregate.
|
|
* We set a special flag in the context to help produce a useful
|
|
* error message for ungrouped vars in direct arguments.
|
|
*/
|
|
bool result;
|
|
|
|
Assert(!context->in_agg_direct_args);
|
|
context->in_agg_direct_args = true;
|
|
result = check_ungrouped_columns_walker((Node *) agg->aggdirectargs,
|
|
context);
|
|
context->in_agg_direct_args = false;
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* We can skip recursing into aggregates of higher levels altogether,
|
|
* since they could not possibly contain Vars of concern to us (see
|
|
* transformAggregateCall). We do need to look at aggregates of lower
|
|
* levels, however.
|
|
*/
|
|
if ((int) agg->agglevelsup > context->sublevels_up)
|
|
return false;
|
|
}
|
|
|
|
if (IsA(node, GroupingFunc))
|
|
{
|
|
GroupingFunc *grp = (GroupingFunc *) node;
|
|
|
|
/* handled GroupingFunc separately, no need to recheck at this level */
|
|
|
|
if ((int) grp->agglevelsup >= context->sublevels_up)
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* If we have any GROUP BY items that are not simple Vars, check to see if
|
|
* subexpression as a whole matches any GROUP BY item. We need to do this
|
|
* at every recursion level so that we recognize GROUPed-BY expressions
|
|
* before reaching variables within them. But this only works at the outer
|
|
* query level, as noted above.
|
|
*/
|
|
if (context->have_non_var_grouping && context->sublevels_up == 0)
|
|
{
|
|
foreach(gl, context->groupClauses)
|
|
{
|
|
TargetEntry *tle = lfirst(gl);
|
|
|
|
if (equal(node, tle->expr))
|
|
return false; /* acceptable, do not descend more */
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If we have an ungrouped Var of the original query level, we have a
|
|
* failure. Vars below the original query level are not a problem, and
|
|
* neither are Vars from above it. (If such Vars are ungrouped as far as
|
|
* their own query level is concerned, that's someone else's problem...)
|
|
*/
|
|
if (IsA(node, Var))
|
|
{
|
|
Var *var = (Var *) node;
|
|
RangeTblEntry *rte;
|
|
char *attname;
|
|
|
|
if (var->varlevelsup != context->sublevels_up)
|
|
return false; /* it's not local to my query, ignore */
|
|
|
|
/*
|
|
* Check for a match, if we didn't do it above.
|
|
*/
|
|
if (!context->have_non_var_grouping || context->sublevels_up != 0)
|
|
{
|
|
foreach(gl, context->groupClauses)
|
|
{
|
|
Var *gvar = (Var *) ((TargetEntry *) lfirst(gl))->expr;
|
|
|
|
if (IsA(gvar, Var) &&
|
|
gvar->varno == var->varno &&
|
|
gvar->varattno == var->varattno &&
|
|
gvar->varlevelsup == 0)
|
|
return false; /* acceptable, we're okay */
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check whether the Var is known functionally dependent on the GROUP
|
|
* BY columns. If so, we can allow the Var to be used, because the
|
|
* grouping is really a no-op for this table. However, this deduction
|
|
* depends on one or more constraints of the table, so we have to add
|
|
* those constraints to the query's constraintDeps list, because it's
|
|
* not semantically valid anymore if the constraint(s) get dropped.
|
|
* (Therefore, this check must be the last-ditch effort before raising
|
|
* error: we don't want to add dependencies unnecessarily.)
|
|
*
|
|
* Because this is a pretty expensive check, and will have the same
|
|
* outcome for all columns of a table, we remember which RTEs we've
|
|
* already proven functional dependency for in the func_grouped_rels
|
|
* list. This test also prevents us from adding duplicate entries to
|
|
* the constraintDeps list.
|
|
*/
|
|
if (list_member_int(*context->func_grouped_rels, var->varno))
|
|
return false; /* previously proven acceptable */
|
|
|
|
Assert(var->varno > 0 &&
|
|
(int) var->varno <= list_length(context->pstate->p_rtable));
|
|
rte = rt_fetch(var->varno, context->pstate->p_rtable);
|
|
if (rte->rtekind == RTE_RELATION)
|
|
{
|
|
if (check_functional_grouping(rte->relid,
|
|
var->varno,
|
|
0,
|
|
context->groupClauseCommonVars,
|
|
&context->qry->constraintDeps))
|
|
{
|
|
*context->func_grouped_rels =
|
|
lappend_int(*context->func_grouped_rels, var->varno);
|
|
return false; /* acceptable */
|
|
}
|
|
}
|
|
|
|
/* Found an ungrouped local variable; generate error message */
|
|
attname = get_rte_attribute_name(rte, var->varattno);
|
|
if (context->sublevels_up == 0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_GROUPING_ERROR),
|
|
errmsg("column \"%s.%s\" must appear in the GROUP BY clause or be used in an aggregate function",
|
|
rte->eref->aliasname, attname),
|
|
context->in_agg_direct_args ?
|
|
errdetail("Direct arguments of an ordered-set aggregate must use only grouped columns.") : 0,
|
|
parser_errposition(context->pstate, var->location)));
|
|
else
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_GROUPING_ERROR),
|
|
errmsg("subquery uses ungrouped column \"%s.%s\" from outer query",
|
|
rte->eref->aliasname, attname),
|
|
parser_errposition(context->pstate, var->location)));
|
|
}
|
|
|
|
if (IsA(node, Query))
|
|
{
|
|
/* Recurse into subselects */
|
|
bool result;
|
|
|
|
context->sublevels_up++;
|
|
result = query_tree_walker((Query *) node,
|
|
check_ungrouped_columns_walker,
|
|
(void *) context,
|
|
0);
|
|
context->sublevels_up--;
|
|
return result;
|
|
}
|
|
return expression_tree_walker(node, check_ungrouped_columns_walker,
|
|
(void *) context);
|
|
}
|
|
|
|
/*
|
|
* finalize_grouping_exprs -
|
|
* Scan the given expression tree for GROUPING() and related calls,
|
|
* and validate and process their arguments.
|
|
*
|
|
* This is split out from check_ungrouped_columns above because it needs
|
|
* to modify the nodes (which it does in-place, not via a mutator) while
|
|
* check_ungrouped_columns may see only a copy of the original thanks to
|
|
* flattening of join alias vars. So here, we flatten each individual
|
|
* GROUPING argument as we see it before comparing it.
|
|
*/
|
|
static void
|
|
finalize_grouping_exprs(Node *node, ParseState *pstate, Query *qry,
|
|
List *groupClauses, PlannerInfo *root,
|
|
bool have_non_var_grouping)
|
|
{
|
|
check_ungrouped_columns_context context;
|
|
|
|
context.pstate = pstate;
|
|
context.qry = qry;
|
|
context.root = root;
|
|
context.groupClauses = groupClauses;
|
|
context.groupClauseCommonVars = NIL;
|
|
context.have_non_var_grouping = have_non_var_grouping;
|
|
context.func_grouped_rels = NULL;
|
|
context.sublevels_up = 0;
|
|
context.in_agg_direct_args = false;
|
|
finalize_grouping_exprs_walker(node, &context);
|
|
}
|
|
|
|
static bool
|
|
finalize_grouping_exprs_walker(Node *node,
|
|
check_ungrouped_columns_context *context)
|
|
{
|
|
ListCell *gl;
|
|
|
|
if (node == NULL)
|
|
return false;
|
|
if (IsA(node, Const) ||
|
|
IsA(node, Param))
|
|
return false; /* constants are always acceptable */
|
|
|
|
if (IsA(node, Aggref))
|
|
{
|
|
Aggref *agg = (Aggref *) node;
|
|
|
|
if ((int) agg->agglevelsup == context->sublevels_up)
|
|
{
|
|
/*
|
|
* If we find an aggregate call of the original level, do not
|
|
* recurse into its normal arguments, ORDER BY arguments, or
|
|
* filter; GROUPING exprs of this level are not allowed there. But
|
|
* check direct arguments as though they weren't in an aggregate.
|
|
*/
|
|
bool result;
|
|
|
|
Assert(!context->in_agg_direct_args);
|
|
context->in_agg_direct_args = true;
|
|
result = finalize_grouping_exprs_walker((Node *) agg->aggdirectargs,
|
|
context);
|
|
context->in_agg_direct_args = false;
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* We can skip recursing into aggregates of higher levels altogether,
|
|
* since they could not possibly contain exprs of concern to us (see
|
|
* transformAggregateCall). We do need to look at aggregates of lower
|
|
* levels, however.
|
|
*/
|
|
if ((int) agg->agglevelsup > context->sublevels_up)
|
|
return false;
|
|
}
|
|
|
|
if (IsA(node, GroupingFunc))
|
|
{
|
|
GroupingFunc *grp = (GroupingFunc *) node;
|
|
|
|
/*
|
|
* We only need to check GroupingFunc nodes at the exact level to
|
|
* which they belong, since they cannot mix levels in arguments.
|
|
*/
|
|
|
|
if ((int) grp->agglevelsup == context->sublevels_up)
|
|
{
|
|
ListCell *lc;
|
|
List *ref_list = NIL;
|
|
|
|
foreach(lc, grp->args)
|
|
{
|
|
Node *expr = lfirst(lc);
|
|
Index ref = 0;
|
|
|
|
if (context->root)
|
|
expr = flatten_join_alias_vars(context->root, expr);
|
|
|
|
/*
|
|
* Each expression must match a grouping entry at the current
|
|
* query level. Unlike the general expression case, we don't
|
|
* allow functional dependencies or outer references.
|
|
*/
|
|
|
|
if (IsA(expr, Var))
|
|
{
|
|
Var *var = (Var *) expr;
|
|
|
|
if (var->varlevelsup == context->sublevels_up)
|
|
{
|
|
foreach(gl, context->groupClauses)
|
|
{
|
|
TargetEntry *tle = lfirst(gl);
|
|
Var *gvar = (Var *) tle->expr;
|
|
|
|
if (IsA(gvar, Var) &&
|
|
gvar->varno == var->varno &&
|
|
gvar->varattno == var->varattno &&
|
|
gvar->varlevelsup == 0)
|
|
{
|
|
ref = tle->ressortgroupref;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else if (context->have_non_var_grouping &&
|
|
context->sublevels_up == 0)
|
|
{
|
|
foreach(gl, context->groupClauses)
|
|
{
|
|
TargetEntry *tle = lfirst(gl);
|
|
|
|
if (equal(expr, tle->expr))
|
|
{
|
|
ref = tle->ressortgroupref;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (ref == 0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_GROUPING_ERROR),
|
|
errmsg("arguments to GROUPING must be grouping expressions of the associated query level"),
|
|
parser_errposition(context->pstate,
|
|
exprLocation(expr))));
|
|
|
|
ref_list = lappend_int(ref_list, ref);
|
|
}
|
|
|
|
grp->refs = ref_list;
|
|
}
|
|
|
|
if ((int) grp->agglevelsup > context->sublevels_up)
|
|
return false;
|
|
}
|
|
|
|
if (IsA(node, Query))
|
|
{
|
|
/* Recurse into subselects */
|
|
bool result;
|
|
|
|
context->sublevels_up++;
|
|
result = query_tree_walker((Query *) node,
|
|
finalize_grouping_exprs_walker,
|
|
(void *) context,
|
|
0);
|
|
context->sublevels_up--;
|
|
return result;
|
|
}
|
|
return expression_tree_walker(node, finalize_grouping_exprs_walker,
|
|
(void *) context);
|
|
}
|
|
|
|
|
|
/*
|
|
* Given a GroupingSet node, expand it and return a list of lists.
|
|
*
|
|
* For EMPTY nodes, return a list of one empty list.
|
|
*
|
|
* For SIMPLE nodes, return a list of one list, which is the node content.
|
|
*
|
|
* For CUBE and ROLLUP nodes, return a list of the expansions.
|
|
*
|
|
* For SET nodes, recursively expand contained CUBE and ROLLUP.
|
|
*/
|
|
static List *
|
|
expand_groupingset_node(GroupingSet *gs)
|
|
{
|
|
List *result = NIL;
|
|
|
|
switch (gs->kind)
|
|
{
|
|
case GROUPING_SET_EMPTY:
|
|
result = list_make1(NIL);
|
|
break;
|
|
|
|
case GROUPING_SET_SIMPLE:
|
|
result = list_make1(gs->content);
|
|
break;
|
|
|
|
case GROUPING_SET_ROLLUP:
|
|
{
|
|
List *rollup_val = gs->content;
|
|
ListCell *lc;
|
|
int curgroup_size = list_length(gs->content);
|
|
|
|
while (curgroup_size > 0)
|
|
{
|
|
List *current_result = NIL;
|
|
int i = curgroup_size;
|
|
|
|
foreach(lc, rollup_val)
|
|
{
|
|
GroupingSet *gs_current = (GroupingSet *) lfirst(lc);
|
|
|
|
Assert(gs_current->kind == GROUPING_SET_SIMPLE);
|
|
|
|
current_result
|
|
= list_concat(current_result,
|
|
list_copy(gs_current->content));
|
|
|
|
/* If we are done with making the current group, break */
|
|
if (--i == 0)
|
|
break;
|
|
}
|
|
|
|
result = lappend(result, current_result);
|
|
--curgroup_size;
|
|
}
|
|
|
|
result = lappend(result, NIL);
|
|
}
|
|
break;
|
|
|
|
case GROUPING_SET_CUBE:
|
|
{
|
|
List *cube_list = gs->content;
|
|
int number_bits = list_length(cube_list);
|
|
uint32 num_sets;
|
|
uint32 i;
|
|
|
|
/* parser should cap this much lower */
|
|
Assert(number_bits < 31);
|
|
|
|
num_sets = (1U << number_bits);
|
|
|
|
for (i = 0; i < num_sets; i++)
|
|
{
|
|
List *current_result = NIL;
|
|
ListCell *lc;
|
|
uint32 mask = 1U;
|
|
|
|
foreach(lc, cube_list)
|
|
{
|
|
GroupingSet *gs_current = (GroupingSet *) lfirst(lc);
|
|
|
|
Assert(gs_current->kind == GROUPING_SET_SIMPLE);
|
|
|
|
if (mask & i)
|
|
{
|
|
current_result
|
|
= list_concat(current_result,
|
|
list_copy(gs_current->content));
|
|
}
|
|
|
|
mask <<= 1;
|
|
}
|
|
|
|
result = lappend(result, current_result);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case GROUPING_SET_SETS:
|
|
{
|
|
ListCell *lc;
|
|
|
|
foreach(lc, gs->content)
|
|
{
|
|
List *current_result = expand_groupingset_node(lfirst(lc));
|
|
|
|
result = list_concat(result, current_result);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
static int
|
|
cmp_list_len_asc(const void *a, const void *b)
|
|
{
|
|
int la = list_length(*(List *const *) a);
|
|
int lb = list_length(*(List *const *) b);
|
|
|
|
return (la > lb) ? 1 : (la == lb) ? 0 : -1;
|
|
}
|
|
|
|
/*
|
|
* Expand a groupingSets clause to a flat list of grouping sets.
|
|
* The returned list is sorted by length, shortest sets first.
|
|
*
|
|
* This is mainly for the planner, but we use it here too to do
|
|
* some consistency checks.
|
|
*/
|
|
List *
|
|
expand_grouping_sets(List *groupingSets, int limit)
|
|
{
|
|
List *expanded_groups = NIL;
|
|
List *result = NIL;
|
|
double numsets = 1;
|
|
ListCell *lc;
|
|
|
|
if (groupingSets == NIL)
|
|
return NIL;
|
|
|
|
foreach(lc, groupingSets)
|
|
{
|
|
List *current_result = NIL;
|
|
GroupingSet *gs = lfirst(lc);
|
|
|
|
current_result = expand_groupingset_node(gs);
|
|
|
|
Assert(current_result != NIL);
|
|
|
|
numsets *= list_length(current_result);
|
|
|
|
if (limit >= 0 && numsets > limit)
|
|
return NIL;
|
|
|
|
expanded_groups = lappend(expanded_groups, current_result);
|
|
}
|
|
|
|
/*
|
|
* Do cartesian product between sublists of expanded_groups. While at it,
|
|
* remove any duplicate elements from individual grouping sets (we must
|
|
* NOT change the number of sets though)
|
|
*/
|
|
|
|
foreach(lc, (List *) linitial(expanded_groups))
|
|
{
|
|
result = lappend(result, list_union_int(NIL, (List *) lfirst(lc)));
|
|
}
|
|
|
|
for_each_cell(lc, lnext(list_head(expanded_groups)))
|
|
{
|
|
List *p = lfirst(lc);
|
|
List *new_result = NIL;
|
|
ListCell *lc2;
|
|
|
|
foreach(lc2, result)
|
|
{
|
|
List *q = lfirst(lc2);
|
|
ListCell *lc3;
|
|
|
|
foreach(lc3, p)
|
|
{
|
|
new_result = lappend(new_result,
|
|
list_union_int(q, (List *) lfirst(lc3)));
|
|
}
|
|
}
|
|
result = new_result;
|
|
}
|
|
|
|
if (list_length(result) > 1)
|
|
{
|
|
int result_len = list_length(result);
|
|
List **buf = palloc(sizeof(List *) * result_len);
|
|
List **ptr = buf;
|
|
|
|
foreach(lc, result)
|
|
{
|
|
*ptr++ = lfirst(lc);
|
|
}
|
|
|
|
qsort(buf, result_len, sizeof(List *), cmp_list_len_asc);
|
|
|
|
result = NIL;
|
|
ptr = buf;
|
|
|
|
while (result_len-- > 0)
|
|
result = lappend(result, *ptr++);
|
|
|
|
pfree(buf);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* get_aggregate_argtypes
|
|
* Identify the specific datatypes passed to an aggregate call.
|
|
*
|
|
* Given an Aggref, extract the actual datatypes of the input arguments.
|
|
* The input datatypes are reported in a way that matches up with the
|
|
* aggregate's declaration, ie, any ORDER BY columns attached to a plain
|
|
* aggregate are ignored, but we report both direct and aggregated args of
|
|
* an ordered-set aggregate.
|
|
*
|
|
* Datatypes are returned into inputTypes[], which must reference an array
|
|
* of length FUNC_MAX_ARGS.
|
|
*
|
|
* The function result is the number of actual arguments.
|
|
*/
|
|
int
|
|
get_aggregate_argtypes(Aggref *aggref, Oid *inputTypes)
|
|
{
|
|
int numArguments = 0;
|
|
ListCell *lc;
|
|
|
|
Assert(list_length(aggref->aggargtypes) <= FUNC_MAX_ARGS);
|
|
|
|
foreach(lc, aggref->aggargtypes)
|
|
{
|
|
inputTypes[numArguments++] = lfirst_oid(lc);
|
|
}
|
|
|
|
return numArguments;
|
|
}
|
|
|
|
/*
|
|
* resolve_aggregate_transtype
|
|
* Identify the transition state value's datatype for an aggregate call.
|
|
*
|
|
* This function resolves a polymorphic aggregate's state datatype.
|
|
* It must be passed the aggtranstype from the aggregate's catalog entry,
|
|
* as well as the actual argument types extracted by get_aggregate_argtypes.
|
|
* (We could fetch pg_aggregate.aggtranstype internally, but all existing
|
|
* callers already have the value at hand, so we make them pass it.)
|
|
*/
|
|
Oid
|
|
resolve_aggregate_transtype(Oid aggfuncid,
|
|
Oid aggtranstype,
|
|
Oid *inputTypes,
|
|
int numArguments)
|
|
{
|
|
/* resolve actual type of transition state, if polymorphic */
|
|
if (IsPolymorphicType(aggtranstype))
|
|
{
|
|
/* have to fetch the agg's declared input types... */
|
|
Oid *declaredArgTypes;
|
|
int agg_nargs;
|
|
|
|
(void) get_func_signature(aggfuncid, &declaredArgTypes, &agg_nargs);
|
|
|
|
/*
|
|
* VARIADIC ANY aggs could have more actual than declared args, but
|
|
* such extra args can't affect polymorphic type resolution.
|
|
*/
|
|
Assert(agg_nargs <= numArguments);
|
|
|
|
aggtranstype = enforce_generic_type_consistency(inputTypes,
|
|
declaredArgTypes,
|
|
agg_nargs,
|
|
aggtranstype,
|
|
false);
|
|
pfree(declaredArgTypes);
|
|
}
|
|
return aggtranstype;
|
|
}
|
|
|
|
/*
|
|
* Create an expression tree for the transition function of an aggregate.
|
|
* This is needed so that polymorphic functions can be used within an
|
|
* aggregate --- without the expression tree, such functions would not know
|
|
* the datatypes they are supposed to use. (The trees will never actually
|
|
* be executed, however, so we can skimp a bit on correctness.)
|
|
*
|
|
* agg_input_types and agg_state_type identifies the input types of the
|
|
* aggregate. These should be resolved to actual types (ie, none should
|
|
* ever be ANYELEMENT etc).
|
|
* agg_input_collation is the aggregate function's input collation.
|
|
*
|
|
* For an ordered-set aggregate, remember that agg_input_types describes
|
|
* the direct arguments followed by the aggregated arguments.
|
|
*
|
|
* transfn_oid and invtransfn_oid identify the funcs to be called; the
|
|
* latter may be InvalidOid, however if invtransfn_oid is set then
|
|
* transfn_oid must also be set.
|
|
*
|
|
* Pointers to the constructed trees are returned into *transfnexpr,
|
|
* *invtransfnexpr. If there is no invtransfn, the respective pointer is set
|
|
* to NULL. Since use of the invtransfn is optional, NULL may be passed for
|
|
* invtransfnexpr.
|
|
*/
|
|
void
|
|
build_aggregate_transfn_expr(Oid *agg_input_types,
|
|
int agg_num_inputs,
|
|
int agg_num_direct_inputs,
|
|
bool agg_variadic,
|
|
Oid agg_state_type,
|
|
Oid agg_input_collation,
|
|
Oid transfn_oid,
|
|
Oid invtransfn_oid,
|
|
Expr **transfnexpr,
|
|
Expr **invtransfnexpr)
|
|
{
|
|
List *args;
|
|
FuncExpr *fexpr;
|
|
int i;
|
|
|
|
/*
|
|
* Build arg list to use in the transfn FuncExpr node.
|
|
*/
|
|
args = list_make1(make_agg_arg(agg_state_type, agg_input_collation));
|
|
|
|
for (i = agg_num_direct_inputs; i < agg_num_inputs; i++)
|
|
{
|
|
args = lappend(args,
|
|
make_agg_arg(agg_input_types[i], agg_input_collation));
|
|
}
|
|
|
|
fexpr = makeFuncExpr(transfn_oid,
|
|
agg_state_type,
|
|
args,
|
|
InvalidOid,
|
|
agg_input_collation,
|
|
COERCE_EXPLICIT_CALL);
|
|
fexpr->funcvariadic = agg_variadic;
|
|
*transfnexpr = (Expr *) fexpr;
|
|
|
|
/*
|
|
* Build invtransfn expression if requested, with same args as transfn
|
|
*/
|
|
if (invtransfnexpr != NULL)
|
|
{
|
|
if (OidIsValid(invtransfn_oid))
|
|
{
|
|
fexpr = makeFuncExpr(invtransfn_oid,
|
|
agg_state_type,
|
|
args,
|
|
InvalidOid,
|
|
agg_input_collation,
|
|
COERCE_EXPLICIT_CALL);
|
|
fexpr->funcvariadic = agg_variadic;
|
|
*invtransfnexpr = (Expr *) fexpr;
|
|
}
|
|
else
|
|
*invtransfnexpr = NULL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Like build_aggregate_transfn_expr, but creates an expression tree for the
|
|
* combine function of an aggregate, rather than the transition function.
|
|
*/
|
|
void
|
|
build_aggregate_combinefn_expr(Oid agg_state_type,
|
|
Oid agg_input_collation,
|
|
Oid combinefn_oid,
|
|
Expr **combinefnexpr)
|
|
{
|
|
Node *argp;
|
|
List *args;
|
|
FuncExpr *fexpr;
|
|
|
|
/* combinefn takes two arguments of the aggregate state type */
|
|
argp = make_agg_arg(agg_state_type, agg_input_collation);
|
|
|
|
args = list_make2(argp, argp);
|
|
|
|
fexpr = makeFuncExpr(combinefn_oid,
|
|
agg_state_type,
|
|
args,
|
|
InvalidOid,
|
|
agg_input_collation,
|
|
COERCE_EXPLICIT_CALL);
|
|
/* combinefn is currently never treated as variadic */
|
|
*combinefnexpr = (Expr *) fexpr;
|
|
}
|
|
|
|
/*
|
|
* Like build_aggregate_transfn_expr, but creates an expression tree for the
|
|
* serialization function of an aggregate.
|
|
*/
|
|
void
|
|
build_aggregate_serialfn_expr(Oid serialfn_oid,
|
|
Expr **serialfnexpr)
|
|
{
|
|
List *args;
|
|
FuncExpr *fexpr;
|
|
|
|
/* serialfn always takes INTERNAL and returns BYTEA */
|
|
args = list_make1(make_agg_arg(INTERNALOID, InvalidOid));
|
|
|
|
fexpr = makeFuncExpr(serialfn_oid,
|
|
BYTEAOID,
|
|
args,
|
|
InvalidOid,
|
|
InvalidOid,
|
|
COERCE_EXPLICIT_CALL);
|
|
*serialfnexpr = (Expr *) fexpr;
|
|
}
|
|
|
|
/*
|
|
* Like build_aggregate_transfn_expr, but creates an expression tree for the
|
|
* deserialization function of an aggregate.
|
|
*/
|
|
void
|
|
build_aggregate_deserialfn_expr(Oid deserialfn_oid,
|
|
Expr **deserialfnexpr)
|
|
{
|
|
List *args;
|
|
FuncExpr *fexpr;
|
|
|
|
/* deserialfn always takes BYTEA, INTERNAL and returns INTERNAL */
|
|
args = list_make2(make_agg_arg(BYTEAOID, InvalidOid),
|
|
make_agg_arg(INTERNALOID, InvalidOid));
|
|
|
|
fexpr = makeFuncExpr(deserialfn_oid,
|
|
INTERNALOID,
|
|
args,
|
|
InvalidOid,
|
|
InvalidOid,
|
|
COERCE_EXPLICIT_CALL);
|
|
*deserialfnexpr = (Expr *) fexpr;
|
|
}
|
|
|
|
/*
|
|
* Like build_aggregate_transfn_expr, but creates an expression tree for the
|
|
* final function of an aggregate, rather than the transition function.
|
|
*/
|
|
void
|
|
build_aggregate_finalfn_expr(Oid *agg_input_types,
|
|
int num_finalfn_inputs,
|
|
Oid agg_state_type,
|
|
Oid agg_result_type,
|
|
Oid agg_input_collation,
|
|
Oid finalfn_oid,
|
|
Expr **finalfnexpr)
|
|
{
|
|
List *args;
|
|
int i;
|
|
|
|
/*
|
|
* Build expr tree for final function
|
|
*/
|
|
args = list_make1(make_agg_arg(agg_state_type, agg_input_collation));
|
|
|
|
/* finalfn may take additional args, which match agg's input types */
|
|
for (i = 0; i < num_finalfn_inputs - 1; i++)
|
|
{
|
|
args = lappend(args,
|
|
make_agg_arg(agg_input_types[i], agg_input_collation));
|
|
}
|
|
|
|
*finalfnexpr = (Expr *) makeFuncExpr(finalfn_oid,
|
|
agg_result_type,
|
|
args,
|
|
InvalidOid,
|
|
agg_input_collation,
|
|
COERCE_EXPLICIT_CALL);
|
|
/* finalfn is currently never treated as variadic */
|
|
}
|
|
|
|
/*
|
|
* Convenience function to build dummy argument expressions for aggregates.
|
|
*
|
|
* We really only care that an aggregate support function can discover its
|
|
* actual argument types at runtime using get_fn_expr_argtype(), so it's okay
|
|
* to use Param nodes that don't correspond to any real Param.
|
|
*/
|
|
static Node *
|
|
make_agg_arg(Oid argtype, Oid argcollation)
|
|
{
|
|
Param *argp = makeNode(Param);
|
|
|
|
argp->paramkind = PARAM_EXEC;
|
|
argp->paramid = -1;
|
|
argp->paramtype = argtype;
|
|
argp->paramtypmod = -1;
|
|
argp->paramcollid = argcollation;
|
|
argp->location = -1;
|
|
return (Node *) argp;
|
|
}
|