It's not necessary to fully initialize the executor data structures
for partitions to which no tuples are ever routed. Consider, for
example, an INSERT statement that inserts only one row: it only cares
about the partition to which that one row is routed. The new function
ExecInitPartitionInfo performs the initialization in question only
when a particular partition is about to receive a tuple. This includes
creating, validating, and saving a pointer to the ResultRelInfo,
setting up for speculative insertions, translating WCOs and
initializing the resulting expressions, translating returning lists
and building the appropriate projection information, and setting up a
tuple conversion map.
One thing that's not deferred is locking the child partitions; that
seems desirable but would need more thought. Still, testing shows
that this makes single-row inserts significantly faster on a table
with many partitions without harming the bulk-insert case.
Amit Langote, reviewed by Etsuro Fujita, with a few changes by me
Discussion: http://postgr.es/m/8975331d-d961-cbdd-f862-fdd3d97dc2d0@lab.ntt.co.jp
An updating query that reads a CTE within an InitPlan or SubPlan could get
incorrect results if it updates rows that are concurrently being modified.
This is caused by CteScanNext supposing that nothing inside its recursive
ExecProcNode call could change which read pointer is selected in the CTE's
shared tuplestore. While that's normally true because of scoping
considerations, it can break down if an EPQ plan tree gets built during the
call, because EvalPlanQualStart builds execution trees for all subplans
whether they're going to be used during the recheck or not. And it seems
like a pretty shaky assumption anyway, so let's just reselect our own read
pointer here.
Per bug #14870 from Andrei Gorita. This has been broken since CTEs were
implemented, so back-patch to all supported branches.
Discussion: https://postgr.es/m/20171024155358.1471.82377@wrigleys.postgresql.org
In what was doubtless a typo, commit bf6c614a2 introduced a duplicate
initialization of a local variable. This made Coverity unhappy, as well
as pretty much anybody reading the code. We don't even have a real use
for the local variable, so just remove it.
The reason for doing so is that it will allow expression evaluation to
optimize based on the underlying tupledesc. In particular it will
allow to JIT tuple deforming together with the expression itself.
For that expression initialization needs to be moved after the
relevant slots are initialized - mostly unproblematic, except in the
case of nodeWorktablescan.c.
After doing so there's no need for ExecAssignResultType() and
ExecAssignResultTypeFromTL() anymore, as all former callers have been
converted to create a slot with a fixed descriptor.
When creating a slot with a fixed descriptor, tts_values/isnull can be
allocated together with the main slot, reducing allocation overhead
and increasing cache density a bit.
Author: Andres Freund
Discussion: https://postgr.es/m/20171206093717.vqdxe5icqttpxs3p@alap3.anarazel.de
This has a performance benefit on own, although not hugely so. The
primary benefit is that it will allow for to JIT tuple deforming and
comparator invocations.
Large parts of this were previously committed (773aec7aa), but the
commit contained an omission around cross-type comparisons and was
thus reverted.
Author: Andres Freund
Discussion: https://postgr.es/m/20171129080934.amqqkke2zjtekd4t@alap3.anarazel.de
This reverts commit 773aec7aa98abd38d6d9435913bb8e14e392c274.
There's an unresolved issue in the reverted commit: It only creates
one comparator function, but in for the nodeSubplan.c case we need
more (c.f. FindTupleHashEntry vs LookupTupleHashEntry calls in
nodeSubplan.c).
This isn't too difficult to fix, but it's not entirely trivial
either. The fact that the issue only causes breakage on 32bit systems
shows that the current test coverage isn't that great. To avoid
turning half the buildfarm red till those two issues are addressed,
revert.
Formerly, DTYPE_REC was used only for variables declared as "record";
variables of named composite types used DTYPE_ROW, which is faster for
some purposes but much less flexible. In particular, the ROW code paths
are entirely incapable of dealing with DDL-caused changes to the number
or data types of the columns of a row variable, once a particular plpgsql
function has been parsed for the first time in a session. And, since the
stored representation of a ROW isn't a tuple, there wasn't any easy way
to deal with variables of domain-over-composite types, since the domain
constraint checking code would expect the value to be checked to be a
tuple. A lesser, but still real, annoyance is that ROW format cannot
represent a true NULL composite value, only a row of per-field NULL
values, which is not exactly the same thing.
Hence, switch to using DTYPE_REC for all composite-typed variables,
whether "record", named composite type, or domain over named composite
type. DTYPE_ROW remains but is used only for its native purpose, to
represent a fixed-at-compile-time list of variables, for instance the
targets of an INTO clause.
To accomplish this without taking significant performance losses, introduce
infrastructure that allows storing composite-type variables as "expanded
objects", similar to the "expanded array" infrastructure introduced in
commit 1dc5ebc90. A composite variable's value is thereby kept (most of
the time) in the form of separate Datums, so that field accesses and
updates are not much more expensive than they were in the ROW format.
This holds the line, more or less, on performance of variables of named
composite types in field-access-intensive microbenchmarks, and makes
variables declared "record" perform much better than before in similar
tests. In addition, the logic involved with enforcing composite-domain
constraints against updates of individual fields is in the expanded
record infrastructure not plpgsql proper, so that it might be reusable
for other purposes.
In further support of this, introduce a typcache feature for assigning a
unique-within-process identifier to each distinct tuple descriptor of
interest; in particular, DDL alterations on composite types result in a new
identifier for that type. This allows very cheap detection of the need to
refresh tupdesc-dependent data. This improves on the "tupDescSeqNo" idea
I had in commit 687f096ea: that assigned identifying sequence numbers to
successive versions of individual composite types, but the numbers were not
unique across different types, nor was there support for assigning numbers
to registered record types.
In passing, allow plpgsql functions to accept as well as return type
"record". There was no good reason for the old restriction, and it
was out of step with most of the other PLs.
Tom Lane, reviewed by Pavel Stehule
Discussion: https://postgr.es/m/8962.1514399547@sss.pgh.pa.us
Doing so causes EXPLAIN ANALYZE to show trigger statistics multiple
times. Commit 2f178441044be430f6b4d626e4dae68a9a6f6cec seems to
be to blame for this.
Amit Langote, revieed by Amit Khandekar, Etsuro Fujita, and me.
When the previously-chosen plan was non-partial, all pa_finished
flags for partial plans are now set, and pa_next_plan has not yet
been set to INVALID_SUBPLAN_INDEX, the previous code could go into
an infinite loop.
Report by Rajkumar Raghuwanshi. Patch by Amit Khandekar and me.
Review by Kyotaro Horiguchi.
Discussion: http://postgr.es/m/CAJ3gD9cf43z78qY=U=H0HvOEN341qfRO-vLpnKPSviHeWgJQ5w@mail.gmail.com
This patch adds the ability to use "RANGE offset PRECEDING/FOLLOWING"
frame boundaries in window functions. We'd punted on that back in the
original patch to add window functions, because it was not clear how to
do it in a reasonably data-type-extensible fashion. That problem is
resolved here by adding the ability for btree operator classes to provide
an "in_range" support function that defines how to add or subtract the
RANGE offset value. Factoring it this way also allows the operator class
to avoid overflow problems near the ends of the datatype's range, if it
wishes to expend effort on that. (In the committed patch, the integer
opclasses handle that issue, but it did not seem worth the trouble to
avoid overflow failures for datetime types.)
The patch includes in_range support for the integer_ops opfamily
(int2/int4/int8) as well as the standard datetime types. Support for
other numeric types has been requested, but that seems like suitable
material for a follow-on patch.
In addition, the patch adds GROUPS mode which counts the offset in
ORDER-BY peer groups rather than rows, and it adds the frame_exclusion
options specified by SQL:2011. As far as I can see, we are now fully
up to spec on window framing options.
Existing behaviors remain unchanged, except that I changed the errcode
for a couple of existing error reports to meet the SQL spec's expectation
that negative "offset" values should be reported as SQLSTATE 22013.
Internally and in relevant parts of the documentation, we now consistently
use the terminology "offset PRECEDING/FOLLOWING" rather than "value
PRECEDING/FOLLOWING", since the term "value" is confusingly vague.
Oliver Ford, reviewed and whacked around some by me
Discussion: https://postgr.es/m/CAGMVOdu9sivPAxbNN0X+q19Sfv9edEPv=HibOJhB14TJv_RCQg@mail.gmail.com
We don't need to set up the shared space for hash join instrumentation data
if instrumentation hasn't been requested. Let's follow the example of the
similar Sort node code and save a few cycles by skipping that when we can.
This reverts commit d59ff4ab3 and instead allows us to use the safer choice
of passing noError = false to shm_toc_lookup in ExecHashInitializeWorker,
since if we reach that call there should be a TOC entry to be found.
Thomas Munro
Discussion: https://postgr.es/m/E1ehkoZ-0005uW-43%40gemulon.postgresql.org
One or another author of commit 5bcf389ec seems to have thought that
computing an offset from a NULL pointer would yield another NULL pointer.
There may possibly be architectures where that works, but common machines
don't work like that. Per a quick code review of places calling
shm_toc_lookup and not using noError = false.
To make this work, tuplesort.c and logtape.c must also support
parallelism, so this patch adds that infrastructure and then applies
it to the particular case of parallel btree index builds. Testing
to date shows that this can often be 2-3x faster than a serial
index build.
The model for deciding how many workers to use is fairly primitive
at present, but it's better than not having the feature. We can
refine it as we get more experience.
Peter Geoghegan with some help from Rushabh Lathia. While Heikki
Linnakangas is not an author of this patch, he wrote other patches
without which this feature would not have been possible, and
therefore the release notes should possibly credit him as an author
of this feature. Reviewed by Claudio Freire, Heikki Linnakangas,
Thomas Munro, Tels, Amit Kapila, me.
Discussion: http://postgr.es/m/CAM3SWZQKM=Pzc=CAHzRixKjp2eO5Q0Jg1SoFQqeXFQ647JiwqQ@mail.gmail.com
Discussion: http://postgr.es/m/CAH2-Wz=AxWqDoVvGU7dq856S4r6sJAj6DBn7VMtigkB33N5eyg@mail.gmail.com
Once this function has been called, we know that all workers have
started and attached to their error queues -- so if any of them
subsequently exit uncleanly, we'll be sure to throw an ERROR promptly.
Otherwise, users of the ParallelContext machinery must be careful not
to wait forever for a worker that has failed to start. Parallel query
manages to work without needing this for reasons explained in new
comments added by this patch, but it's a useful primitive for other
parallel operations, such as the pending patch to make creating a
btree index run in parallel.
Amit Kapila, revised by me. Additional review by Peter Geoghegan.
Discussion: http://postgr.es/m/CAA4eK1+e2MzyouF5bg=OtyhDSX+=Ao=3htN=T-r_6s3gCtKFiw@mail.gmail.com
It's a common task to evaluate a qual and reset the corresponding
expression context. Currently that requires storing the result of the
qual eval, resetting the context, and then reacting on the result. As
that's awkward several places only reset the context next time through
a node. That's not great, so introduce a helper that evaluates and
resets.
It's a bit ugly that it currently uses MemoryContextReset() instead of
ResetExprContext(), but that seems easier than reordering all of
executor.h.
Author: Andres Freund
Discussion: https://postgr.es/m/20180109222544.f7loxrunqh3xjl5f@alap3.anarazel.de
ExecPushExprSlots didn't initialize ExprEvalStep's resvalue/resnull
steps as it didn't use them. That caused wrong valgrind warnings for
an upcoming patch, so zero-intialize.
Also zero-initialize all scratch ExprEvalStep's allocated on the
stack, to avoid issues with similar future omissions of non-critial
data.
The changes in b81b5a96f424531b97cdd1dba97d9d1b9c9d372e did not fully
address the issue, because the bit-mixing of the IV into the final
hash-key didn't prevent clustering in the input-data survive in the
output data.
This didn't cause a lot of problems because of the additional growth
conditions added d4c62a6b623d6eef88218158e9fa3cf974c6c7e5. But as we
want to rein those in due to explosive growth in some edges, this
needs to be fixed.
Author: Andres Freund
Discussion: https://postgr.es/m/20171127185700.1470.20362@wrigleys.postgresql.org
Backpatch: 10, where simplehash was introduced
Commit 09529a70b changed nodeIndexscan.c and nodeIndexonlyscan.c to
postpone initialization of the indexscan proper until the first tuple
fetch. It overlooked the question of mark/restore behavior, which means
that if some caller attempts to mark the scan before the first tuple fetch,
you get a null pointer dereference.
The only existing user of mark/restore is nodeMergejoin.c, which (somewhat
accidentally) will never attempt to set a mark before the first inner tuple
unless the inner child node is a Material node. Hence the case can't arise
normally, so it seems sufficient to document the assumption at both ends.
However, during an EvalPlanQual recheck, ExecScanFetch doesn't call
IndexNext but just returns the jammed-in test tuple. Therefore, if we're
doing a recheck in a plan tree with a mergejoin with inner indexscan,
it's possible to reach ExecIndexMarkPos with iss_ScanDesc still null,
as reported by Guo Xiang Tan in bug #15032.
Really, when there's a test tuple supplied during an EPQ recheck, touching
the index at all is the wrong thing: rather, the behavior of mark/restore
ought to amount to saving and restoring the es_epqScanDone flag. We can
avoid finding a place to actually save the flag, for the moment, because
given the assumption that no caller will set a mark before fetching a
tuple, es_epqScanDone must always be set by the time we try to mark.
So the actual behavior change required is just to not reach the index
access if a test tuple is supplied.
The set of plan node types that need to consider this issue are those
that support EPQ test tuples (i.e., call ExecScan()) and also support
mark/restore; which is to say, IndexScan, IndexOnlyScan, and perhaps
CustomScan. It's tempting to try to fix the problem in one place by
teaching ExecMarkPos() itself about EPQ; but ExecMarkPos supports some
plan types that aren't Scans, and also it seems risky to make assumptions
about what a CustomScan wants to do here. Also, the most likely future
change here is to decide that we do need to support marks placed before
the first tuple, which would require additional work in IndexScan and
IndexOnlyScan in any case. Hence, fix the EPQ issue in nodeIndexscan.c
and nodeIndexonlyscan.c, accepting the small amount of code duplicated
thereby, and leave it to CustomScan providers to fix this bug if they
have it.
Back-patch to v10 where commit 09529a70b came in. In earlier branches,
the index_markpos() call is a waste of cycles when EPQ is active, but
no more than that, so it doesn't seem appropriate to back-patch further.
Discussion: https://postgr.es/m/20180126074932.3098.97815@wrigleys.postgresql.org
Avoid compiler warnings on MSVC (which doesn't want to see both
__forceinline and inline) and ancient GCC (which doesn't have
__attribute__((always_inline))).
Don't force inline-ing when building at -O0, as the programmer is probably
hoping for exact source-to-object-line correspondence in that case.
(For the moment this only works for GCC; maybe we can extend it later.)
Make pg_attribute_always_inline be syntactically a drop-in replacement
for inline, rather than an additional wart.
And improve the comments.
Thomas Munro and Michail Nikolaev, small tweaks by me
Discussion: https://postgr.es/m/32278.1514863068@sss.pgh.pa.us
Discussion: https://postgr.es/m/CANtu0oiYp74brgntKOxgg1FK5+t8uQ05guSiFU6FYz_5KUhr6Q@mail.gmail.com
In each of the supplied procedural languages (PL/pgSQL, PL/Perl,
PL/Python, PL/Tcl), add language-specific commit and rollback
functions/commands to control transactions in procedures in that
language. Add similar underlying functions to SPI. Some additional
cleanup so that transaction commit or abort doesn't blow away data
structures still used by the procedure call. Add execution context
tracking to CALL and DO statements so that transaction control commands
can only be issued in top-level procedure and block calls, not function
calls or other procedure or block calls.
- SPI
Add a new function SPI_connect_ext() that is like SPI_connect() but
allows passing option flags. The only option flag right now is
SPI_OPT_NONATOMIC. A nonatomic SPI connection can execute transaction
control commands, otherwise it's not allowed. This is meant to be
passed down from CALL and DO statements which themselves know in which
context they are called. A nonatomic SPI connection uses different
memory management. A normal SPI connection allocates its memory in
TopTransactionContext. For nonatomic connections we use PortalContext
instead. As the comment in SPI_connect_ext() (previously SPI_connect())
indicates, one could potentially use PortalContext in all cases, but it
seems safest to leave the existing uses alone, because this stuff is
complicated enough already.
SPI also gets new functions SPI_start_transaction(), SPI_commit(), and
SPI_rollback(), which can be used by PLs to implement their transaction
control logic.
- portalmem.c
Some adjustments were made in the code that cleans up portals at
transaction abort. The portal code could already handle a command
*committing* a transaction and continuing (e.g., VACUUM), but it was not
quite prepared for a command *aborting* a transaction and continuing.
In AtAbort_Portals(), remove the code that marks an active portal as
failed. As the comment there already predicted, this doesn't work if
the running command wants to keep running after transaction abort. And
it's actually not necessary, because pquery.c is careful to run all
portal code in a PG_TRY block and explicitly runs MarkPortalFailed() if
there is an exception. So the code in AtAbort_Portals() is never used
anyway.
In AtAbort_Portals() and AtCleanup_Portals(), we need to be careful not
to clean up active portals too much. This mirrors similar code in
PreCommit_Portals().
- PL/Perl
Gets new functions spi_commit() and spi_rollback()
- PL/pgSQL
Gets new commands COMMIT and ROLLBACK.
Update the PL/SQL porting example in the documentation to reflect that
transactions are now possible in procedures.
- PL/Python
Gets new functions plpy.commit and plpy.rollback.
- PL/Tcl
Gets new commands commit and rollback.
Reviewed-by: Andrew Dunstan <andrew.dunstan@2ndquadrant.com>
When an UPDATE causes a row to no longer match the partition
constraint, try to move it to a different partition where it does
match the partition constraint. In essence, the UPDATE is split into
a DELETE from the old partition and an INSERT into the new one. This
can lead to surprising behavior in concurrency scenarios because
EvalPlanQual rechecks won't work as they normally did; the known
problems are documented. (There is a pending patch to improve the
situation further, but it needs more review.)
Amit Khandekar, reviewed and tested by Amit Langote, David Rowley,
Rajkumar Raghuwanshi, Dilip Kumar, Amul Sul, Thomas Munro, Álvaro
Herrera, Amit Kapila, and me. A few final revisions by me.
Discussion: http://postgr.es/m/CAJ3gD9do9o2ccQ7j7+tSgiE1REY65XRiMb=yJO3u3QhyP8EEPQ@mail.gmail.com
AclObjectKind was basically just another enumeration for object types,
and we already have a preferred one for that. It's only used in
aclcheck_error. By using ObjectType instead, we can also give some more
precise error messages, for example "index" instead of "relation".
Reviewed-by: Michael Paquier <michael.paquier@gmail.com>
node->partitioned_rels is only set in UPDATE/DELETE cases, but
ExecInitModifyTable only uses its "rel" variable in INSERT cases,
so the extra logic to find the root rel is just a waste of complexity
and cycles.
Etsuro Fujita, reviewed by Amit Langote
Discussion: https://postgr.es/m/93cf9816-2f7d-0f67-8ed2-4a4e497a6ab8@lab.ntt.co.jp
This reverts commit b3617cdfbba1b5381e9d1c6bc0839500e8eb7273.
This broke returning unnamed cursors from PL/pgSQL functions.
Apparently, there are no test cases for this.
PL/pgSQL "pins" internally generated (unnamed) portals so that user code
cannot close them by guessing their names. This logic is also useful in
other languages and really for any code. So move that logic into SPI.
An unnamed portal obtained through SPI_cursor_open() and related
functions is now automatically pinned, and SPI_cursor_close()
automatically unpins a portal that is pinned.
In the core distribution, this affects PL/Perl and PL/Python, preventing
users from manually closing cursors created by spi_query and
plpy.cursor, respectively. (PL/Tcl does not currently offer any cursor
functionality.)
Reviewed-by: Andrew Dunstan <andrew.dunstan@2ndquadrant.com>
Previously aggregate transition and combination functions were invoked
by special case code in nodeAgg.c, evaluating input and filters
separately using the expression evaluation machinery. That turns out
to not be great for performance for several reasons:
- repeated expression evaluations have some cost
- the transition functions invocations are poorly predicted, as
commonly there are multiple aggregates in a query, resulting in the
same call-stack invoking different functions.
- filter and input computation had to be done separately
- the special case code made it hard to implement JITing of the whole
transition function invocation
Address this by building one large expression that computes input,
evaluates filters, and invokes transition functions.
This leads to moderate speedups in queries bottlenecked by aggregate
computations, and enables large speedups for similar cases once JITing
is done.
There's potential for further improvement:
- It'd be nice if we could simplify the somewhat expensive
aggstate->all_pergroups lookups.
- right now there's still an advance_transition_function invocation in
nodeAgg.c, leading to some code duplication.
Author: Andres Freund
Discussion: https://postgr.es/m/20170901064131.tazjxwus3k2w3ybh@alap3.anarazel.de
After having gotten rid of PortalGetHeapMemory(), there seems little
reason to keep one Portal access macro around that offers no actual
abstraction and isn't consistently used anyway.
Reviewed-by: Andrew Dunstan <andrew.dunstan@2ndquadrant.com>
Reviewed-by: Alvaro Herrera <alvherre@alvh.no-ip.org>
Rename PortalMemory to TopPortalContext, to avoid confusion with
PortalContext and align naming with similar top-level memory contexts.
Rename PortalData's "heap" field to portalContext. The "heap" naming
seems quite antiquated and confusing. Also get rid of the
PortalGetHeapMemory() macro and access the field directly, which we do
for other portal fields, so this abstraction doesn't buy anything.
Reviewed-by: Andrew Dunstan <andrew.dunstan@2ndquadrant.com>
Reviewed-by: Alvaro Herrera <alvherre@alvh.no-ip.org>
At present, we always raise an ERROR if the partition constraint
is violated, but a pending patch for UPDATE tuple routing will
consider instead moving the tuple to the correct partition.
Refactor to make that simpler.
Amit Khandekar, reviewed by Amit Langote, David Rowley, and me.
Discussion: http://postgr.es/m/CAJ3gD9cue54GbEzfV-61nyGpijvjZgCcghvLsB0_nL8Nm8HzCA@mail.gmail.com
Instead of having ExecSetupPartitionTupleRouting return multiple out
parameters, have it return a pointer to a structure containing all of
those different things. Also, provide and use a cleanup function,
ExecCleanupTupleRouting, instead of cleaning up all of the resources
allocated by ExecSetupPartitionTupleRouting individually.
Amit Khandekar, reviewed by Amit Langote, David Rowley, and me
Discussion: http://postgr.es/m/CAJ3gD9fWfxgKC+PfJZF3hkgAcNOy-LpfPxVYitDEXKHjeieWQQ@mail.gmail.com
- Remove unnecessary #include mistakenly added in execnodes.h.
- Fix mistake in comment in choose_next_subplan_for_leader.
- Adjust row estimates in cost_append for a possibly-different
parallel divisor.
- Clamp row estimates in cost_append after operations that may
not produce integers.
Amit Kapila, with cosmetic adjustments by me.
Discussion: http://postgr.es/m/CAA4eK1+qcbeai3coPpRW=GFCzFeLUsuY4T-AKHqMjxpEGZBPQg@mail.gmail.com
Correct ExecParallelHashTuplePrealloc's estimate of whether the
space_allowed limit is exceeded. Be more consistent about tuples that
are exactly HASH_CHUNK_THRESHOLD in size (they're "small", not "large").
Neither of these things explain the current buildfarm unhappiness, but
they're still bugs.
Thomas Munro, per gripe by me
Discussion: https://postgr.es/m/CAEepm=34PDuR69kfYVhmZPgMdy8pSA-MYbpesEN1SR+2oj3Y+w@mail.gmail.com
Previously aggregate transition values for hash and other forms of
aggregation (i.e. sort and no group by) were represented
differently. Hash based aggregation used a grouping set indexed array
pointing to an array of transition values, whereas other forms of
aggregation used one flattened array with the index being computed out
of grouping set and transition offsets.
That made upcoming changes hard, so represent both as grouping set
indexed array of per-group data.
As a nice side-effect this also makes aggregation slightly faster,
because computing offsets with `transno + (setno * numTrans)` turns
out not to be that cheap (too big for x86 lea for example).
Author: Andres Freund
Discussion: https://postgr.es/m/20171128003121.nmxbm2ounxzb6n2t@alap3.anarazel.de
The previous coding relied (without any documentation) on the data[]
member of HashMemoryChunkData being at a MAXALIGN'ed offset. If it
was not, the tuples would not be maxaligned either, leading to failures
on alignment-picky machines. While there seems to be no live bug on any
platform we support, this is clearly pretty fragile: any addition to or
rearrangement of the fields in HashMemoryChunkData could break it.
Let's remove the hazard by getting rid of the data[] member and instead
using pointer arithmetic with an explicitly maxalign'ed offset.
Discussion: https://postgr.es/m/14483.1514938129@sss.pgh.pa.us
In a race case, EXPLAIN ANALYZE could fail to display correct nbatch
and size information. Refactor so that participants report only on
batches they worked on rather than trying to report on all of them,
and teach explain.c to consider the HashInstrumentation object from
all participants instead of picking the first one it can find. This
should fix an occasional build farm failure in the "join" regression
test.
Author: Thomas Munro
Reviewed-By: Andres Freund
Discussion: https://postgr.es/m/30219.1514428346%40sss.pgh.pa.us
This reduces code duplication a bit, but the primary benefit that it
makes JITing expression evaluation easier. When doing so we can't, as
previously done in the interpreted case, really change opcode without
recompiling. Nor dow we just carry around unnecessary branches to
avoid re-checking over and over.
As a minor side-effect this makes ExecEvalStepOp() O(log(N)) rather
than O(N).
Author: Andres Freund
Discussion: https://postgr.es/m/20170901064131.tazjxwus3k2w3ybh@alap3.anarazel.de
This is useful because it gets rid of the sole direct user of
ExecAssignResultType(). A future commit will likely make use of that
and combine creating the targetlist with the initialization of the
result slot. But it seems like good code hygiene anyway.
Author: Andres Freund
Discussion: https://postgr.es/m/20170901064131.tazjxwus3k2w3ybh@alap3.anarazel.de
When a backend runs out of inner tuples to hash, it should detach from
grow_batch_barrier only after it has flushed all batches to disk and
merged counters, not before. Otherwise a concurrent backend in
ExecParallelHashIncreaseNumBatches() could stop waiting for this
backend and try to read tuples before they have been written. This
commit reorders those operations and should fix the assertion failures
seen occasionally on the build farm since commit
1804284042e659e7d16904e7bbb0ad546394b6a3.
Author: Thomas Munro
Discussion: https://postgr.es/m/E1eRwXy-0004IK-TO%40gemulon.postgresql.org
This patch does three interrelated things:
* Create a new expression execution step type EEOP_PARAM_CALLBACK
and add the infrastructure needed for add-on modules to generate that.
As discussed, the best control mechanism for that seems to be to add
another hook function to ParamListInfo, which will be called by
ExecInitExpr if it's supplied and a PARAM_EXTERN Param is found.
For stand-alone expressions, we add a new entry point to allow the
ParamListInfo to be specified directly, since it can't be retrieved
from the parent plan node's EState.
* Redesign the API for the ParamListInfo paramFetch hook so that the
ParamExternData array can be entirely virtual. This also lets us get rid
of ParamListInfo.paramMask, instead leaving it to the paramFetch hook to
decide which param IDs should be accessible or not. plpgsql_param_fetch
was already doing the identical masking check, so having callers do it too
seemed redundant. While I was at it, I added a "speculative" flag to
paramFetch that the planner can specify as TRUE to avoid unwanted failures.
This solves an ancient problem for plpgsql that it couldn't provide values
of non-DTYPE_VAR variables to the planner for fear of triggering premature
"record not assigned yet" or "field not found" errors during planning.
* Rework plpgsql to get rid of the need for "unshared" parameter lists,
by dint of turning the single ParamListInfo per estate into a nearly
read-only data structure that doesn't instantiate any per-variable data.
Instead, the paramFetch hook controls access to per-variable data and can
make the right decisions on the fly, replacing the cases that we used to
need multiple ParamListInfos for. This might perhaps have been a
performance loss on its own, but by using a paramCompile hook we can
bypass plpgsql_param_fetch entirely during normal query execution.
(It's now only called when, eg, we copy the ParamListInfo into a cursor
portal. copyParamList() or SerializeParamList() effectively instantiate
the virtual parameter array as a simple physical array without a
paramFetch hook, which is what we want in those cases.) This allows
reverting most of commit 6c82d8d1f, though I kept the cosmetic
code-consolidation aspects of that (eg the assign_simple_var function).
Performance testing shows this to be at worst a break-even change,
and it can provide wins ranging up to 20% in test cases involving
accesses to fields of "record" variables. The fact that values of
such variables can now be exposed to the planner might produce wins
in some situations, too, but I've not pursued that angle.
In passing, remove the "parent" pointer from the arguments to
ExecInitExprRec and related functions, instead storing that pointer in a
transient field in ExprState. The ParamListInfo pointer for a stand-alone
expression is handled the same way; we'd otherwise have had to add
yet another recursively-passed-down argument in expression compilation.
Discussion: https://postgr.es/m/32589.1513706441@sss.pgh.pa.us
Introduce parallel-aware hash joins that appear in EXPLAIN plans as Parallel
Hash Join with Parallel Hash. While hash joins could already appear in
parallel queries, they were previously always parallel-oblivious and had a
partial subplan only on the outer side, meaning that the work of the inner
subplan was duplicated in every worker.
After this commit, the planner will consider using a partial subplan on the
inner side too, using the Parallel Hash node to divide the work over the
available CPU cores and combine its results in shared memory. If the join
needs to be split into multiple batches in order to respect work_mem, then
workers process different batches as much as possible and then work together
on the remaining batches.
The advantages of a parallel-aware hash join over a parallel-oblivious hash
join used in a parallel query are that it:
* avoids wasting memory on duplicated hash tables
* avoids wasting disk space on duplicated batch files
* divides the work of building the hash table over the CPUs
One disadvantage is that there is some communication between the participating
CPUs which might outweigh the benefits of parallelism in the case of small
hash tables. This is avoided by the planner's existing reluctance to supply
partial plans for small scans, but it may be necessary to estimate
synchronization costs in future if that situation changes. Another is that
outer batch 0 must be written to disk if multiple batches are required.
A potential future advantage of parallel-aware hash joins is that right and
full outer joins could be supported, since there is a single set of matched
bits for each hashtable, but that is not yet implemented.
A new GUC enable_parallel_hash is defined to control the feature, defaulting
to on.
Author: Thomas Munro
Reviewed-By: Andres Freund, Robert Haas
Tested-By: Rafia Sabih, Prabhat Sahu
Discussion:
https://postgr.es/m/CAEepm=2W=cOkiZxcg6qiFQP-dHUe09aqTrEMM7yJDrHMhDv_RA@mail.gmail.comhttps://postgr.es/m/CAEepm=37HKyJ4U6XOLi=JgfSHM3o6B-GaeO-6hkOmneTDkH+Uw@mail.gmail.com
When a Gather or Gather Merge node is started and stopped multiple
times, accumulate instrumentation data only once, at the end, instead
of after each execution, to avoid recording inflated totals.
Commit 778e78ae9fa51e58f41cbdc72b293291d02d8984, the previous attempt
at a fix, instead reset the state after every execution, which worked
for the general instrumentation data but had problems for the additional
instrumentation specific to Sort and Hash nodes.
Report by hubert depesz lubaczewski. Analysis and fix by Amit Kapila,
following a design proposal from Thomas Munro, with a comment tweak
by me.
Discussion: http://postgr.es/m/20171127175631.GA405@depesz.com
es_query_dsa turns out to be broken by design, because it supposes
that there is only one DSA for the whole query, whereas there is
actually one per Gather (Merge) node. For now, work around that
problem by setting and clearing the pointer around the sections of
code that might need it. It's probably a better idea to get rid of
es_query_dsa altogether in favor of having each node keep track
individually of which DSA is relevant, but that seems like more than
we would want to back-patch.
Thomas Munro, reviewed and tested by Andreas Seltenreich, Amit
Kapila, and by me.
Discussion: http://postgr.es/m/CAEepm=1U6as=brnVvMNixEV2tpi8NuyQoTmO8Qef0-VV+=7MDA@mail.gmail.com