mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
[Flax] Add DreamBooth (#1001)
* [Flax] Add DreamBooth * fix sample rng * style * not reuse rng * add dtype for mixed precision training * Add Flax example
This commit is contained in:
@@ -58,6 +58,24 @@ accelerate launch train_dreambooth.py \
|
||||
--max_train_steps=400
|
||||
```
|
||||
|
||||
Or use the Flax implementation if you need a speedup
|
||||
|
||||
```bash
|
||||
export MODEL_NAME="duongna/stable-diffusion-v1-4-flax"
|
||||
export INSTANCE_DIR="path-to-instance-images"
|
||||
export OUTPUT_DIR="path-to-save-model"
|
||||
|
||||
python train_dreambooth_flax.py \
|
||||
--pretrained_model_name_or_path=$MODEL_NAME \
|
||||
--instance_data_dir=$INSTANCE_DIR \
|
||||
--output_dir=$OUTPUT_DIR \
|
||||
--instance_prompt="a photo of sks dog" \
|
||||
--resolution=512 \
|
||||
--train_batch_size=1 \
|
||||
--learning_rate=5e-6 \
|
||||
--max_train_steps=400
|
||||
```
|
||||
|
||||
### Training with prior-preservation loss
|
||||
|
||||
Prior-preservation is used to avoid overfitting and language-drift. Refer to the paper to learn more about it. For prior-preservation we first generate images using the model with a class prompt and then use those during training along with our data.
|
||||
@@ -87,6 +105,29 @@ accelerate launch train_dreambooth.py \
|
||||
--max_train_steps=800
|
||||
```
|
||||
|
||||
Or use the Flax implementation if you need a speedup
|
||||
|
||||
```bash
|
||||
export MODEL_NAME="duongna/stable-diffusion-v1-4-flax"
|
||||
export INSTANCE_DIR="path-to-instance-images"
|
||||
export CLASS_DIR="path-to-class-images"
|
||||
export OUTPUT_DIR="path-to-save-model"
|
||||
|
||||
python train_dreambooth_flax.py \
|
||||
--pretrained_model_name_or_path=$MODEL_NAME \
|
||||
--instance_data_dir=$INSTANCE_DIR \
|
||||
--class_data_dir=$CLASS_DIR \
|
||||
--output_dir=$OUTPUT_DIR \
|
||||
--with_prior_preservation --prior_loss_weight=1.0 \
|
||||
--instance_prompt="a photo of sks dog" \
|
||||
--class_prompt="a photo of dog" \
|
||||
--resolution=512 \
|
||||
--train_batch_size=1 \
|
||||
--learning_rate=5e-6 \
|
||||
--num_class_images=200 \
|
||||
--max_train_steps=800
|
||||
```
|
||||
|
||||
### Training on a 16GB GPU:
|
||||
|
||||
With the help of gradient checkpointing and the 8-bit optimizer from bitsandbytes it's possible to run train dreambooth on a 16GB GPU.
|
||||
@@ -193,6 +234,30 @@ accelerate launch train_dreambooth.py \
|
||||
--max_train_steps=800
|
||||
```
|
||||
|
||||
Or use the Flax implementation if you need a speedup
|
||||
|
||||
```bash
|
||||
export MODEL_NAME="duongna/stable-diffusion-v1-4-flax"
|
||||
export INSTANCE_DIR="path-to-instance-images"
|
||||
export CLASS_DIR="path-to-class-images"
|
||||
export OUTPUT_DIR="path-to-save-model"
|
||||
|
||||
python train_dreambooth_flax.py \
|
||||
--pretrained_model_name_or_path=$MODEL_NAME \
|
||||
--train_text_encoder \
|
||||
--instance_data_dir=$INSTANCE_DIR \
|
||||
--class_data_dir=$CLASS_DIR \
|
||||
--output_dir=$OUTPUT_DIR \
|
||||
--with_prior_preservation --prior_loss_weight=1.0 \
|
||||
--instance_prompt="a photo of sks dog" \
|
||||
--class_prompt="a photo of dog" \
|
||||
--resolution=512 \
|
||||
--train_batch_size=1 \
|
||||
--learning_rate=2e-6 \
|
||||
--num_class_images=200 \
|
||||
--max_train_steps=800
|
||||
```
|
||||
|
||||
## Inference
|
||||
|
||||
Once you have trained a model using above command, the inference can be done simply using the `StableDiffusionPipeline`. Make sure to include the `identifier`(e.g. sks in above example) in your prompt.
|
||||
|
||||
665
examples/dreambooth/train_dreambooth_flax.py
Normal file
665
examples/dreambooth/train_dreambooth_flax.py
Normal file
@@ -0,0 +1,665 @@
|
||||
import argparse
|
||||
import hashlib
|
||||
import logging
|
||||
import math
|
||||
import os
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.utils.checkpoint
|
||||
from torch.utils.data import Dataset
|
||||
|
||||
import jax
|
||||
import jax.numpy as jnp
|
||||
import optax
|
||||
import transformers
|
||||
from diffusers import (
|
||||
FlaxAutoencoderKL,
|
||||
FlaxDDPMScheduler,
|
||||
FlaxPNDMScheduler,
|
||||
FlaxStableDiffusionPipeline,
|
||||
FlaxUNet2DConditionModel,
|
||||
)
|
||||
from diffusers.pipelines.stable_diffusion import FlaxStableDiffusionSafetyChecker
|
||||
from flax import jax_utils
|
||||
from flax.training import train_state
|
||||
from flax.training.common_utils import shard
|
||||
from huggingface_hub import HfFolder, Repository, whoami
|
||||
from PIL import Image
|
||||
from torchvision import transforms
|
||||
from tqdm.auto import tqdm
|
||||
from transformers import CLIPFeatureExtractor, CLIPTokenizer, FlaxCLIPTextModel, set_seed
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser(description="Simple example of a training script.")
|
||||
parser.add_argument(
|
||||
"--pretrained_model_name_or_path",
|
||||
type=str,
|
||||
default=None,
|
||||
required=True,
|
||||
help="Path to pretrained model or model identifier from huggingface.co/models.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--tokenizer_name",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Pretrained tokenizer name or path if not the same as model_name",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--instance_data_dir",
|
||||
type=str,
|
||||
default=None,
|
||||
required=True,
|
||||
help="A folder containing the training data of instance images.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--class_data_dir",
|
||||
type=str,
|
||||
default=None,
|
||||
required=False,
|
||||
help="A folder containing the training data of class images.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--instance_prompt",
|
||||
type=str,
|
||||
default=None,
|
||||
help="The prompt with identifier specifying the instance",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--class_prompt",
|
||||
type=str,
|
||||
default=None,
|
||||
help="The prompt to specify images in the same class as provided instance images.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--with_prior_preservation",
|
||||
default=False,
|
||||
action="store_true",
|
||||
help="Flag to add prior preservation loss.",
|
||||
)
|
||||
parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss.")
|
||||
parser.add_argument(
|
||||
"--num_class_images",
|
||||
type=int,
|
||||
default=100,
|
||||
help=(
|
||||
"Minimal class images for prior preservation loss. If not have enough images, additional images will be"
|
||||
" sampled with class_prompt."
|
||||
),
|
||||
)
|
||||
parser.add_argument(
|
||||
"--output_dir",
|
||||
type=str,
|
||||
default="text-inversion-model",
|
||||
help="The output directory where the model predictions and checkpoints will be written.",
|
||||
)
|
||||
parser.add_argument("--seed", type=int, default=0, help="A seed for reproducible training.")
|
||||
parser.add_argument(
|
||||
"--resolution",
|
||||
type=int,
|
||||
default=512,
|
||||
help=(
|
||||
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
|
||||
" resolution"
|
||||
),
|
||||
)
|
||||
parser.add_argument(
|
||||
"--center_crop", action="store_true", help="Whether to center crop images before resizing to resolution"
|
||||
)
|
||||
parser.add_argument("--train_text_encoder", action="store_true", help="Whether to train the text encoder")
|
||||
parser.add_argument(
|
||||
"--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images."
|
||||
)
|
||||
parser.add_argument("--num_train_epochs", type=int, default=1)
|
||||
parser.add_argument(
|
||||
"--max_train_steps",
|
||||
type=int,
|
||||
default=None,
|
||||
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--learning_rate",
|
||||
type=float,
|
||||
default=5e-6,
|
||||
help="Initial learning rate (after the potential warmup period) to use.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--scale_lr",
|
||||
action="store_true",
|
||||
default=False,
|
||||
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--lr_scheduler",
|
||||
type=str,
|
||||
default="constant",
|
||||
help=(
|
||||
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
|
||||
' "constant", "constant_with_warmup"]'
|
||||
),
|
||||
)
|
||||
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
|
||||
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
|
||||
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
|
||||
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
|
||||
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
|
||||
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
|
||||
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
|
||||
parser.add_argument(
|
||||
"--hub_model_id",
|
||||
type=str,
|
||||
default=None,
|
||||
help="The name of the repository to keep in sync with the local `output_dir`.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--logging_dir",
|
||||
type=str,
|
||||
default="logs",
|
||||
help=(
|
||||
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
|
||||
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
|
||||
),
|
||||
)
|
||||
parser.add_argument(
|
||||
"--mixed_precision",
|
||||
type=str,
|
||||
default="no",
|
||||
choices=["no", "fp16", "bf16"],
|
||||
help=(
|
||||
"Whether to use mixed precision. Choose"
|
||||
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
|
||||
"and an Nvidia Ampere GPU."
|
||||
),
|
||||
)
|
||||
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
|
||||
|
||||
args = parser.parse_args()
|
||||
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
|
||||
if env_local_rank != -1 and env_local_rank != args.local_rank:
|
||||
args.local_rank = env_local_rank
|
||||
|
||||
if args.instance_data_dir is None:
|
||||
raise ValueError("You must specify a train data directory.")
|
||||
|
||||
if args.with_prior_preservation:
|
||||
if args.class_data_dir is None:
|
||||
raise ValueError("You must specify a data directory for class images.")
|
||||
if args.class_prompt is None:
|
||||
raise ValueError("You must specify prompt for class images.")
|
||||
|
||||
return args
|
||||
|
||||
|
||||
class DreamBoothDataset(Dataset):
|
||||
"""
|
||||
A dataset to prepare the instance and class images with the prompts for fine-tuning the model.
|
||||
It pre-processes the images and the tokenizes prompts.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
instance_data_root,
|
||||
instance_prompt,
|
||||
tokenizer,
|
||||
class_data_root=None,
|
||||
class_prompt=None,
|
||||
size=512,
|
||||
center_crop=False,
|
||||
):
|
||||
self.size = size
|
||||
self.center_crop = center_crop
|
||||
self.tokenizer = tokenizer
|
||||
|
||||
self.instance_data_root = Path(instance_data_root)
|
||||
if not self.instance_data_root.exists():
|
||||
raise ValueError("Instance images root doesn't exists.")
|
||||
|
||||
self.instance_images_path = list(Path(instance_data_root).iterdir())
|
||||
self.num_instance_images = len(self.instance_images_path)
|
||||
self.instance_prompt = instance_prompt
|
||||
self._length = self.num_instance_images
|
||||
|
||||
if class_data_root is not None:
|
||||
self.class_data_root = Path(class_data_root)
|
||||
self.class_data_root.mkdir(parents=True, exist_ok=True)
|
||||
self.class_images_path = list(self.class_data_root.iterdir())
|
||||
self.num_class_images = len(self.class_images_path)
|
||||
self._length = max(self.num_class_images, self.num_instance_images)
|
||||
self.class_prompt = class_prompt
|
||||
else:
|
||||
self.class_data_root = None
|
||||
|
||||
self.image_transforms = transforms.Compose(
|
||||
[
|
||||
transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR),
|
||||
transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size),
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize([0.5], [0.5]),
|
||||
]
|
||||
)
|
||||
|
||||
def __len__(self):
|
||||
return self._length
|
||||
|
||||
def __getitem__(self, index):
|
||||
example = {}
|
||||
instance_image = Image.open(self.instance_images_path[index % self.num_instance_images])
|
||||
if not instance_image.mode == "RGB":
|
||||
instance_image = instance_image.convert("RGB")
|
||||
example["instance_images"] = self.image_transforms(instance_image)
|
||||
example["instance_prompt_ids"] = self.tokenizer(
|
||||
self.instance_prompt,
|
||||
padding="do_not_pad",
|
||||
truncation=True,
|
||||
max_length=self.tokenizer.model_max_length,
|
||||
).input_ids
|
||||
|
||||
if self.class_data_root:
|
||||
class_image = Image.open(self.class_images_path[index % self.num_class_images])
|
||||
if not class_image.mode == "RGB":
|
||||
class_image = class_image.convert("RGB")
|
||||
example["class_images"] = self.image_transforms(class_image)
|
||||
example["class_prompt_ids"] = self.tokenizer(
|
||||
self.class_prompt,
|
||||
padding="do_not_pad",
|
||||
truncation=True,
|
||||
max_length=self.tokenizer.model_max_length,
|
||||
).input_ids
|
||||
|
||||
return example
|
||||
|
||||
|
||||
class PromptDataset(Dataset):
|
||||
"A simple dataset to prepare the prompts to generate class images on multiple GPUs."
|
||||
|
||||
def __init__(self, prompt, num_samples):
|
||||
self.prompt = prompt
|
||||
self.num_samples = num_samples
|
||||
|
||||
def __len__(self):
|
||||
return self.num_samples
|
||||
|
||||
def __getitem__(self, index):
|
||||
example = {}
|
||||
example["prompt"] = self.prompt
|
||||
example["index"] = index
|
||||
return example
|
||||
|
||||
|
||||
def get_full_repo_name(model_id: str, organization: Optional[str] = None, token: Optional[str] = None):
|
||||
if token is None:
|
||||
token = HfFolder.get_token()
|
||||
if organization is None:
|
||||
username = whoami(token)["name"]
|
||||
return f"{username}/{model_id}"
|
||||
else:
|
||||
return f"{organization}/{model_id}"
|
||||
|
||||
|
||||
def get_params_to_save(params):
|
||||
return jax.device_get(jax.tree_util.tree_map(lambda x: x[0], params))
|
||||
|
||||
|
||||
def main():
|
||||
args = parse_args()
|
||||
|
||||
logging.basicConfig(
|
||||
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
||||
datefmt="%m/%d/%Y %H:%M:%S",
|
||||
level=logging.INFO,
|
||||
)
|
||||
# Setup logging, we only want one process per machine to log things on the screen.
|
||||
logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR)
|
||||
if jax.process_index() == 0:
|
||||
transformers.utils.logging.set_verbosity_info()
|
||||
else:
|
||||
transformers.utils.logging.set_verbosity_error()
|
||||
|
||||
if args.seed is not None:
|
||||
set_seed(args.seed)
|
||||
|
||||
if jax.process_index() == 0:
|
||||
if args.push_to_hub:
|
||||
if args.hub_model_id is None:
|
||||
repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token)
|
||||
else:
|
||||
repo_name = args.hub_model_id
|
||||
repo = Repository(args.output_dir, clone_from=repo_name)
|
||||
|
||||
with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
|
||||
if "step_*" not in gitignore:
|
||||
gitignore.write("step_*\n")
|
||||
if "epoch_*" not in gitignore:
|
||||
gitignore.write("epoch_*\n")
|
||||
elif args.output_dir is not None:
|
||||
os.makedirs(args.output_dir, exist_ok=True)
|
||||
|
||||
rng = jax.random.PRNGKey(args.seed)
|
||||
|
||||
if args.with_prior_preservation:
|
||||
class_images_dir = Path(args.class_data_dir)
|
||||
if not class_images_dir.exists():
|
||||
class_images_dir.mkdir(parents=True)
|
||||
cur_class_images = len(list(class_images_dir.iterdir()))
|
||||
|
||||
if cur_class_images < args.num_class_images:
|
||||
pipeline, params = FlaxStableDiffusionPipeline.from_pretrained(
|
||||
args.pretrained_model_name_or_path, safety_checker=None
|
||||
)
|
||||
pipeline.set_progress_bar_config(disable=True)
|
||||
|
||||
num_new_images = args.num_class_images - cur_class_images
|
||||
logger.info(f"Number of class images to sample: {num_new_images}.")
|
||||
|
||||
sample_dataset = PromptDataset(args.class_prompt, num_new_images)
|
||||
sample_dataloader = torch.utils.data.DataLoader(sample_dataset, batch_size=args.sample_batch_size)
|
||||
|
||||
for example in tqdm(
|
||||
sample_dataloader, desc="Generating class images", disable=not jax.process_index() == 0
|
||||
):
|
||||
prompt_ids = pipeline.prepare_inputs(example["prompt"])
|
||||
prompt_ids = shard(prompt_ids)
|
||||
p_params = jax_utils.replicate(params)
|
||||
rng = jax.random.split(rng)[0]
|
||||
sample_rng = jax.random.split(rng, jax.device_count())
|
||||
images = pipeline(prompt_ids, p_params, sample_rng, jit=True).images
|
||||
images = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:])
|
||||
images = pipeline.numpy_to_pil(np.array(images))
|
||||
|
||||
for i, image in enumerate(images):
|
||||
hash_image = hashlib.sha1(image.tobytes()).hexdigest()
|
||||
image_filename = class_images_dir / f"{example['index'][i] + cur_class_images}-{hash_image}.jpg"
|
||||
image.save(image_filename)
|
||||
|
||||
del pipeline
|
||||
|
||||
# Handle the repository creation
|
||||
if jax.process_index() == 0:
|
||||
if args.push_to_hub:
|
||||
if args.hub_model_id is None:
|
||||
repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token)
|
||||
else:
|
||||
repo_name = args.hub_model_id
|
||||
repo = Repository(args.output_dir, clone_from=repo_name)
|
||||
|
||||
with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
|
||||
if "step_*" not in gitignore:
|
||||
gitignore.write("step_*\n")
|
||||
if "epoch_*" not in gitignore:
|
||||
gitignore.write("epoch_*\n")
|
||||
elif args.output_dir is not None:
|
||||
os.makedirs(args.output_dir, exist_ok=True)
|
||||
|
||||
# Load the tokenizer and add the placeholder token as a additional special token
|
||||
if args.tokenizer_name:
|
||||
tokenizer = CLIPTokenizer.from_pretrained(args.tokenizer_name)
|
||||
elif args.pretrained_model_name_or_path:
|
||||
tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer")
|
||||
|
||||
train_dataset = DreamBoothDataset(
|
||||
instance_data_root=args.instance_data_dir,
|
||||
instance_prompt=args.instance_prompt,
|
||||
class_data_root=args.class_data_dir if args.with_prior_preservation else None,
|
||||
class_prompt=args.class_prompt,
|
||||
tokenizer=tokenizer,
|
||||
size=args.resolution,
|
||||
center_crop=args.center_crop,
|
||||
)
|
||||
|
||||
def collate_fn(examples):
|
||||
input_ids = [example["instance_prompt_ids"] for example in examples]
|
||||
pixel_values = [example["instance_images"] for example in examples]
|
||||
|
||||
# Concat class and instance examples for prior preservation.
|
||||
# We do this to avoid doing two forward passes.
|
||||
if args.with_prior_preservation:
|
||||
input_ids += [example["class_prompt_ids"] for example in examples]
|
||||
pixel_values += [example["class_images"] for example in examples]
|
||||
|
||||
pixel_values = torch.stack(pixel_values)
|
||||
pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()
|
||||
|
||||
input_ids = tokenizer.pad(
|
||||
{"input_ids": input_ids}, padding="max_length", max_length=tokenizer.model_max_length, return_tensors="pt"
|
||||
).input_ids
|
||||
|
||||
batch = {
|
||||
"input_ids": input_ids,
|
||||
"pixel_values": pixel_values,
|
||||
}
|
||||
batch = {k: v.numpy() for k, v in batch.items()}
|
||||
return batch
|
||||
|
||||
total_train_batch_size = args.train_batch_size * jax.local_device_count()
|
||||
train_dataloader = torch.utils.data.DataLoader(
|
||||
train_dataset, batch_size=total_train_batch_size, shuffle=True, collate_fn=collate_fn, drop_last=True
|
||||
)
|
||||
|
||||
weight_dtype = jnp.float32
|
||||
if args.mixed_precision == "fp16":
|
||||
weight_dtype = jnp.float16
|
||||
elif args.mixed_precision == "bf16":
|
||||
weight_dtype = jnp.bfloat16
|
||||
|
||||
# Load models and create wrapper for stable diffusion
|
||||
text_encoder = FlaxCLIPTextModel.from_pretrained("openai/clip-vit-large-patch14", dtype=weight_dtype)
|
||||
vae, vae_params = FlaxAutoencoderKL.from_pretrained(
|
||||
args.pretrained_model_name_or_path, subfolder="vae", dtype=weight_dtype
|
||||
)
|
||||
unet, unet_params = FlaxUNet2DConditionModel.from_pretrained(
|
||||
args.pretrained_model_name_or_path, subfolder="unet", dtype=weight_dtype
|
||||
)
|
||||
|
||||
# Optimization
|
||||
if args.scale_lr:
|
||||
args.learning_rate = args.learning_rate * total_train_batch_size
|
||||
|
||||
constant_scheduler = optax.constant_schedule(args.learning_rate)
|
||||
|
||||
adamw = optax.adamw(
|
||||
learning_rate=constant_scheduler,
|
||||
b1=args.adam_beta1,
|
||||
b2=args.adam_beta2,
|
||||
eps=args.adam_epsilon,
|
||||
weight_decay=args.adam_weight_decay,
|
||||
)
|
||||
|
||||
optimizer = optax.chain(
|
||||
optax.clip_by_global_norm(args.max_grad_norm),
|
||||
adamw,
|
||||
)
|
||||
|
||||
unet_state = train_state.TrainState.create(apply_fn=unet.__call__, params=unet_params, tx=optimizer)
|
||||
text_encoder_state = train_state.TrainState.create(
|
||||
apply_fn=text_encoder.__call__, params=text_encoder.params, tx=optimizer
|
||||
)
|
||||
|
||||
noise_scheduler = FlaxDDPMScheduler(
|
||||
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000
|
||||
)
|
||||
|
||||
# Initialize our training
|
||||
train_rngs = jax.random.split(rng, jax.local_device_count())
|
||||
|
||||
def train_step(unet_state, text_encoder_state, vae_params, batch, train_rng):
|
||||
dropout_rng, sample_rng, new_train_rng = jax.random.split(train_rng, 3)
|
||||
|
||||
if args.train_text_encoder:
|
||||
params = {"text_encoder": text_encoder_state.params, "unet": unet_state.params}
|
||||
else:
|
||||
params = {"unet": unet_state.params}
|
||||
|
||||
def compute_loss(params):
|
||||
# Convert images to latent space
|
||||
vae_outputs = vae.apply(
|
||||
{"params": vae_params}, batch["pixel_values"], deterministic=True, method=vae.encode
|
||||
)
|
||||
latents = vae_outputs.latent_dist.sample(sample_rng)
|
||||
# (NHWC) -> (NCHW)
|
||||
latents = jnp.transpose(latents, (0, 3, 1, 2))
|
||||
latents = latents * 0.18215
|
||||
|
||||
# Sample noise that we'll add to the latents
|
||||
noise_rng, timestep_rng = jax.random.split(sample_rng)
|
||||
noise = jax.random.normal(noise_rng, latents.shape)
|
||||
# Sample a random timestep for each image
|
||||
bsz = latents.shape[0]
|
||||
timesteps = jax.random.randint(
|
||||
timestep_rng,
|
||||
(bsz,),
|
||||
0,
|
||||
noise_scheduler.config.num_train_timesteps,
|
||||
)
|
||||
|
||||
# Add noise to the latents according to the noise magnitude at each timestep
|
||||
# (this is the forward diffusion process)
|
||||
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
|
||||
|
||||
# Get the text embedding for conditioning
|
||||
if args.train_text_encoder:
|
||||
encoder_hidden_states = text_encoder_state.apply_fn(
|
||||
batch["input_ids"], params=params["text_encoder"], dropout_rng=dropout_rng, train=True
|
||||
)[0]
|
||||
else:
|
||||
encoder_hidden_states = text_encoder(
|
||||
batch["input_ids"], params=text_encoder_state.params, train=False
|
||||
)[0]
|
||||
|
||||
# Predict the noise residual
|
||||
unet_outputs = unet.apply(
|
||||
{"params": params["unet"]}, noisy_latents, timesteps, encoder_hidden_states, train=True
|
||||
)
|
||||
noise_pred = unet_outputs.sample
|
||||
|
||||
if args.with_prior_preservation:
|
||||
# Chunk the noise and noise_pred into two parts and compute the loss on each part separately.
|
||||
noise_pred, noise_pred_prior = jnp.split(noise_pred, 2, axis=0)
|
||||
noise, noise_prior = jnp.split(noise, 2, axis=0)
|
||||
|
||||
# Compute instance loss
|
||||
loss = (noise - noise_pred) ** 2
|
||||
loss = loss.mean()
|
||||
|
||||
# Compute prior loss
|
||||
prior_loss = (noise_prior - noise_pred_prior) ** 2
|
||||
prior_loss = prior_loss.mean()
|
||||
|
||||
# Add the prior loss to the instance loss.
|
||||
loss = loss + args.prior_loss_weight * prior_loss
|
||||
else:
|
||||
loss = (noise - noise_pred) ** 2
|
||||
loss = loss.mean()
|
||||
|
||||
return loss
|
||||
|
||||
grad_fn = jax.value_and_grad(compute_loss)
|
||||
loss, grad = grad_fn(params)
|
||||
grad = jax.lax.pmean(grad, "batch")
|
||||
|
||||
new_unet_state = unet_state.apply_gradients(grads=grad["unet"])
|
||||
if args.train_text_encoder:
|
||||
new_text_encoder_state = text_encoder_state.apply_gradients(grads=grad["text_encoder"])
|
||||
else:
|
||||
new_text_encoder_state = text_encoder_state
|
||||
|
||||
metrics = {"loss": loss}
|
||||
metrics = jax.lax.pmean(metrics, axis_name="batch")
|
||||
|
||||
return new_unet_state, new_text_encoder_state, metrics, new_train_rng
|
||||
|
||||
# Create parallel version of the train step
|
||||
p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0, 1))
|
||||
|
||||
# Replicate the train state on each device
|
||||
unet_state = jax_utils.replicate(unet_state)
|
||||
text_encoder_state = jax_utils.replicate(text_encoder_state)
|
||||
vae_params = jax_utils.replicate(vae_params)
|
||||
|
||||
# Train!
|
||||
num_update_steps_per_epoch = math.ceil(len(train_dataloader))
|
||||
|
||||
# Scheduler and math around the number of training steps.
|
||||
if args.max_train_steps is None:
|
||||
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
|
||||
|
||||
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
|
||||
|
||||
logger.info("***** Running training *****")
|
||||
logger.info(f" Num examples = {len(train_dataset)}")
|
||||
logger.info(f" Num Epochs = {args.num_train_epochs}")
|
||||
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
|
||||
logger.info(f" Total train batch size (w. parallel & distributed) = {total_train_batch_size}")
|
||||
logger.info(f" Total optimization steps = {args.max_train_steps}")
|
||||
|
||||
global_step = 0
|
||||
|
||||
epochs = tqdm(range(args.num_train_epochs), desc="Epoch ... ", position=0)
|
||||
for epoch in epochs:
|
||||
# ======================== Training ================================
|
||||
|
||||
train_metrics = []
|
||||
|
||||
steps_per_epoch = len(train_dataset) // total_train_batch_size
|
||||
train_step_progress_bar = tqdm(total=steps_per_epoch, desc="Training...", position=1, leave=False)
|
||||
# train
|
||||
for batch in train_dataloader:
|
||||
batch = shard(batch)
|
||||
unet_state, text_encoder_state, train_metric, train_rngs = p_train_step(
|
||||
unet_state, text_encoder_state, vae_params, batch, train_rngs
|
||||
)
|
||||
train_metrics.append(train_metric)
|
||||
|
||||
train_step_progress_bar.update(1)
|
||||
|
||||
global_step += 1
|
||||
if global_step >= args.max_train_steps:
|
||||
break
|
||||
|
||||
train_metric = jax_utils.unreplicate(train_metric)
|
||||
|
||||
train_step_progress_bar.close()
|
||||
epochs.write(f"Epoch... ({epoch + 1}/{args.num_train_epochs} | Loss: {train_metric['loss']})")
|
||||
|
||||
# Create the pipeline using using the trained modules and save it.
|
||||
if jax.process_index() == 0:
|
||||
scheduler = FlaxPNDMScheduler(
|
||||
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", skip_prk_steps=True
|
||||
)
|
||||
safety_checker = FlaxStableDiffusionSafetyChecker.from_pretrained(
|
||||
"CompVis/stable-diffusion-safety-checker", from_pt=True
|
||||
)
|
||||
pipeline = FlaxStableDiffusionPipeline(
|
||||
text_encoder=text_encoder,
|
||||
vae=vae,
|
||||
unet=unet,
|
||||
tokenizer=tokenizer,
|
||||
scheduler=scheduler,
|
||||
safety_checker=safety_checker,
|
||||
feature_extractor=CLIPFeatureExtractor.from_pretrained("openai/clip-vit-base-patch32"),
|
||||
)
|
||||
|
||||
pipeline.save_pretrained(
|
||||
args.output_dir,
|
||||
params={
|
||||
"text_encoder": get_params_to_save(text_encoder_state.params),
|
||||
"vae": get_params_to_save(vae_params),
|
||||
"unet": get_params_to_save(unet_state.params),
|
||||
"safety_checker": safety_checker.params,
|
||||
},
|
||||
)
|
||||
|
||||
if args.push_to_hub:
|
||||
repo.push_to_hub(commit_message="End of training", blocking=False, auto_lfs_prune=True)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
Reference in New Issue
Block a user