#!/bin/env python # based on import safetensors import sys import torch from pathlib import Path import torch.nn as nn import torch.nn.functional as F import warnings from util import log warnings.filterwarnings("ignore", category=UserWarning) def cal_cross_attn(to_q, to_k, to_v, rand_input): hidden_dim, embed_dim = to_q.shape attn_to_q = nn.Linear(hidden_dim, embed_dim, bias=False) attn_to_k = nn.Linear(hidden_dim, embed_dim, bias=False) attn_to_v = nn.Linear(hidden_dim, embed_dim, bias=False) attn_to_q.load_state_dict({"weight": to_q}) attn_to_k.load_state_dict({"weight": to_k}) attn_to_v.load_state_dict({"weight": to_v}) return torch.einsum( "ik, jk -> ik", F.softmax(torch.einsum("ij, kj -> ik", attn_to_q(rand_input), attn_to_k(rand_input)), dim=-1), attn_to_v(rand_input) ) def load_model(path): if path.suffix == ".safetensors": return safetensors.torch.load_file(path, device="cpu") else: ckpt = torch.load(path, map_location="cpu") return ckpt["state_dict"] if "state_dict" in ckpt else ckpt def eval(model, n, input): qk = f"model.diffusion_model.output_blocks.{n}.1.transformer_blocks.0.attn1.to_q.weight" uk = f"model.diffusion_model.output_blocks.{n}.1.transformer_blocks.0.attn1.to_k.weight" vk = f"model.diffusion_model.output_blocks.{n}.1.transformer_blocks.0.attn1.to_v.weight" atoq, atok, atov = model[qk], model[uk], model[vk] attn = cal_cross_attn(atoq, atok, atov, input) return attn def main(): file1 = Path(sys.argv[1]) files = sys.argv[2:] seed = 114514 torch.manual_seed(seed) model_a = load_model(file1) log.info(f"base: {file1.name}") map_attn_a = {} map_rand_input = {} for n in range(3, 11): hidden_dim, embed_dim = model_a[f"model.diffusion_model.output_blocks.{n}.1.transformer_blocks.0.attn1.to_q.weight"].shape rand_input = torch.randn([embed_dim, hidden_dim]) map_attn_a[n] = eval(model_a, n, rand_input) map_rand_input[n] = rand_input del model_a for file2 in files: file2 = Path(file2) model_b = load_model(file2) sims = [] for n in range(3, 11): attn_a = map_attn_a[n] attn_b = eval(model_b, n, map_rand_input[n]) sim = torch.mean(torch.cosine_similarity(attn_a, attn_b)) sims.append(sim) log.info(f"{file2}: {torch.mean(torch.stack(sims)) * 1e2:.2f}%") if __name__ == "__main__": main()