mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
Fix a grammatical error in the raise messages (#8272)
Fix grammatical error
This commit is contained in:
@@ -565,7 +565,7 @@ class LCMSchedulerWithTimestamp(SchedulerMixin, ConfigMixin):
|
||||
# Glide cosine schedule
|
||||
self.betas = betas_for_alpha_bar(num_train_timesteps)
|
||||
else:
|
||||
raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
|
||||
raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
|
||||
|
||||
# Rescale for zero SNR
|
||||
if rescale_betas_zero_snr:
|
||||
|
||||
@@ -477,7 +477,7 @@ class LCMScheduler(SchedulerMixin, ConfigMixin):
|
||||
# Glide cosine schedule
|
||||
self.betas = betas_for_alpha_bar(num_train_timesteps)
|
||||
else:
|
||||
raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
|
||||
raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
|
||||
|
||||
# Rescale for zero SNR
|
||||
if rescale_betas_zero_snr:
|
||||
|
||||
@@ -218,7 +218,7 @@ class UFOGenScheduler(SchedulerMixin, ConfigMixin):
|
||||
betas = torch.linspace(-6, 6, num_train_timesteps)
|
||||
self.betas = torch.sigmoid(betas) * (beta_end - beta_start) + beta_start
|
||||
else:
|
||||
raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
|
||||
raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
|
||||
|
||||
# Rescale for zero SNR
|
||||
if rescale_betas_zero_snr:
|
||||
|
||||
@@ -211,7 +211,7 @@ class DDIMScheduler(SchedulerMixin, ConfigMixin):
|
||||
# Glide cosine schedule
|
||||
self.betas = betas_for_alpha_bar(num_train_timesteps)
|
||||
else:
|
||||
raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
|
||||
raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
|
||||
|
||||
# Rescale for zero SNR
|
||||
if rescale_betas_zero_snr:
|
||||
|
||||
@@ -207,7 +207,7 @@ class DDIMInverseScheduler(SchedulerMixin, ConfigMixin):
|
||||
# Glide cosine schedule
|
||||
self.betas = betas_for_alpha_bar(num_train_timesteps)
|
||||
else:
|
||||
raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
|
||||
raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
|
||||
|
||||
# Rescale for zero SNR
|
||||
if rescale_betas_zero_snr:
|
||||
|
||||
@@ -218,7 +218,7 @@ class DDIMParallelScheduler(SchedulerMixin, ConfigMixin):
|
||||
# Glide cosine schedule
|
||||
self.betas = betas_for_alpha_bar(num_train_timesteps)
|
||||
else:
|
||||
raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
|
||||
raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
|
||||
|
||||
# Rescale for zero SNR
|
||||
if rescale_betas_zero_snr:
|
||||
|
||||
@@ -211,7 +211,7 @@ class DDPMScheduler(SchedulerMixin, ConfigMixin):
|
||||
betas = torch.linspace(-6, 6, num_train_timesteps)
|
||||
self.betas = torch.sigmoid(betas) * (beta_end - beta_start) + beta_start
|
||||
else:
|
||||
raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
|
||||
raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
|
||||
|
||||
# Rescale for zero SNR
|
||||
if rescale_betas_zero_snr:
|
||||
|
||||
@@ -219,7 +219,7 @@ class DDPMParallelScheduler(SchedulerMixin, ConfigMixin):
|
||||
betas = torch.linspace(-6, 6, num_train_timesteps)
|
||||
self.betas = torch.sigmoid(betas) * (beta_end - beta_start) + beta_start
|
||||
else:
|
||||
raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
|
||||
raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
|
||||
|
||||
# Rescale for zero SNR
|
||||
if rescale_betas_zero_snr:
|
||||
|
||||
@@ -152,7 +152,7 @@ class DEISMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
# Glide cosine schedule
|
||||
self.betas = betas_for_alpha_bar(num_train_timesteps)
|
||||
else:
|
||||
raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
|
||||
raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
|
||||
|
||||
self.alphas = 1.0 - self.betas
|
||||
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
|
||||
@@ -170,13 +170,13 @@ class DEISMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
if algorithm_type in ["dpmsolver", "dpmsolver++"]:
|
||||
self.register_to_config(algorithm_type="deis")
|
||||
else:
|
||||
raise NotImplementedError(f"{algorithm_type} does is not implemented for {self.__class__}")
|
||||
raise NotImplementedError(f"{algorithm_type} is not implemented for {self.__class__}")
|
||||
|
||||
if solver_type not in ["logrho"]:
|
||||
if solver_type in ["midpoint", "heun", "bh1", "bh2"]:
|
||||
self.register_to_config(solver_type="logrho")
|
||||
else:
|
||||
raise NotImplementedError(f"solver type {solver_type} does is not implemented for {self.__class__}")
|
||||
raise NotImplementedError(f"solver type {solver_type} is not implemented for {self.__class__}")
|
||||
|
||||
# setable values
|
||||
self.num_inference_steps = None
|
||||
|
||||
@@ -229,7 +229,7 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
# Glide cosine schedule
|
||||
self.betas = betas_for_alpha_bar(num_train_timesteps)
|
||||
else:
|
||||
raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
|
||||
raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
|
||||
|
||||
if rescale_betas_zero_snr:
|
||||
self.betas = rescale_zero_terminal_snr(self.betas)
|
||||
@@ -256,13 +256,13 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
if algorithm_type == "deis":
|
||||
self.register_to_config(algorithm_type="dpmsolver++")
|
||||
else:
|
||||
raise NotImplementedError(f"{algorithm_type} does is not implemented for {self.__class__}")
|
||||
raise NotImplementedError(f"{algorithm_type} is not implemented for {self.__class__}")
|
||||
|
||||
if solver_type not in ["midpoint", "heun"]:
|
||||
if solver_type in ["logrho", "bh1", "bh2"]:
|
||||
self.register_to_config(solver_type="midpoint")
|
||||
else:
|
||||
raise NotImplementedError(f"{solver_type} does is not implemented for {self.__class__}")
|
||||
raise NotImplementedError(f"{solver_type} is not implemented for {self.__class__}")
|
||||
|
||||
if algorithm_type not in ["dpmsolver++", "sde-dpmsolver++"] and final_sigmas_type == "zero":
|
||||
raise ValueError(
|
||||
|
||||
@@ -182,9 +182,9 @@ class FlaxDPMSolverMultistepScheduler(FlaxSchedulerMixin, ConfigMixin):
|
||||
|
||||
# settings for DPM-Solver
|
||||
if self.config.algorithm_type not in ["dpmsolver", "dpmsolver++"]:
|
||||
raise NotImplementedError(f"{self.config.algorithm_type} does is not implemented for {self.__class__}")
|
||||
raise NotImplementedError(f"{self.config.algorithm_type} is not implemented for {self.__class__}")
|
||||
if self.config.solver_type not in ["midpoint", "heun"]:
|
||||
raise NotImplementedError(f"{self.config.solver_type} does is not implemented for {self.__class__}")
|
||||
raise NotImplementedError(f"{self.config.solver_type} is not implemented for {self.__class__}")
|
||||
|
||||
# standard deviation of the initial noise distribution
|
||||
init_noise_sigma = jnp.array(1.0, dtype=self.dtype)
|
||||
|
||||
@@ -178,7 +178,7 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
|
||||
# Glide cosine schedule
|
||||
self.betas = betas_for_alpha_bar(num_train_timesteps)
|
||||
else:
|
||||
raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
|
||||
raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
|
||||
|
||||
self.alphas = 1.0 - self.betas
|
||||
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
|
||||
@@ -196,13 +196,13 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
|
||||
if algorithm_type == "deis":
|
||||
self.register_to_config(algorithm_type="dpmsolver++")
|
||||
else:
|
||||
raise NotImplementedError(f"{algorithm_type} does is not implemented for {self.__class__}")
|
||||
raise NotImplementedError(f"{algorithm_type} is not implemented for {self.__class__}")
|
||||
|
||||
if solver_type not in ["midpoint", "heun"]:
|
||||
if solver_type in ["logrho", "bh1", "bh2"]:
|
||||
self.register_to_config(solver_type="midpoint")
|
||||
else:
|
||||
raise NotImplementedError(f"{solver_type} does is not implemented for {self.__class__}")
|
||||
raise NotImplementedError(f"{solver_type} is not implemented for {self.__class__}")
|
||||
|
||||
# setable values
|
||||
self.num_inference_steps = None
|
||||
|
||||
@@ -184,7 +184,7 @@ class DPMSolverSDEScheduler(SchedulerMixin, ConfigMixin):
|
||||
# Glide cosine schedule
|
||||
self.betas = betas_for_alpha_bar(num_train_timesteps)
|
||||
else:
|
||||
raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
|
||||
raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
|
||||
|
||||
self.alphas = 1.0 - self.betas
|
||||
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
|
||||
|
||||
@@ -172,7 +172,7 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
|
||||
# Glide cosine schedule
|
||||
self.betas = betas_for_alpha_bar(num_train_timesteps)
|
||||
else:
|
||||
raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
|
||||
raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
|
||||
|
||||
self.alphas = 1.0 - self.betas
|
||||
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
|
||||
@@ -190,12 +190,12 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
|
||||
if algorithm_type == "deis":
|
||||
self.register_to_config(algorithm_type="dpmsolver++")
|
||||
else:
|
||||
raise NotImplementedError(f"{algorithm_type} does is not implemented for {self.__class__}")
|
||||
raise NotImplementedError(f"{algorithm_type} is not implemented for {self.__class__}")
|
||||
if solver_type not in ["midpoint", "heun"]:
|
||||
if solver_type in ["logrho", "bh1", "bh2"]:
|
||||
self.register_to_config(solver_type="midpoint")
|
||||
else:
|
||||
raise NotImplementedError(f"{solver_type} does is not implemented for {self.__class__}")
|
||||
raise NotImplementedError(f"{solver_type} is not implemented for {self.__class__}")
|
||||
|
||||
if algorithm_type != "dpmsolver++" and final_sigmas_type == "zero":
|
||||
raise ValueError(
|
||||
|
||||
@@ -119,7 +119,7 @@ class EDMDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
if solver_type in ["logrho", "bh1", "bh2"]:
|
||||
self.register_to_config(solver_type="midpoint")
|
||||
else:
|
||||
raise NotImplementedError(f"{solver_type} does is not implemented for {self.__class__}")
|
||||
raise NotImplementedError(f"{solver_type} is not implemented for {self.__class__}")
|
||||
|
||||
if algorithm_type not in ["dpmsolver++", "sde-dpmsolver++"] and final_sigmas_type == "zero":
|
||||
raise ValueError(
|
||||
|
||||
@@ -190,7 +190,7 @@ class EulerAncestralDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
||||
# Glide cosine schedule
|
||||
self.betas = betas_for_alpha_bar(num_train_timesteps)
|
||||
else:
|
||||
raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
|
||||
raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
|
||||
|
||||
if rescale_betas_zero_snr:
|
||||
self.betas = rescale_zero_terminal_snr(self.betas)
|
||||
|
||||
@@ -205,7 +205,7 @@ class EulerDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
||||
# Glide cosine schedule
|
||||
self.betas = betas_for_alpha_bar(num_train_timesteps)
|
||||
else:
|
||||
raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
|
||||
raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
|
||||
|
||||
if rescale_betas_zero_snr:
|
||||
self.betas = rescale_zero_terminal_snr(self.betas)
|
||||
|
||||
@@ -135,7 +135,7 @@ class HeunDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
||||
elif beta_schedule == "exp":
|
||||
self.betas = betas_for_alpha_bar(num_train_timesteps, alpha_transform_type="exp")
|
||||
else:
|
||||
raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
|
||||
raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
|
||||
|
||||
self.alphas = 1.0 - self.betas
|
||||
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
|
||||
|
||||
@@ -129,7 +129,7 @@ class KDPM2AncestralDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
||||
# Glide cosine schedule
|
||||
self.betas = betas_for_alpha_bar(num_train_timesteps)
|
||||
else:
|
||||
raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
|
||||
raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
|
||||
|
||||
self.alphas = 1.0 - self.betas
|
||||
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
|
||||
|
||||
@@ -128,7 +128,7 @@ class KDPM2DiscreteScheduler(SchedulerMixin, ConfigMixin):
|
||||
# Glide cosine schedule
|
||||
self.betas = betas_for_alpha_bar(num_train_timesteps)
|
||||
else:
|
||||
raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
|
||||
raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
|
||||
|
||||
self.alphas = 1.0 - self.betas
|
||||
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
|
||||
|
||||
@@ -224,7 +224,7 @@ class LCMScheduler(SchedulerMixin, ConfigMixin):
|
||||
# Glide cosine schedule
|
||||
self.betas = betas_for_alpha_bar(num_train_timesteps)
|
||||
else:
|
||||
raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
|
||||
raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
|
||||
|
||||
# Rescale for zero SNR
|
||||
if rescale_betas_zero_snr:
|
||||
|
||||
@@ -149,7 +149,7 @@ class LMSDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
||||
# Glide cosine schedule
|
||||
self.betas = betas_for_alpha_bar(num_train_timesteps)
|
||||
else:
|
||||
raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
|
||||
raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
|
||||
|
||||
self.alphas = 1.0 - self.betas
|
||||
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
|
||||
|
||||
@@ -135,7 +135,7 @@ class PNDMScheduler(SchedulerMixin, ConfigMixin):
|
||||
# Glide cosine schedule
|
||||
self.betas = betas_for_alpha_bar(num_train_timesteps)
|
||||
else:
|
||||
raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
|
||||
raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
|
||||
|
||||
self.alphas = 1.0 - self.betas
|
||||
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
|
||||
|
||||
@@ -143,7 +143,7 @@ class RePaintScheduler(SchedulerMixin, ConfigMixin):
|
||||
betas = torch.linspace(-6, 6, num_train_timesteps)
|
||||
self.betas = torch.sigmoid(betas) * (beta_end - beta_start) + beta_start
|
||||
else:
|
||||
raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
|
||||
raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
|
||||
|
||||
self.alphas = 1.0 - self.betas
|
||||
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
|
||||
|
||||
@@ -180,7 +180,7 @@ class SASolverScheduler(SchedulerMixin, ConfigMixin):
|
||||
# Glide cosine schedule
|
||||
self.betas = betas_for_alpha_bar(num_train_timesteps)
|
||||
else:
|
||||
raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
|
||||
raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
|
||||
|
||||
self.alphas = 1.0 - self.betas
|
||||
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
|
||||
@@ -194,7 +194,7 @@ class SASolverScheduler(SchedulerMixin, ConfigMixin):
|
||||
self.init_noise_sigma = 1.0
|
||||
|
||||
if algorithm_type not in ["data_prediction", "noise_prediction"]:
|
||||
raise NotImplementedError(f"{algorithm_type} does is not implemented for {self.__class__}")
|
||||
raise NotImplementedError(f"{algorithm_type} is not implemented for {self.__class__}")
|
||||
|
||||
# setable values
|
||||
self.num_inference_steps = None
|
||||
|
||||
@@ -225,7 +225,7 @@ class TCDScheduler(SchedulerMixin, ConfigMixin):
|
||||
# Glide cosine schedule
|
||||
self.betas = betas_for_alpha_bar(num_train_timesteps)
|
||||
else:
|
||||
raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
|
||||
raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
|
||||
|
||||
# Rescale for zero SNR
|
||||
if rescale_betas_zero_snr:
|
||||
|
||||
@@ -211,7 +211,7 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
# Glide cosine schedule
|
||||
self.betas = betas_for_alpha_bar(num_train_timesteps)
|
||||
else:
|
||||
raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
|
||||
raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
|
||||
|
||||
if rescale_betas_zero_snr:
|
||||
self.betas = rescale_zero_terminal_snr(self.betas)
|
||||
@@ -237,7 +237,7 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
if solver_type in ["midpoint", "heun", "logrho"]:
|
||||
self.register_to_config(solver_type="bh2")
|
||||
else:
|
||||
raise NotImplementedError(f"{solver_type} does is not implemented for {self.__class__}")
|
||||
raise NotImplementedError(f"{solver_type} is not implemented for {self.__class__}")
|
||||
|
||||
self.predict_x0 = predict_x0
|
||||
# setable values
|
||||
|
||||
Reference in New Issue
Block a user