mirror of
https://github.com/postgres/postgres.git
synced 2025-04-25 21:42:33 +03:00
into nodes/nodeFuncs, so as to reduce wanton cross-subsystem #includes inside the backend. There's probably more that should be done along this line, but this is a start anyway.
439 lines
13 KiB
C
439 lines
13 KiB
C
/*-------------------------------------------------------------------------
|
|
*
|
|
* parse_agg.c
|
|
* handle aggregates in parser
|
|
*
|
|
* Portions Copyright (c) 1996-2008, PostgreSQL Global Development Group
|
|
* Portions Copyright (c) 1994, Regents of the University of California
|
|
*
|
|
*
|
|
* IDENTIFICATION
|
|
* $PostgreSQL: pgsql/src/backend/parser/parse_agg.c,v 1.81 2008/08/25 22:42:33 tgl Exp $
|
|
*
|
|
*-------------------------------------------------------------------------
|
|
*/
|
|
#include "postgres.h"
|
|
|
|
#include "nodes/makefuncs.h"
|
|
#include "nodes/nodeFuncs.h"
|
|
#include "optimizer/tlist.h"
|
|
#include "optimizer/var.h"
|
|
#include "parser/parse_agg.h"
|
|
#include "parser/parsetree.h"
|
|
#include "rewrite/rewriteManip.h"
|
|
#include "utils/lsyscache.h"
|
|
|
|
|
|
typedef struct
|
|
{
|
|
ParseState *pstate;
|
|
List *groupClauses;
|
|
bool have_non_var_grouping;
|
|
int sublevels_up;
|
|
} check_ungrouped_columns_context;
|
|
|
|
static void check_ungrouped_columns(Node *node, ParseState *pstate,
|
|
List *groupClauses, bool have_non_var_grouping);
|
|
static bool check_ungrouped_columns_walker(Node *node,
|
|
check_ungrouped_columns_context *context);
|
|
|
|
|
|
/*
|
|
* transformAggregateCall -
|
|
* Finish initial transformation of an aggregate call
|
|
*
|
|
* parse_func.c has recognized the function as an aggregate, and has set
|
|
* up all the fields of the Aggref except agglevelsup. Here we must
|
|
* determine which query level the aggregate actually belongs to, set
|
|
* agglevelsup accordingly, and mark p_hasAggs true in the corresponding
|
|
* pstate level.
|
|
*/
|
|
void
|
|
transformAggregateCall(ParseState *pstate, Aggref *agg)
|
|
{
|
|
int min_varlevel;
|
|
|
|
/*
|
|
* The aggregate's level is the same as the level of the lowest-level
|
|
* variable or aggregate in its arguments; or if it contains no variables
|
|
* at all, we presume it to be local.
|
|
*/
|
|
min_varlevel = find_minimum_var_level((Node *) agg->args);
|
|
|
|
/*
|
|
* An aggregate can't directly contain another aggregate call of the same
|
|
* level (though outer aggs are okay). We can skip this check if we
|
|
* didn't find any local vars or aggs.
|
|
*/
|
|
if (min_varlevel == 0)
|
|
{
|
|
if (checkExprHasAggs((Node *) agg->args))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_GROUPING_ERROR),
|
|
errmsg("aggregate function calls cannot be nested")));
|
|
}
|
|
|
|
if (min_varlevel < 0)
|
|
min_varlevel = 0;
|
|
agg->agglevelsup = min_varlevel;
|
|
|
|
/* Mark the correct pstate as having aggregates */
|
|
while (min_varlevel-- > 0)
|
|
pstate = pstate->parentParseState;
|
|
pstate->p_hasAggs = true;
|
|
}
|
|
|
|
|
|
/*
|
|
* parseCheckAggregates
|
|
* Check for aggregates where they shouldn't be and improper grouping.
|
|
*
|
|
* Ideally this should be done earlier, but it's difficult to distinguish
|
|
* aggregates from plain functions at the grammar level. So instead we
|
|
* check here. This function should be called after the target list and
|
|
* qualifications are finalized.
|
|
*/
|
|
void
|
|
parseCheckAggregates(ParseState *pstate, Query *qry)
|
|
{
|
|
List *groupClauses = NIL;
|
|
bool have_non_var_grouping;
|
|
ListCell *l;
|
|
bool hasJoinRTEs;
|
|
PlannerInfo *root;
|
|
Node *clause;
|
|
|
|
/* This should only be called if we found aggregates or grouping */
|
|
Assert(pstate->p_hasAggs || qry->groupClause || qry->havingQual);
|
|
|
|
/*
|
|
* Aggregates must never appear in WHERE or JOIN/ON clauses.
|
|
*
|
|
* (Note this check should appear first to deliver an appropriate error
|
|
* message; otherwise we are likely to complain about some innocent
|
|
* variable in the target list, which is outright misleading if the
|
|
* problem is in WHERE.)
|
|
*/
|
|
if (checkExprHasAggs(qry->jointree->quals))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_GROUPING_ERROR),
|
|
errmsg("aggregates not allowed in WHERE clause")));
|
|
if (checkExprHasAggs((Node *) qry->jointree->fromlist))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_GROUPING_ERROR),
|
|
errmsg("aggregates not allowed in JOIN conditions")));
|
|
|
|
/*
|
|
* No aggregates allowed in GROUP BY clauses, either.
|
|
*
|
|
* While we are at it, build a list of the acceptable GROUP BY expressions
|
|
* for use by check_ungrouped_columns().
|
|
*/
|
|
foreach(l, qry->groupClause)
|
|
{
|
|
SortGroupClause *grpcl = (SortGroupClause *) lfirst(l);
|
|
Node *expr;
|
|
|
|
expr = get_sortgroupclause_expr(grpcl, qry->targetList);
|
|
if (expr == NULL)
|
|
continue; /* probably cannot happen */
|
|
if (checkExprHasAggs(expr))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_GROUPING_ERROR),
|
|
errmsg("aggregates not allowed in GROUP BY clause")));
|
|
groupClauses = lcons(expr, groupClauses);
|
|
}
|
|
|
|
/*
|
|
* If there are join alias vars involved, we have to flatten them to the
|
|
* underlying vars, so that aliased and unaliased vars will be correctly
|
|
* taken as equal. We can skip the expense of doing this if no rangetable
|
|
* entries are RTE_JOIN kind.
|
|
*/
|
|
hasJoinRTEs = false;
|
|
foreach(l, pstate->p_rtable)
|
|
{
|
|
RangeTblEntry *rte = (RangeTblEntry *) lfirst(l);
|
|
|
|
if (rte->rtekind == RTE_JOIN)
|
|
{
|
|
hasJoinRTEs = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We use the planner's flatten_join_alias_vars routine to do the
|
|
* flattening; it wants a PlannerInfo root node, which fortunately can be
|
|
* mostly dummy.
|
|
*/
|
|
if (hasJoinRTEs)
|
|
{
|
|
root = makeNode(PlannerInfo);
|
|
root->parse = qry;
|
|
root->planner_cxt = CurrentMemoryContext;
|
|
root->hasJoinRTEs = true;
|
|
|
|
groupClauses = (List *) flatten_join_alias_vars(root,
|
|
(Node *) groupClauses);
|
|
}
|
|
else
|
|
root = NULL; /* keep compiler quiet */
|
|
|
|
/*
|
|
* Detect whether any of the grouping expressions aren't simple Vars; if
|
|
* they're all Vars then we don't have to work so hard in the recursive
|
|
* scans. (Note we have to flatten aliases before this.)
|
|
*/
|
|
have_non_var_grouping = false;
|
|
foreach(l, groupClauses)
|
|
{
|
|
if (!IsA((Node *) lfirst(l), Var))
|
|
{
|
|
have_non_var_grouping = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check the targetlist and HAVING clause for ungrouped variables.
|
|
*/
|
|
clause = (Node *) qry->targetList;
|
|
if (hasJoinRTEs)
|
|
clause = flatten_join_alias_vars(root, clause);
|
|
check_ungrouped_columns(clause, pstate,
|
|
groupClauses, have_non_var_grouping);
|
|
|
|
clause = (Node *) qry->havingQual;
|
|
if (hasJoinRTEs)
|
|
clause = flatten_join_alias_vars(root, clause);
|
|
check_ungrouped_columns(clause, pstate,
|
|
groupClauses, have_non_var_grouping);
|
|
}
|
|
|
|
|
|
/*
|
|
* check_ungrouped_columns -
|
|
* Scan the given expression tree for ungrouped variables (variables
|
|
* that are not listed in the groupClauses list and are not within
|
|
* the arguments of aggregate functions). Emit a suitable error message
|
|
* if any are found.
|
|
*
|
|
* NOTE: we assume that the given clause has been transformed suitably for
|
|
* parser output. This means we can use expression_tree_walker.
|
|
*
|
|
* NOTE: we recognize grouping expressions in the main query, but only
|
|
* grouping Vars in subqueries. For example, this will be rejected,
|
|
* although it could be allowed:
|
|
* SELECT
|
|
* (SELECT x FROM bar where y = (foo.a + foo.b))
|
|
* FROM foo
|
|
* GROUP BY a + b;
|
|
* The difficulty is the need to account for different sublevels_up.
|
|
* This appears to require a whole custom version of equal(), which is
|
|
* way more pain than the feature seems worth.
|
|
*/
|
|
static void
|
|
check_ungrouped_columns(Node *node, ParseState *pstate,
|
|
List *groupClauses, bool have_non_var_grouping)
|
|
{
|
|
check_ungrouped_columns_context context;
|
|
|
|
context.pstate = pstate;
|
|
context.groupClauses = groupClauses;
|
|
context.have_non_var_grouping = have_non_var_grouping;
|
|
context.sublevels_up = 0;
|
|
check_ungrouped_columns_walker(node, &context);
|
|
}
|
|
|
|
static bool
|
|
check_ungrouped_columns_walker(Node *node,
|
|
check_ungrouped_columns_context *context)
|
|
{
|
|
ListCell *gl;
|
|
|
|
if (node == NULL)
|
|
return false;
|
|
if (IsA(node, Const) ||
|
|
IsA(node, Param))
|
|
return false; /* constants are always acceptable */
|
|
|
|
/*
|
|
* If we find an aggregate call of the original level, do not recurse into
|
|
* its arguments; ungrouped vars in the arguments are not an error. We can
|
|
* also skip looking at the arguments of aggregates of higher levels,
|
|
* since they could not possibly contain Vars that are of concern to us
|
|
* (see transformAggregateCall). We do need to look into the arguments of
|
|
* aggregates of lower levels, however.
|
|
*/
|
|
if (IsA(node, Aggref) &&
|
|
(int) ((Aggref *) node)->agglevelsup >= context->sublevels_up)
|
|
return false;
|
|
|
|
/*
|
|
* If we have any GROUP BY items that are not simple Vars, check to see if
|
|
* subexpression as a whole matches any GROUP BY item. We need to do this
|
|
* at every recursion level so that we recognize GROUPed-BY expressions
|
|
* before reaching variables within them. But this only works at the outer
|
|
* query level, as noted above.
|
|
*/
|
|
if (context->have_non_var_grouping && context->sublevels_up == 0)
|
|
{
|
|
foreach(gl, context->groupClauses)
|
|
{
|
|
if (equal(node, lfirst(gl)))
|
|
return false; /* acceptable, do not descend more */
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If we have an ungrouped Var of the original query level, we have a
|
|
* failure. Vars below the original query level are not a problem, and
|
|
* neither are Vars from above it. (If such Vars are ungrouped as far as
|
|
* their own query level is concerned, that's someone else's problem...)
|
|
*/
|
|
if (IsA(node, Var))
|
|
{
|
|
Var *var = (Var *) node;
|
|
RangeTblEntry *rte;
|
|
char *attname;
|
|
|
|
if (var->varlevelsup != context->sublevels_up)
|
|
return false; /* it's not local to my query, ignore */
|
|
|
|
/*
|
|
* Check for a match, if we didn't do it above.
|
|
*/
|
|
if (!context->have_non_var_grouping || context->sublevels_up != 0)
|
|
{
|
|
foreach(gl, context->groupClauses)
|
|
{
|
|
Var *gvar = (Var *) lfirst(gl);
|
|
|
|
if (IsA(gvar, Var) &&
|
|
gvar->varno == var->varno &&
|
|
gvar->varattno == var->varattno &&
|
|
gvar->varlevelsup == 0)
|
|
return false; /* acceptable, we're okay */
|
|
}
|
|
}
|
|
|
|
/* Found an ungrouped local variable; generate error message */
|
|
Assert(var->varno > 0 &&
|
|
(int) var->varno <= list_length(context->pstate->p_rtable));
|
|
rte = rt_fetch(var->varno, context->pstate->p_rtable);
|
|
attname = get_rte_attribute_name(rte, var->varattno);
|
|
if (context->sublevels_up == 0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_GROUPING_ERROR),
|
|
errmsg("column \"%s.%s\" must appear in the GROUP BY clause or be used in an aggregate function",
|
|
rte->eref->aliasname, attname)));
|
|
else
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_GROUPING_ERROR),
|
|
errmsg("subquery uses ungrouped column \"%s.%s\" from outer query",
|
|
rte->eref->aliasname, attname)));
|
|
|
|
}
|
|
|
|
if (IsA(node, Query))
|
|
{
|
|
/* Recurse into subselects */
|
|
bool result;
|
|
|
|
context->sublevels_up++;
|
|
result = query_tree_walker((Query *) node,
|
|
check_ungrouped_columns_walker,
|
|
(void *) context,
|
|
0);
|
|
context->sublevels_up--;
|
|
return result;
|
|
}
|
|
return expression_tree_walker(node, check_ungrouped_columns_walker,
|
|
(void *) context);
|
|
}
|
|
|
|
/*
|
|
* Create expression trees for the transition and final functions
|
|
* of an aggregate. These are needed so that polymorphic functions
|
|
* can be used within an aggregate --- without the expression trees,
|
|
* such functions would not know the datatypes they are supposed to use.
|
|
* (The trees will never actually be executed, however, so we can skimp
|
|
* a bit on correctness.)
|
|
*
|
|
* agg_input_types, agg_state_type, agg_result_type identify the input,
|
|
* transition, and result types of the aggregate. These should all be
|
|
* resolved to actual types (ie, none should ever be ANYELEMENT etc).
|
|
*
|
|
* transfn_oid and finalfn_oid identify the funcs to be called; the latter
|
|
* may be InvalidOid.
|
|
*
|
|
* Pointers to the constructed trees are returned into *transfnexpr and
|
|
* *finalfnexpr. The latter is set to NULL if there's no finalfn.
|
|
*/
|
|
void
|
|
build_aggregate_fnexprs(Oid *agg_input_types,
|
|
int agg_num_inputs,
|
|
Oid agg_state_type,
|
|
Oid agg_result_type,
|
|
Oid transfn_oid,
|
|
Oid finalfn_oid,
|
|
Expr **transfnexpr,
|
|
Expr **finalfnexpr)
|
|
{
|
|
Param *argp;
|
|
List *args;
|
|
int i;
|
|
|
|
/*
|
|
* Build arg list to use in the transfn FuncExpr node. We really only care
|
|
* that transfn can discover the actual argument types at runtime using
|
|
* get_fn_expr_argtype(), so it's okay to use Param nodes that don't
|
|
* correspond to any real Param.
|
|
*/
|
|
argp = makeNode(Param);
|
|
argp->paramkind = PARAM_EXEC;
|
|
argp->paramid = -1;
|
|
argp->paramtype = agg_state_type;
|
|
argp->paramtypmod = -1;
|
|
|
|
args = list_make1(argp);
|
|
|
|
for (i = 0; i < agg_num_inputs; i++)
|
|
{
|
|
argp = makeNode(Param);
|
|
argp->paramkind = PARAM_EXEC;
|
|
argp->paramid = -1;
|
|
argp->paramtype = agg_input_types[i];
|
|
argp->paramtypmod = -1;
|
|
args = lappend(args, argp);
|
|
}
|
|
|
|
*transfnexpr = (Expr *) makeFuncExpr(transfn_oid,
|
|
agg_state_type,
|
|
args,
|
|
COERCE_DONTCARE);
|
|
|
|
/* see if we have a final function */
|
|
if (!OidIsValid(finalfn_oid))
|
|
{
|
|
*finalfnexpr = NULL;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Build expr tree for final function
|
|
*/
|
|
argp = makeNode(Param);
|
|
argp->paramkind = PARAM_EXEC;
|
|
argp->paramid = -1;
|
|
argp->paramtype = agg_state_type;
|
|
argp->paramtypmod = -1;
|
|
args = list_make1(argp);
|
|
|
|
*finalfnexpr = (Expr *) makeFuncExpr(finalfn_oid,
|
|
agg_result_type,
|
|
args,
|
|
COERCE_DONTCARE);
|
|
}
|