1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00

sampling bug fix in diffusers tutorial "basic_training.md" (#8223)

sampling bug fix in basic_training.md

In the diffusers basic training tutorial, setting the manual seed argument (generator=torch.manual_seed(config.seed)) in the pipeline call inside evaluate() function rewinds the dataloader shuffling, leading to overfitting due to the model seeing same sequence of training examples after every evaluation call. Using generator=torch.Generator(device='cpu').manual_seed(config.seed) avoids this.
This commit is contained in:
Yue Wu
2024-05-24 11:14:32 -07:00
committed by GitHub
parent cef4a51223
commit 1096f88e2b

View File

@@ -260,7 +260,7 @@ Then, you'll need a way to evaluate the model. For evaluation, you can use the [
... # The default pipeline output type is `List[PIL.Image]`
... images = pipeline(
... batch_size=config.eval_batch_size,
... generator=torch.manual_seed(config.seed),
... generator=torch.Generator(device='cpu').manual_seed(config.seed), # Use a separate torch generator to avoid rewinding the random state of the main training loop
... ).images
... # Make a grid out of the images