Previously, when using parallel query, EXPLAIN (ANALYZE)'s JIT
compilation timings did not include the overhead from doing so on the
workers. Fix that.
We do so by simply aggregating the cost of doing JIT compilation on
workers and the leader together. Arguably that's not quite accurate,
because the total time spend doing so is spent in parallel - but it's
hard to do much better. For additional detail, when VERBOSE is
specified, the stats for workers are displayed separately.
Author: Amit Khandekar and Andres Freund
Discussion: https://postgr.es/m/CAJ3gD9eLrz51RK_gTkod+71iDcjpB_N8eC6vU2AW-VicsAERpQ@mail.gmail.com
Backpatch: 11-
In a case where we have multiple relation-scan nodes in a cursor plan,
such as a scan of an inheritance tree, it's possible to fetch from a
given scan node, then rewind the cursor and fetch some row from an
earlier scan node. In such a case, execCurrent.c mistakenly thought
that the later scan node was still active, because ExecReScan hadn't
done anything to make it look not-active. We'd get some sort of
failure in the case of a SeqScan node, because the node's scan tuple
slot would be pointing at a HeapTuple whose t_self gets reset to
invalid by heapam.c. But it seems possible that for other relation
scan node types we'd actually return a valid tuple TID to the caller,
resulting in updating or deleting a tuple that shouldn't have been
considered current. To fix, forcibly clear the ScanTupleSlot in
ExecScanReScan.
Another issue here, which seems only latent at the moment but could
easily become a live bug in future, is that rewinding a cursor does
not necessarily lead to *immediately* applying ExecReScan to every
scan-level node in the plan tree. Upper-level nodes will think that
they can postpone that call if their child node is already marked
with chgParam flags. I don't see a way for that to happen today in
a plan tree that's simple enough for execCurrent.c's search_plan_tree
to understand, but that's one heck of a fragile assumption. So, add
some logic in search_plan_tree to detect chgParam flags being set on
nodes that it descended to/through, and assume that that means we
should consider lower scan nodes to be logically reset even if their
ReScan call hasn't actually happened yet.
Per bug #15395 from Matvey Arye. This has been broken for a long time,
so back-patch to all supported branches.
Discussion: https://postgr.es/m/153764171023.14986.280404050547008575@wrigleys.postgresql.org
The original coding for XMLTABLE thought it could represent a default
namespace by a T_String Value node with a null string pointer. That's
not okay, though; in particular outfuncs.c/readfuncs.c are not on board
with such a representation, meaning you'll get a null pointer crash
if you try to store a view or rule containing this construct.
To fix, change the parsetree representation so that we have a NULL
list element, instead of a bogus Value node.
This isn't really a functional limitation since default XML namespaces
aren't yet implemented in the executor; you'd just get "DEFAULT
namespace is not supported" anyway. But crashes are not nice, so
back-patch to v10 where this syntax was added. Ordinarily we'd consider
a parsetree representation change to be un-backpatchable; but since
existing releases would crash on the way to storing such constructs,
there can't be any existing views/rules to be incompatible with.
Per report from Andrey Lepikhov.
Discussion: https://postgr.es/m/3690074f-abd2-56a9-144a-aa5545d7a291@postgrespro.ru
The EvalPlanQual machinery assumes that any initplans (that is,
uncorrelated sub-selects) used during an EPQ recheck would have already
been evaluated during the main query; this is implicit in the fact that
execPlan pointers are not copied into the EPQ estate's es_param_exec_vals.
But it's possible for that assumption to fail, if the initplan is only
reached conditionally. For example, a sub-select inside a CASE expression
could be reached during a recheck when it had not been previously, if the
CASE test depends on a column that was just updated.
This bug is old, appearing to date back to my rewrite of EvalPlanQual in
commit 9f2ee8f28, but was not detected until Kyle Samson reported a case.
To fix, force all not-yet-evaluated initplans used within the EPQ plan
subtree to be evaluated at the start of the recheck, before entering the
EPQ environment. This could be inefficient, if such an initplan is
expensive and goes unused again during the recheck --- but that's piling
one layer of improbability atop another. It doesn't seem worth adding
more complexity to prevent that, at least not in the back branches.
It was convenient to use the new-in-v11 ExecEvalParamExecParams function
to implement this, but I didn't like either its name or the specifics of
its API, so revise that.
Back-patch all the way. Rather than rewrite the patch to avoid depending
on bms_next_member() in the oldest branches, I chose to back-patch that
function into 9.4 and 9.3. (This isn't the first time back-patches have
needed that, and it exhausted my patience.) I also chose to back-patch
some test cases added by commits 71404af2a and 342a1ffa2 into 9.4 and 9.3,
so that the 9.x versions of eval-plan-qual.spec are all the same.
Andrew Gierth diagnosed the problem and contributed the added test cases,
though the actual code changes are by me.
Discussion: https://postgr.es/m/A033A40A-B234-4324-BE37-272279F7B627@tripadvisor.com
This patch removes two sources of interference between nominally
independent functions when one SPI-using function calls another,
perhaps without knowing that it does so.
Chapman Flack pointed out that xml.c's query_to_xml_internal() expects
SPI_tuptable and SPI_processed to stay valid across datatype output
function calls; but it's possible that such a call could involve
re-entrant use of SPI. It seems likely that there are similar hazards
elsewhere, if not in the core code then in third-party SPI users.
Previously SPI_finish() reset SPI's API globals to zeroes/nulls, which
would typically make for a crash in such a situation. Restoring them
to the values they had at SPI_connect() seems like a considerably more
useful behavior, and it still meets the design goal of not leaving any
dangling pointers to tuple tables of the function being exited.
Also, cause SPI_connect() to reset these variables to zeroes/nulls after
saving them. This prevents interference in the opposite direction: it's
possible that a SPI-using function that's only ever been tested standalone
contains assumptions that these variables start out as zeroes. That was
the case as long as you were the outermost SPI user, but not so much for
an inner user. Now it's consistent.
Report and fix suggestion by Chapman Flack, actual patch by me.
Back-patch to all supported branches.
Discussion: https://postgr.es/m/9fa25bef-2e4f-1c32-22a4-3ad0723c4a17@anastigmatix.net
When executing a SubPlan in an expression, the EState's direction
field was left alone, resulting in an attempt to execute the subplan
backwards if it was encountered during a backwards scan of a cursor.
Also, though much less likely, it was possible to reach the execution
of an InitPlan while in backwards-scan state.
Repair by saving/restoring estate->es_direction and forcing forward
scan mode in the relevant places.
Backpatch all the way, since this has been broken since 8.3 (prior to
commit c7ff7663e, SubPlans had their own EStates rather than sharing
the parent plan's, so there was no confusion over scan direction).
Per bug #15336 reported by Vladimir Baranoff; analysis and patch by
me, review by Tom Lane.
Discussion: https://postgr.es/m/153449812167.1304.1741624125628126322@wrigleys.postgresql.org
In a multi-layer partitioning setup, if at plan time all the
sub-partitions are pruned but the intermediate one remains, the executor
later throws a spurious error that there's nothing to prune. That is
correct, but there's no reason to throw an error. Therefore, don't.
Reported-by: Andreas Seltenreich <seltenreich@gmx.de>
Author: David Rowley <david.rowley@2ndquadrant.com>
Discussion: https://postgr.es/m/87in4h98i0.fsf@ansel.ydns.eu
After commits a315b967cc and b805b63ac2, part of the comment atop
ExecShutdownNode is redundant. Adjust it.
Author: Amit Kapila
Backpatch-through: 10 where both the mentioned commits are present.
Discussion: https://postgr.es/m/86137f17-1dfb-42f9-7421-82fd786b04a1@anayrat.info
Currently, we release the asynchronous resources as soon as it is evident
that no more rows will be needed e.g. when a Limit is filled. This can be
problematic especially for custom and foreign scans where we can scan
backward. Fix that by disallowing the shutting down of resources in such
cases.
Reported-by: Robert Haas
Analysed-by: Robert Haas and Amit Kapila
Author: Amit Kapila
Reviewed-by: Robert Haas
Backpatch-through: 9.6 where this code was introduced
Discussion: https://postgr.es/m/86137f17-1dfb-42f9-7421-82fd786b04a1@anayrat.info
Multiple calls to XMLTABLE in a query (e.g. laterally applying it to a
table with an xml column, an important use-case) were leaking large
amounts of memory into the per-query context, blowing up memory usage.
Repair by reorganizing memory context usage in nodeTableFuncscan; use
the usual per-tuple context for row-by-row evaluations instead of
perValueCxt, and use the explicitly created context -- renamed from
perValueCxt to perTableCxt -- for arguments and state for each
individual table-generation operation.
Backpatch to PG10 where this code was introduced.
Original report by IRC user begriffs; analysis and patch by me.
Reviewed by Tom Lane and Pavel Stehule.
Discussion: https://postgr.es/m/153394403528.10284.7530399040974170549@wrigleys.postgresql.org
These changes were put in at some stage of the development process, but
are unnecessary and should not have made it into the final patch. Mea
culpa.
Per gripe from Andreas Freund
Backpatch to REL_11_STABLE
The buffer usage stats is accounted only for the execution phase of the
node. For Gather and Gather Merge nodes, such stats are accumulated at
the time of shutdown of workers which is done after execution of node due
to which we missed to account them for such nodes. Fix it by treating
nodes as running while we shut down them.
We can also miss accounting for a Limit node when Gather or Gather Merge
is beneath it, because it can finish the execution before shutting down
such nodes. So we allow a Limit node to shut down the resources before it
completes the execution.
In the passing fix the gather node code to allow workers to shut down as
soon as we find that all the tuples from the workers have been retrieved.
The original code use to do that, but is accidently removed by commit
01edb5c7fc.
Reported-by: Adrien Nayrat
Author: Amit Kapila and Robert Haas
Reviewed-by: Robert Haas and Andres Freund
Backpatch-through: 9.6 where this code was introduced
Discussion: https://postgr.es/m/86137f17-1dfb-42f9-7421-82fd786b04a1@anayrat.info
In the leader backend, we don't track the buffer usage for ExecutorStart
phase whereas in worker backend we track it for ExecutorStart phase as
well. This leads to different value for buffer usage stats for the
parallel and non-parallel query. Change the code so that worker backend
also starts tracking buffer usage after ExecutorStart.
Author: Amit Kapila and Robert Haas
Reviewed-by: Robert Haas and Andres Freund
Backpatch-through: 9.6 where this code was introduced
Discussion: https://postgr.es/m/86137f17-1dfb-42f9-7421-82fd786b04a1@anayrat.info
The previous coding here supposed that if run-time partitioning applied to
a particular Append/MergeAppend plan, then all child plans of that node
must be members of a single partitioning hierarchy. This is totally wrong,
since an Append could be formed from a UNION ALL: we could have multiple
hierarchies sharing the same Append, or child plans that aren't part of any
hierarchy.
To fix, restructure the related plan-time and execution-time data
structures so that we can have a separate list or array for each
partitioning hierarchy. Also track subplans that are not part of any
hierarchy, and make sure they don't get pruned.
Per reports from Phil Florent and others. Back-patch to v11, since
the bug originated there.
David Rowley, with a lot of cosmetic adjustments by me; thanks also
to Amit Langote for review.
Discussion: https://postgr.es/m/HE1PR03MB17068BB27404C90B5B788BCABA7B0@HE1PR03MB1706.eurprd03.prod.outlook.com
Some operations were being done in a longer-lived memory context,
causing intra-query leaks. It's not noticeable unless you're doing a
large COPY, but if you are, it eats enough memory to cause a problem.
Co-authored-by: Kohei KaiGai <kaigai@heterodb.com>
Co-authored-by: Amit Langote <Langote_Amit_f8@lab.ntt.co.jp>
Co-authored-by: Álvaro Herrera <alvherre@alvh.no-ip.org>
Discussion: https://postgr.es/m/CAOP8fzYtVFWZADq4c=KoTAqgDrHWfng+AnEPEZccyxqxPVbbWQ@mail.gmail.com
CopyFrom allows multi-inserts to be used for non-partitioned tables, but
this was disabled for partitioned tables. The reason for this appeared
to be that the tuple may not belong to the same partition as the
previous tuple did. Not allowing multi-inserts here greatly slowed down
imports into partitioned tables. These could take twice as long as a
copy to an equivalent non-partitioned table. It seems wise to do
something about this, so this change allows the multi-inserts by
flushing the so-far inserted tuples to the partition when the next tuple
does not belong to the same partition, or when the buffer fills. This
improves performance when the next tuple in the stream commonly belongs
to the same partition as the previous tuple.
In cases where the target partition changes on every tuple, using
multi-inserts slightly slows the performance. To get around this we
track the average size of the batches that have been inserted and
adaptively enable or disable multi-inserts based on the size of the
batch. Some testing was done and the regression only seems to exist
when the average size of the insert batch is close to 1, so let's just
enable multi-inserts when the average size is at least 1.3. More
performance testing might reveal a better number for, this, but since
the slowdown was only 1-2% it does not seem critical enough to spend too
much time calculating it. In any case it may depend on other factors
rather than just the size of the batch.
Allowing multi-inserts for partitions required a bit of work around the
per-tuple memory contexts as we must flush the tuples when the next
tuple does not belong the same partition. In which case there is no
good time to reset the per-tuple context, as we've already built the new
tuple by this time. In order to work around this we maintain two
per-tuple contexts and just switch between them every time the partition
changes and reset the old one. This does mean that the first of each
batch of tuples is not allocated in the same memory context as the
others, but that does not matter since we only reset the context once
the previous batch has been inserted.
Author: David Rowley <david.rowley@2ndquadrant.com>
Reviewed-by: Melanie Plageman <melanieplageman@gmail.com>
Instead of repeatedly fishing the data out of the relcache entry,
let's use the version that we cached in the PartitionDispatch. We
could alternatively rip out the PartitionDispatch fields altogether,
but it doesn't make much sense to have them and not use them; before
this patch, partdesc was set but altogether unused. Amit Langote and
I both thought using them was a litle better than removing them, so
this patch takes that approach.
Discussion: http://postgr.es/m/CA+TgmobFnxcaW-Co-XO8=yhJ5pJXoNkCj6Z7jm9Mwj9FGv-D7w@mail.gmail.com
Due to inlining it previously was possible that an ExprContext's
shutdown callback pointed to a JITed function. As the JIT context
previously was shut down before the shutdown callbacks were called,
that could lead to segfaults. Fix the ordering.
Reported-By: Dmitry Dolgov
Author: Andres Freund
Discussion: https://postgr.es/m/CA+q6zcWO7CeAJtHBxgcHn_hj+PenM=tvG0RJ93X1uEJ86+76Ug@mail.gmail.com
Backpatch: 11-, where JIT compilation was added
This comment was copy-pasted from nodeAppend.c to nodeMergeAppend.c, but
while committing 5220bb7533, I modified wrong copy of it.
Spotted by David Rowley
A collection of typos I happened to spot while reading code, as well as
grepping for common mistakes.
Backpatch to all supported versions, as applicable, to avoid conflicts
when backporting other commits in the future.
An update that causes the tuple to be moved to a different partition was
missing out on re-constructing the to-be-updated tuple, based on the latest
tuple in the update chain. Instead, it's simply deleting the latest tuple
and inserting a new tuple in the new partition based on the old tuple.
Commit 2f17844104 didn't consider this case, so some of the updates were
getting lost.
In passing, change the argument order for output parameter in ExecDelete
and add some commentary about it.
Reported-by: Pavan Deolasee
Author: Amit Khandekar, with minor changes by me
Reviewed-by: Dilip Kumar, Amit Kapila and Alvaro Herrera
Backpatch-through: 11
Discussion: https://postgr.es/m/CAJ3gD9fRbEzDqdeDq1jxqZUb47kJn+tQ7=Bcgjc8quqKsDViKQ@mail.gmail.com
nodeWindowAgg.c failed to cope with the possibility that no ordering
columns are defined in the window frame for GROUPS mode or RANGE OFFSET
mode, leading to assertion failures or odd errors, as reported by Masahiko
Sawada and Lukas Eder. In RANGE OFFSET mode, an ordering column is really
required, so add an Assert about that. In GROUPS mode, the code would
work, except that the node initialization code wasn't in sync with the
execution code about when to set up tuplestore read pointers and spare
slots. Fix the latter for consistency's sake (even though I think the
changes described below make the out-of-sync cases unreachable for now).
Per SQL spec, a single ordering column is required for RANGE OFFSET mode,
and at least one ordering column is required for GROUPS mode. The parser
enforced the former but not the latter; add a check for that.
We were able to reach the no-ordering-column cases even with fully spec
compliant queries, though, because the planner would drop partitioning
and ordering columns from the generated plan if they were redundant with
earlier columns according to the redundant-pathkey logic, for instance
"PARTITION BY x ORDER BY y" in the presence of a "WHERE x=y" qual.
While in principle that's an optimization that could save some pointless
comparisons at runtime, it seems unlikely to be meaningful in the real
world. I think this behavior was not so much an intentional optimization
as a side-effect of an ancient decision to construct the plan node's
ordering-column info by reverse-engineering the PathKeys of the input
path. If we give up redundant-column removal then it takes very little
code to generate the plan node info directly from the WindowClause,
ensuring that we have the expected number of ordering columns in all
cases. (If anyone does complain about this, the planner could perhaps
be taught to remove redundant columns only when it's safe to do so,
ie *not* in RANGE OFFSET mode. But I doubt anyone ever will.)
With these changes, the WindowAggPath.winpathkeys field is not used for
anything anymore, so remove it.
The test cases added here are not actually very interesting given the
removal of the redundant-column-removal logic, but they would represent
important corner cases if anyone ever tries to put that back.
Tom Lane and Masahiko Sawada. Back-patch to v11 where RANGE OFFSET
and GROUPS modes were added.
Discussion: https://postgr.es/m/CAD21AoDrWqycq-w_+Bx1cjc+YUhZ11XTj9rfxNiNDojjBx8Fjw@mail.gmail.com
Discussion: https://postgr.es/m/153086788677.17476.8002640580496698831@wrigleys.postgresql.org
When executing CALL in PL/pgSQL, we need to set a snapshot before
invoking the to-be-called procedure. Otherwise, the to-be-called
procedure might end up running without a snapshot. For LANGUAGE SQL
procedures, this would result in an assertion failure. (For most other
languages, this is usually not a problem, because those use SPI and SPI
sets snapshots in most cases.) Setting the snapshot restores the
behavior of how CALL worked when it was handled as a generic SQL
statement in PL/pgSQL (exec_stmt_execsql()).
This change revealed another problem: In SPI_commit(), we popped the
active snapshot before committing the transaction, to avoid "snapshot %p
still active" errors. However, there is no particular reason why only
at most one snapshot should be on the stack. So change this to pop all
active snapshots instead of only one.
The previous coding saved pointers into the partitioned table's relcache
entry, but then closed the relcache entry, causing those pointers to
nominally become dangling. Actual trouble would be seen in the field
only if a relcache flush occurred mid-query, but that's hardly out of
the question.
While we could fix this by copying all the data in question at query
start, it seems better to just hold the relcache entry open for the
whole query.
While at it, improve the handling of support-function lookups: do that
once per query not once per pruning test. There's still something to be
desired here, in that we fail to exploit the possibility of caching data
across queries in the fn_extra fields of the relcache's FmgrInfo structs,
which could happen if we just used those structs in-place rather than
copying them. However, combining that with the possibility of per-query
lookups of cross-type comparison functions seems to require changes in the
APIs of a lot of the pruning support functions, so it's too invasive to
consider as part of this patch. A win would ensue only for complex
partition key data types (e.g. arrays), so it may not be worth the
trouble.
David Rowley and Tom Lane
Discussion: https://postgr.es/m/17850.1528755844@sss.pgh.pa.us
We don't need two passes if we scan child partitions before parents,
as that way the children's present_parts are up to date before they're
needed. I (tgl) think there's actually a bug being fixed here, for the
case of an intermediate partitioned table with no direct leaf children,
but haven't attempted to construct a test case to prove it.
David Rowley
Discussion: https://postgr.es/m/CAKJS1f-6GODRNgEtdPxCnAPme2h2hTztB6LmtfdmcYAAOE0kQg@mail.gmail.com
Starting with commit f0e44751d717, ExecConstraints was in charge of
running the partition constraint; commit 19c47e7c8202 modified that so
that caller could request to skip that checking depending on some
conditions, but that commit and 15ce775faa42 together introduced a small
bug there which caused ExecInsert to request skipping the constraint
check but have this not be honored -- in effect doing the check twice.
This could have been fixed in a very small patch, but on further
analysis of the involved function and its callsites, it turns out to be
simpler to give the responsibility of checking the partition constraint
fully to the caller, and return ExecConstraints to its original
(pre-partitioning) shape where it only checked tuple descriptor-related
constraints. Each caller must do partition constraint checking on its
own schedule, which is more convenient after commit 2f178441044 anyway.
Reported-by: David Rowley
Author: David Rowley, Álvaro Herrera
Reviewed-by: Amit Langote, Amit Khandekar, Simon Riggs
Discussion: https://postgr.es/m/CAKJS1f8w8+awsxgea8wt7_UX8qzOQ=Tm1LD+U1fHqBAkXxkW2w@mail.gmail.com
These struct definitions were originally dropped into primnodes.h,
which is a poor choice since that's mainly intended for primitive
expression node types; these are not in that category. What they
are is auxiliary info in Plan trees, so move them to plannodes.h.
For consistency, also relocate some related code that was apparently
placed with the aid of a dartboard.
There's no interesting code changes in this commit, just reshuffling.
David Rowley and Tom Lane
Discussion: https://postgr.es/m/CAFj8pRBjrufA3ocDm8o4LPGNye9Y+pm1b9kCwode4X04CULG3g@mail.gmail.com
The initial coding of the run-time-pruning feature only coped with cases
where the partition key(s) are compared to Params. That is a bit silly;
we can allow it to work with any non-Var-containing stable expression, as
long as we take special care with expressions containing PARAM_EXEC Params.
The code is hardly any longer this way, and it's considerably clearer
(IMO at least). Per gripe from Pavel Stehule.
David Rowley, whacked around a bit by me
Discussion: https://postgr.es/m/CAFj8pRBjrufA3ocDm8o4LPGNye9Y+pm1b9kCwode4X04CULG3g@mail.gmail.com
Make sure that we don't exceed MaxAllocSize when increasing the number of
buckets. Perhaps later we'll remove that limit and use DSA_ALLOC_HUGE, but
for now just prevent further increases like the non-parallel code. This
change avoids the error from bug report #15225.
Author: Thomas Munro
Reviewed-By: Tom Lane
Reported-by: Frits Jalvingh
Discussion: https://postgr.es/m/152802081668.26724.16985037679312485972%40wrigleys.postgresql.org
The impact of VARIADIC on the combine/serialize/deserialize support
functions of an aggregate wasn't thought through carefully. There is
actually no impact, because variadicity isn't passed through to these
functions (and it doesn't seem like it would need to be). However,
lookup_agg_function was mistakenly told to check things as though it were
passed through. The net result was that it was impossible to declare an
aggregate that had both VARIADIC input and parallelism support functions.
In passing, fix a runtime check in nodeAgg.c for the combine function's
strictness to make its error message agree with the creation-time check.
The previous message was actually backwards, and it doesn't seem like
there's a good reason to have two versions of this message text anyway.
Back-patch to 9.6 where parallel aggregation was introduced.
Alexey Bashtanov; message fix by me
Discussion: https://postgr.es/m/f86dde87-fef4-71eb-0480-62754aaca01b@imap.cc
Since the SPI stack has been moved from TopTransactionContext to
TopMemoryContext, setting _SPI_stack to NULL in AtEOXact_SPI() leaks
memory. In fact, we don't need to do that anymore: We just leave the
allocated stack around for the next SPI use.
Also, refactor the SPI cleanup so that it is run both at transaction end
and when returning to the main loop on an exception. The latter is
necessary when a procedure calls a COMMIT or ROLLBACK command that
itself causes an error.
Recent gcc can warn about switch-case fall throughs that are not
explicitly labeled as intentional. This seems like a good thing,
so clean up the warnings exposed thereby by labeling all such
cases with comments that gcc will recognize.
In files that already had one or more suitable comments, I generally
matched the existing style of those. Otherwise I went with
/* FALLTHROUGH */, which is one of the spellings approved at the
more-restrictive-than-default level -Wimplicit-fallthrough=4.
(At the default level you can also spell it /* FALL ?THRU */,
and it's not picky about case. What you can't do is include
additional text in the same comment, so some existing comments
containing versions of this aren't good enough.)
Testing with gcc 8.0.1 (Fedora 28's current version), I found that
I also had to put explicit "break"s after elog(ERROR) or ereport(ERROR);
apparently, for this purpose gcc doesn't recognize that those don't
return. That seems like possibly a gcc bug, but it's fine because
in most places we did that anyway; so this amounts to a visit from the
style police.
Discussion: https://postgr.es/m/15083.1525207729@sss.pgh.pa.us
Without these fixes, changes to the inserted tuple made by remote
triggers are ignored when building local RETURNING tuples.
In the core code, call ExecInitRoutingInfo at a later point from
within ExecInitPartitionInfo so that the FDW callback gets invoked
after the returning list has been built. But move CheckValidResultRel
out of ExecInitRoutingInfo so that it can happen at an earlier stage.
In postgres_fdw, refactor assorted deparsing functions to work with
the RTE rather than the PlannerInfo, which saves us having to
construct a fake PlannerInfo in cases where we don't have a real one.
Then, we can pass down a constructed RTE that yields the correct
deparse result when no real one exists. Unfortunately, this
necessitates a hack that understands how the core code manages RT
indexes for update tuple routing, which is ugly, but we don't have a
better idea right now.
Original report, analysis, and patch by Etsuro Fujita. Heavily
refactored by me. Then worked over some more by Amit Langote.
Discussion: http://postgr.es/m/5AD4882B.10002@lab.ntt.co.jp