mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
Deprecate init_git_repo, refactor train_unconditional.py (#1022)
Deprecate `init_git_repo` and `push_to_hub`, refactor `train_unconditional.py`
This commit is contained in:
@@ -1,6 +1,8 @@
|
||||
import argparse
|
||||
import math
|
||||
import os
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
@@ -9,9 +11,9 @@ from accelerate import Accelerator
|
||||
from accelerate.logging import get_logger
|
||||
from datasets import load_dataset
|
||||
from diffusers import DDPMPipeline, DDPMScheduler, UNet2DModel
|
||||
from diffusers.hub_utils import init_git_repo
|
||||
from diffusers.optimization import get_scheduler
|
||||
from diffusers.training_utils import EMAModel
|
||||
from huggingface_hub import HfFolder, Repository, whoami
|
||||
from torchvision.transforms import (
|
||||
CenterCrop,
|
||||
Compose,
|
||||
@@ -27,6 +29,160 @@ from tqdm.auto import tqdm
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser(description="Simple example of a training script.")
|
||||
parser.add_argument(
|
||||
"--dataset_name",
|
||||
type=str,
|
||||
default=None,
|
||||
help=(
|
||||
"The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private,"
|
||||
" dataset). It can also be a path pointing to a local copy of a dataset in your filesystem,"
|
||||
" or to a folder containing files that HF Datasets can understand."
|
||||
),
|
||||
)
|
||||
parser.add_argument(
|
||||
"--dataset_config_name",
|
||||
type=str,
|
||||
default=None,
|
||||
help="The config of the Dataset, leave as None if there's only one config.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--train_data_dir",
|
||||
type=str,
|
||||
default=None,
|
||||
help=(
|
||||
"A folder containing the training data. Folder contents must follow the structure described in"
|
||||
" https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file"
|
||||
" must exist to provide the captions for the images. Ignored if `dataset_name` is specified."
|
||||
),
|
||||
)
|
||||
parser.add_argument(
|
||||
"--output_dir",
|
||||
type=str,
|
||||
default="ddpm-model-64",
|
||||
help="The output directory where the model predictions and checkpoints will be written.",
|
||||
)
|
||||
parser.add_argument("--overwrite_output_dir", action="store_true")
|
||||
parser.add_argument(
|
||||
"--cache_dir",
|
||||
type=str,
|
||||
default=None,
|
||||
help="The directory where the downloaded models and datasets will be stored.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--resolution",
|
||||
type=int,
|
||||
default=64,
|
||||
help=(
|
||||
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
|
||||
" resolution"
|
||||
),
|
||||
)
|
||||
parser.add_argument(
|
||||
"--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--eval_batch_size", type=int, default=16, help="Batch size (per device) for the eval dataloader."
|
||||
)
|
||||
parser.add_argument("--num_epochs", type=int, default=100)
|
||||
parser.add_argument("--save_images_epochs", type=int, default=10, help="How often to save images during training.")
|
||||
parser.add_argument(
|
||||
"--save_model_epochs", type=int, default=10, help="How often to save the model during training."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--gradient_accumulation_steps",
|
||||
type=int,
|
||||
default=1,
|
||||
help="Number of updates steps to accumulate before performing a backward/update pass.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--learning_rate",
|
||||
type=float,
|
||||
default=1e-4,
|
||||
help="Initial learning rate (after the potential warmup period) to use.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--lr_scheduler",
|
||||
type=str,
|
||||
default="cosine",
|
||||
help=(
|
||||
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
|
||||
' "constant", "constant_with_warmup"]'
|
||||
),
|
||||
)
|
||||
parser.add_argument(
|
||||
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
|
||||
)
|
||||
parser.add_argument("--adam_beta1", type=float, default=0.95, help="The beta1 parameter for the Adam optimizer.")
|
||||
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
|
||||
parser.add_argument(
|
||||
"--adam_weight_decay", type=float, default=1e-6, help="Weight decay magnitude for the Adam optimizer."
|
||||
)
|
||||
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer.")
|
||||
parser.add_argument(
|
||||
"--use_ema",
|
||||
action="store_true",
|
||||
default=True,
|
||||
help="Whether to use Exponential Moving Average for the final model weights.",
|
||||
)
|
||||
parser.add_argument("--ema_inv_gamma", type=float, default=1.0, help="The inverse gamma value for the EMA decay.")
|
||||
parser.add_argument("--ema_power", type=float, default=3 / 4, help="The power value for the EMA decay.")
|
||||
parser.add_argument("--ema_max_decay", type=float, default=0.9999, help="The maximum decay magnitude for EMA.")
|
||||
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
|
||||
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
|
||||
parser.add_argument(
|
||||
"--hub_model_id",
|
||||
type=str,
|
||||
default=None,
|
||||
help="The name of the repository to keep in sync with the local `output_dir`.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--hub_private_repo", action="store_true", help="Whether or not to create a private repository."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--logging_dir",
|
||||
type=str,
|
||||
default="logs",
|
||||
help=(
|
||||
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
|
||||
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
|
||||
),
|
||||
)
|
||||
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
|
||||
parser.add_argument(
|
||||
"--mixed_precision",
|
||||
type=str,
|
||||
default="no",
|
||||
choices=["no", "fp16", "bf16"],
|
||||
help=(
|
||||
"Whether to use mixed precision. Choose"
|
||||
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
|
||||
"and an Nvidia Ampere GPU."
|
||||
),
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
|
||||
if env_local_rank != -1 and env_local_rank != args.local_rank:
|
||||
args.local_rank = env_local_rank
|
||||
|
||||
if args.dataset_name is None and args.train_data_dir is None:
|
||||
raise ValueError("You must specify either a dataset name from the hub or a train data directory.")
|
||||
|
||||
return args
|
||||
|
||||
|
||||
def get_full_repo_name(model_id: str, organization: Optional[str] = None, token: Optional[str] = None):
|
||||
if token is None:
|
||||
token = HfFolder.get_token()
|
||||
if organization is None:
|
||||
username = whoami(token)["name"]
|
||||
return f"{username}/{model_id}"
|
||||
else:
|
||||
return f"{organization}/{model_id}"
|
||||
|
||||
|
||||
def main(args):
|
||||
logging_dir = os.path.join(args.output_dir, args.logging_dir)
|
||||
accelerator = Accelerator(
|
||||
@@ -110,8 +266,22 @@ def main(args):
|
||||
|
||||
ema_model = EMAModel(model, inv_gamma=args.ema_inv_gamma, power=args.ema_power, max_value=args.ema_max_decay)
|
||||
|
||||
if args.push_to_hub:
|
||||
repo = init_git_repo(args, at_init=True)
|
||||
# Handle the repository creation
|
||||
if accelerator.is_main_process:
|
||||
if args.push_to_hub:
|
||||
if args.hub_model_id is None:
|
||||
repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token)
|
||||
else:
|
||||
repo_name = args.hub_model_id
|
||||
repo = Repository(args.output_dir, clone_from=repo_name)
|
||||
|
||||
with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
|
||||
if "step_*" not in gitignore:
|
||||
gitignore.write("step_*\n")
|
||||
if "epoch_*" not in gitignore:
|
||||
gitignore.write("epoch_*\n")
|
||||
elif args.output_dir is not None:
|
||||
os.makedirs(args.output_dir, exist_ok=True)
|
||||
|
||||
if accelerator.is_main_process:
|
||||
run = os.path.split(__file__)[-1].split(".")[0]
|
||||
@@ -193,55 +363,5 @@ def main(args):
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Simple example of a training script.")
|
||||
parser.add_argument("--local_rank", type=int, default=-1)
|
||||
parser.add_argument("--dataset_name", type=str, default=None)
|
||||
parser.add_argument("--dataset_config_name", type=str, default=None)
|
||||
parser.add_argument("--train_data_dir", type=str, default=None, help="A folder containing the training data.")
|
||||
parser.add_argument("--output_dir", type=str, default="ddpm-model-64")
|
||||
parser.add_argument("--overwrite_output_dir", action="store_true")
|
||||
parser.add_argument("--cache_dir", type=str, default=None)
|
||||
parser.add_argument("--resolution", type=int, default=64)
|
||||
parser.add_argument("--train_batch_size", type=int, default=16)
|
||||
parser.add_argument("--eval_batch_size", type=int, default=16)
|
||||
parser.add_argument("--num_epochs", type=int, default=100)
|
||||
parser.add_argument("--save_images_epochs", type=int, default=10)
|
||||
parser.add_argument("--save_model_epochs", type=int, default=10)
|
||||
parser.add_argument("--gradient_accumulation_steps", type=int, default=1)
|
||||
parser.add_argument("--learning_rate", type=float, default=1e-4)
|
||||
parser.add_argument("--lr_scheduler", type=str, default="cosine")
|
||||
parser.add_argument("--lr_warmup_steps", type=int, default=500)
|
||||
parser.add_argument("--adam_beta1", type=float, default=0.95)
|
||||
parser.add_argument("--adam_beta2", type=float, default=0.999)
|
||||
parser.add_argument("--adam_weight_decay", type=float, default=1e-6)
|
||||
parser.add_argument("--adam_epsilon", type=float, default=1e-08)
|
||||
parser.add_argument("--use_ema", action="store_true", default=True)
|
||||
parser.add_argument("--ema_inv_gamma", type=float, default=1.0)
|
||||
parser.add_argument("--ema_power", type=float, default=3 / 4)
|
||||
parser.add_argument("--ema_max_decay", type=float, default=0.9999)
|
||||
parser.add_argument("--push_to_hub", action="store_true")
|
||||
parser.add_argument("--hub_token", type=str, default=None)
|
||||
parser.add_argument("--hub_model_id", type=str, default=None)
|
||||
parser.add_argument("--hub_private_repo", action="store_true")
|
||||
parser.add_argument("--logging_dir", type=str, default="logs")
|
||||
parser.add_argument(
|
||||
"--mixed_precision",
|
||||
type=str,
|
||||
default="no",
|
||||
choices=["no", "fp16", "bf16"],
|
||||
help=(
|
||||
"Whether to use mixed precision. Choose"
|
||||
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
|
||||
"and an Nvidia Ampere GPU."
|
||||
),
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
|
||||
if env_local_rank != -1 and env_local_rank != args.local_rank:
|
||||
args.local_rank = env_local_rank
|
||||
|
||||
if args.dataset_name is None and args.train_data_dir is None:
|
||||
raise ValueError("You must specify either a dataset name from the hub or a train data directory.")
|
||||
|
||||
args = parse_args()
|
||||
main(args)
|
||||
|
||||
@@ -22,7 +22,7 @@ from typing import Optional
|
||||
from huggingface_hub import HfFolder, Repository, whoami
|
||||
|
||||
from .pipeline_utils import DiffusionPipeline
|
||||
from .utils import is_modelcards_available, logging
|
||||
from .utils import deprecate, is_modelcards_available, logging
|
||||
|
||||
|
||||
if is_modelcards_available():
|
||||
@@ -53,6 +53,12 @@ def init_git_repo(args, at_init: bool = False):
|
||||
Whether this function is called before any training or not. If `self.args.overwrite_output_dir` is `True`
|
||||
and `at_init` is `True`, the path to the repo (which is `self.args.output_dir`) might be wiped out.
|
||||
"""
|
||||
deprecation_message = (
|
||||
"Please use `huggingface_hub.Repository`. "
|
||||
"See `examples/unconditional_image_generation/train_unconditional.py` for an example."
|
||||
)
|
||||
deprecate("init_git_repo()", "0.10.0", deprecation_message)
|
||||
|
||||
if hasattr(args, "local_rank") and args.local_rank not in [-1, 0]:
|
||||
return
|
||||
hub_token = args.hub_token if hasattr(args, "hub_token") else None
|
||||
@@ -114,6 +120,11 @@ def push_to_hub(
|
||||
The url of the commit of your model in the given repository if `blocking=False`, a tuple with the url of the
|
||||
commit and an object to track the progress of the commit if `blocking=True`
|
||||
"""
|
||||
deprecation_message = (
|
||||
"Please use `huggingface_hub.Repository` and `Repository.push_to_hub()`. "
|
||||
"See `examples/unconditional_image_generation/train_unconditional.py` for an example."
|
||||
)
|
||||
deprecate("push_to_hub()", "0.10.0", deprecation_message)
|
||||
|
||||
if not hasattr(args, "hub_model_id") or args.hub_model_id is None:
|
||||
model_name = Path(args.output_dir).name
|
||||
|
||||
Reference in New Issue
Block a user