1
0
mirror of https://github.com/vladmandic/sdnext.git synced 2026-01-29 05:02:09 +03:00
Files
sdnext/cli/modules/models-diff.py
Vladimir Mandic 5ec19418f1 integrate locon
2023-03-06 11:41:14 -05:00

75 lines
2.6 KiB
Python
Executable File

#!/bin/env python
# based on <https://huggingface.co/JosephusCheung/ASimilarityCalculatior>
import safetensors
import sys
import torch
from pathlib import Path
import torch.nn as nn
import torch.nn.functional as F
import warnings
from util import log
warnings.filterwarnings("ignore", category=UserWarning)
def cal_cross_attn(to_q, to_k, to_v, rand_input):
hidden_dim, embed_dim = to_q.shape
attn_to_q = nn.Linear(hidden_dim, embed_dim, bias=False)
attn_to_k = nn.Linear(hidden_dim, embed_dim, bias=False)
attn_to_v = nn.Linear(hidden_dim, embed_dim, bias=False)
attn_to_q.load_state_dict({"weight": to_q})
attn_to_k.load_state_dict({"weight": to_k})
attn_to_v.load_state_dict({"weight": to_v})
return torch.einsum(
"ik, jk -> ik",
F.softmax(torch.einsum("ij, kj -> ik", attn_to_q(rand_input), attn_to_k(rand_input)), dim=-1),
attn_to_v(rand_input)
)
def load_model(path):
if path.suffix == ".safetensors":
return safetensors.torch.load_file(path, device="cpu")
else:
ckpt = torch.load(path, map_location="cpu")
return ckpt["state_dict"] if "state_dict" in ckpt else ckpt
def eval(model, n, input):
qk = f"model.diffusion_model.output_blocks.{n}.1.transformer_blocks.0.attn1.to_q.weight"
uk = f"model.diffusion_model.output_blocks.{n}.1.transformer_blocks.0.attn1.to_k.weight"
vk = f"model.diffusion_model.output_blocks.{n}.1.transformer_blocks.0.attn1.to_v.weight"
atoq, atok, atov = model[qk], model[uk], model[vk]
attn = cal_cross_attn(atoq, atok, atov, input)
return attn
def main():
file1 = Path(sys.argv[1])
files = sys.argv[2:]
seed = 114514
torch.manual_seed(seed)
model_a = load_model(file1)
log.info(f"base: {file1.name}")
map_attn_a = {}
map_rand_input = {}
for n in range(3, 11):
hidden_dim, embed_dim = model_a[f"model.diffusion_model.output_blocks.{n}.1.transformer_blocks.0.attn1.to_q.weight"].shape
rand_input = torch.randn([embed_dim, hidden_dim])
map_attn_a[n] = eval(model_a, n, rand_input)
map_rand_input[n] = rand_input
del model_a
for file2 in files:
file2 = Path(file2)
model_b = load_model(file2)
sims = []
for n in range(3, 11):
attn_a = map_attn_a[n]
attn_b = eval(model_b, n, map_rand_input[n])
sim = torch.mean(torch.cosine_similarity(attn_a, attn_b))
sims.append(sim)
log.info(f"{file2}: {torch.mean(torch.stack(sims)) * 1e2:.2f}%")
if __name__ == "__main__":
main()