1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00

Merge branch 'main' into enable-cp-kernels

This commit is contained in:
Sayak Paul
2026-01-26 21:58:00 +08:00
committed by GitHub
49 changed files with 1775 additions and 215 deletions

View File

@@ -2,7 +2,7 @@ FROM nvidia/cuda:12.1.0-runtime-ubuntu20.04
LABEL maintainer="Hugging Face"
LABEL repository="diffusers"
ARG PYTHON_VERSION=3.12
ARG PYTHON_VERSION=3.11
ENV DEBIAN_FRONTEND=noninteractive
RUN apt-get -y update \
@@ -32,10 +32,12 @@ RUN uv venv --python ${PYTHON_VERSION} --seed ${VIRTUAL_ENV}
ENV PATH="$VIRTUAL_ENV/bin:$PATH"
# pre-install the heavy dependencies (these can later be overridden by the deps from setup.py)
# Install torch, torchvision, and torchaudio together to ensure compatibility
RUN uv pip install --no-cache-dir \
torch \
torchvision \
torchaudio
torchaudio \
--index-url https://download.pytorch.org/whl/cu121
RUN uv pip install --no-cache-dir "git+https://github.com/huggingface/diffusers.git@main#egg=diffusers[test]"

View File

@@ -2,7 +2,7 @@ FROM nvidia/cuda:12.1.0-runtime-ubuntu20.04
LABEL maintainer="Hugging Face"
LABEL repository="diffusers"
ARG PYTHON_VERSION=3.12
ARG PYTHON_VERSION=3.11
ENV DEBIAN_FRONTEND=noninteractive
RUN apt-get -y update \
@@ -32,10 +32,12 @@ RUN uv venv --python ${PYTHON_VERSION} --seed ${VIRTUAL_ENV}
ENV PATH="$VIRTUAL_ENV/bin:$PATH"
# pre-install the heavy dependencies (these can later be overridden by the deps from setup.py)
# Install torch, torchvision, and torchaudio together to ensure compatibility
RUN uv pip install --no-cache-dir \
torch \
torchvision \
torchaudio
torchaudio \
--index-url https://download.pytorch.org/whl/cu121
RUN uv pip install --no-cache-dir "git+https://github.com/huggingface/diffusers.git@main#egg=diffusers[test]"

View File

@@ -496,6 +496,8 @@
title: Bria 3.2
- local: api/pipelines/bria_fibo
title: Bria Fibo
- local: api/pipelines/bria_fibo_edit
title: Bria Fibo Edit
- local: api/pipelines/chroma
title: Chroma
- local: api/pipelines/cogview3

View File

@@ -0,0 +1,33 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Bria Fibo Edit
Fibo Edit is an 8B parameter image-to-image model that introduces a new paradigm of structured control, operating on JSON inputs paired with source images to enable deterministic and repeatable editing workflows.
Featuring native masking for granular precision, it moves beyond simple prompt-based diffusion to offer explicit, interpretable control optimized for production environments.
Its lightweight architecture is designed for deep customization, empowering researchers to build specialized "Edit" models for domain-specific tasks while delivering top-tier aesthetic quality
## Usage
_As the model is gated, before using it with diffusers you first need to go to the [Bria Fibo Hugging Face page](https://huggingface.co/briaai/Fibo-Edit), fill in the form and accept the gate. Once you are in, you need to login so that your system knows youve accepted the gate._
Use the command below to log in:
```bash
hf auth login
```
## BriaFiboEditPipeline
[[autodoc]] BriaFiboEditPipeline
- all
- __call__

View File

@@ -457,6 +457,7 @@ else:
"AuraFlowPipeline",
"BlipDiffusionControlNetPipeline",
"BlipDiffusionPipeline",
"BriaFiboEditPipeline",
"BriaFiboPipeline",
"BriaPipeline",
"ChromaImg2ImgPipeline",
@@ -1185,6 +1186,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
AudioLDM2UNet2DConditionModel,
AudioLDMPipeline,
AuraFlowPipeline,
BriaFiboEditPipeline,
BriaFiboPipeline,
BriaPipeline,
ChromaImg2ImgPipeline,

View File

@@ -478,7 +478,7 @@ class PeftAdapterMixin:
Args:
adapter_names (`List[str]` or `str`):
The names of the adapters to use.
adapter_weights (`Union[List[float], float]`, *optional*):
weights (`Union[List[float], float]`, *optional*):
The adapter(s) weights to use with the UNet. If `None`, the weights are set to `1.0` for all the
adapters.
@@ -495,7 +495,7 @@ class PeftAdapterMixin:
"jbilcke-hf/sdxl-cinematic-1", weight_name="pytorch_lora_weights.safetensors", adapter_name="cinematic"
)
pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
pipeline.unet.set_adapters(["cinematic", "pixel"], adapter_weights=[0.5, 0.5])
pipeline.unet.set_adapters(["cinematic", "pixel"], weights=[0.5, 0.5])
```
"""
if not USE_PEFT_BACKEND:

View File

@@ -366,7 +366,12 @@ class ResnetBlock2D(nn.Module):
hidden_states = self.conv2(hidden_states)
if self.conv_shortcut is not None:
input_tensor = self.conv_shortcut(input_tensor.contiguous())
# Only use contiguous() during training to avoid DDP gradient stride mismatch warning.
# In inference mode (eval or no_grad), skip contiguous() for better performance, especially on CPU.
# Issue: https://github.com/huggingface/diffusers/issues/12975
if self.training:
input_tensor = input_tensor.contiguous()
input_tensor = self.conv_shortcut(input_tensor)
output_tensor = (input_tensor + hidden_states) / self.output_scale_factor

View File

@@ -23,7 +23,7 @@ from ...configuration_utils import ConfigMixin, register_to_config
from ...loaders import FromOriginalModelMixin, PeftAdapterMixin
from ...utils import logging
from ...utils.torch_utils import maybe_allow_in_graph
from ..attention import AttentionModuleMixin, FeedForward
from ..attention import AttentionMixin, AttentionModuleMixin, FeedForward
from ..attention_dispatch import dispatch_attention_fn
from ..cache_utils import CacheMixin
from ..embeddings import TimestepEmbedding, Timesteps, apply_rotary_emb, get_1d_rotary_pos_embed
@@ -400,12 +400,14 @@ class LongCatImageTransformer2DModel(
PeftAdapterMixin,
FromOriginalModelMixin,
CacheMixin,
AttentionMixin,
):
"""
The Transformer model introduced in Longcat-Image.
"""
_supports_gradient_checkpointing = True
_repeated_blocks = ["LongCatImageTransformerBlock", "LongCatImageSingleTransformerBlock"]
@register_to_config
def __init__(

View File

@@ -129,7 +129,7 @@ else:
"AnimateDiffVideoToVideoControlNetPipeline",
]
_import_structure["bria"] = ["BriaPipeline"]
_import_structure["bria_fibo"] = ["BriaFiboPipeline"]
_import_structure["bria_fibo"] = ["BriaFiboPipeline", "BriaFiboEditPipeline"]
_import_structure["flux2"] = ["Flux2Pipeline", "Flux2KleinPipeline"]
_import_structure["flux"] = [
"FluxControlPipeline",
@@ -597,7 +597,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
from .aura_flow import AuraFlowPipeline
from .blip_diffusion import BlipDiffusionPipeline
from .bria import BriaPipeline
from .bria_fibo import BriaFiboPipeline
from .bria_fibo import BriaFiboEditPipeline, BriaFiboPipeline
from .chroma import ChromaImg2ImgPipeline, ChromaInpaintPipeline, ChromaPipeline
from .chronoedit import ChronoEditPipeline
from .cogvideo import (

View File

@@ -23,6 +23,8 @@ except OptionalDependencyNotAvailable:
_dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects))
else:
_import_structure["pipeline_bria_fibo"] = ["BriaFiboPipeline"]
_import_structure["pipeline_bria_fibo_edit"] = ["BriaFiboEditPipeline"]
if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
try:
@@ -33,6 +35,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
from ...utils.dummy_torch_and_transformers_objects import *
else:
from .pipeline_bria_fibo import BriaFiboPipeline
from .pipeline_bria_fibo_edit import BriaFiboEditPipeline
else:
import sys

File diff suppressed because it is too large Load Diff

View File

@@ -482,8 +482,6 @@ class ChromaInpaintPipeline(
negative_prompt=None,
prompt_embeds=None,
negative_prompt_embeds=None,
pooled_prompt_embeds=None,
negative_pooled_prompt_embeds=None,
callback_on_step_end_tensor_inputs=None,
padding_mask_crop=None,
max_sequence_length=None,
@@ -531,15 +529,6 @@ class ChromaInpaintPipeline(
f" {negative_prompt_embeds.shape}."
)
if prompt_embeds is not None and pooled_prompt_embeds is None:
raise ValueError(
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
)
if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
raise ValueError(
"If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
)
if prompt_embeds is not None and prompt_attention_mask is None:
raise ValueError("Cannot provide `prompt_embeds` without also providing `prompt_attention_mask")
@@ -793,13 +782,11 @@ class ChromaInpaintPipeline(
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
ip_adapter_image: Optional[PipelineImageInput] = None,
ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
negative_ip_adapter_image: Optional[PipelineImageInput] = None,
negative_ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
joint_attention_kwargs: Optional[Dict[str, Any]] = None,

View File

@@ -84,7 +84,6 @@ EXAMPLE_DOC_STRING = """
>>> from diffusers import ControlNetModel, StableDiffusionXLControlNetImg2ImgPipeline, AutoencoderKL
>>> from diffusers.utils import load_image
>>> depth_estimator = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas").to("cuda")
>>> feature_extractor = DPTImageProcessor.from_pretrained("Intel/dpt-hybrid-midas")
>>> controlnet = ControlNetModel.from_pretrained(

View File

@@ -53,7 +53,6 @@ EXAMPLE_DOC_STRING = """
>>> from transformers import AutoTokenizer, LlamaForCausalLM
>>> from diffusers import HiDreamImagePipeline
>>> tokenizer_4 = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3.1-8B-Instruct")
>>> text_encoder_4 = LlamaForCausalLM.from_pretrained(
... "meta-llama/Meta-Llama-3.1-8B-Instruct",

View File

@@ -85,7 +85,6 @@ EXAMPLE_DOC_STRING = """
>>> from diffusers import ControlNetModel, StableDiffusionXLControlNetPAGImg2ImgPipeline, AutoencoderKL
>>> from diffusers.utils import load_image
>>> depth_estimator = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas").to("cuda")
>>> feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-hybrid-midas")
>>> controlnet = ControlNetModel.from_pretrained(

View File

@@ -459,7 +459,6 @@ class StableDiffusionLatentUpscalePipeline(DiffusionPipeline, StableDiffusionMix
>>> from diffusers import StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline
>>> import torch
>>> pipeline = StableDiffusionPipeline.from_pretrained(
... "CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16
... )

View File

@@ -14,7 +14,7 @@ from .scheduling_utils import SchedulerMixin
def betas_for_alpha_bar(
num_diffusion_timesteps: int,
max_beta: float = 0.999,
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
) -> torch.Tensor:
"""
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
@@ -28,8 +28,8 @@ def betas_for_alpha_bar(
The number of betas to produce.
max_beta (`float`, defaults to `0.999`):
The maximum beta to use; use values lower than 1 to avoid numerical instability.
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
alpha_transform_type (`str`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
Returns:
`torch.Tensor`:

View File

@@ -51,7 +51,7 @@ class DDIMSchedulerOutput(BaseOutput):
def betas_for_alpha_bar(
num_diffusion_timesteps: int,
max_beta: float = 0.999,
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
) -> torch.Tensor:
"""
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
@@ -65,8 +65,8 @@ def betas_for_alpha_bar(
The number of betas to produce.
max_beta (`float`, defaults to `0.999`):
The maximum beta to use; use values lower than 1 to avoid numerical instability.
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
alpha_transform_type (`str`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
Returns:
`torch.Tensor`:

View File

@@ -51,7 +51,7 @@ class DDIMSchedulerOutput(BaseOutput):
def betas_for_alpha_bar(
num_diffusion_timesteps: int,
max_beta: float = 0.999,
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
) -> torch.Tensor:
"""
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
@@ -65,8 +65,8 @@ def betas_for_alpha_bar(
The number of betas to produce.
max_beta (`float`, defaults to `0.999`):
The maximum beta to use; use values lower than 1 to avoid numerical instability.
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
alpha_transform_type (`str`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
Returns:
`torch.Tensor`:
@@ -100,14 +100,13 @@ def betas_for_alpha_bar(
return torch.tensor(betas, dtype=torch.float32)
def rescale_zero_terminal_snr(alphas_cumprod):
def rescale_zero_terminal_snr(alphas_cumprod: torch.Tensor) -> torch.Tensor:
"""
Rescales betas to have zero terminal SNR Based on https://huggingface.co/papers/2305.08891 (Algorithm 1)
Rescales betas to have zero terminal SNR Based on (Algorithm 1)[https://huggingface.co/papers/2305.08891]
Args:
betas (`torch.Tensor`):
the betas that the scheduler is being initialized with.
alphas_cumprod (`torch.Tensor`):
The alphas cumulative products that the scheduler is being initialized with.
Returns:
`torch.Tensor`: rescaled betas with zero terminal SNR
@@ -142,11 +141,11 @@ class CogVideoXDDIMScheduler(SchedulerMixin, ConfigMixin):
Args:
num_train_timesteps (`int`, defaults to 1000):
The number of diffusion steps to train the model.
beta_start (`float`, defaults to 0.0001):
beta_start (`float`, defaults to 0.00085):
The starting `beta` value of inference.
beta_end (`float`, defaults to 0.02):
beta_end (`float`, defaults to 0.0120):
The final `beta` value.
beta_schedule (`str`, defaults to `"linear"`):
beta_schedule (`str`, defaults to `"scaled_linear"`):
The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
`linear`, `scaled_linear`, or `squaredcos_cap_v2`.
trained_betas (`np.ndarray`, *optional*):
@@ -179,6 +178,8 @@ class CogVideoXDDIMScheduler(SchedulerMixin, ConfigMixin):
Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and
dark samples instead of limiting it to samples with medium brightness. Loosely related to
[`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506).
snr_shift_scale (`float`, defaults to 3.0):
Shift scale for SNR.
"""
_compatibles = [e.name for e in KarrasDiffusionSchedulers]
@@ -190,15 +191,15 @@ class CogVideoXDDIMScheduler(SchedulerMixin, ConfigMixin):
num_train_timesteps: int = 1000,
beta_start: float = 0.00085,
beta_end: float = 0.0120,
beta_schedule: str = "scaled_linear",
beta_schedule: Literal["linear", "scaled_linear", "squaredcos_cap_v2"] = "scaled_linear",
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
clip_sample: bool = True,
set_alpha_to_one: bool = True,
steps_offset: int = 0,
prediction_type: str = "epsilon",
prediction_type: Literal["epsilon", "sample", "v_prediction"] = "epsilon",
clip_sample_range: float = 1.0,
sample_max_value: float = 1.0,
timestep_spacing: str = "leading",
timestep_spacing: Literal["linspace", "leading", "trailing"] = "leading",
rescale_betas_zero_snr: bool = False,
snr_shift_scale: float = 3.0,
):
@@ -208,7 +209,15 @@ class CogVideoXDDIMScheduler(SchedulerMixin, ConfigMixin):
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float64) ** 2
self.betas = (
torch.linspace(
beta_start**0.5,
beta_end**0.5,
num_train_timesteps,
dtype=torch.float64,
)
** 2
)
elif beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
self.betas = betas_for_alpha_bar(num_train_timesteps)
@@ -238,7 +247,7 @@ class CogVideoXDDIMScheduler(SchedulerMixin, ConfigMixin):
self.num_inference_steps = None
self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy().astype(np.int64))
def _get_variance(self, timestep, prev_timestep):
def _get_variance(self, timestep: int, prev_timestep: int) -> torch.Tensor:
alpha_prod_t = self.alphas_cumprod[timestep]
alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
beta_prod_t = 1 - alpha_prod_t
@@ -265,7 +274,11 @@ class CogVideoXDDIMScheduler(SchedulerMixin, ConfigMixin):
"""
return sample
def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
def set_timesteps(
self,
num_inference_steps: int,
device: Optional[Union[str, torch.device]] = None,
) -> None:
"""
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
@@ -317,7 +330,7 @@ class CogVideoXDDIMScheduler(SchedulerMixin, ConfigMixin):
sample: torch.Tensor,
eta: float = 0.0,
use_clipped_model_output: bool = False,
generator=None,
generator: Optional[torch.Generator] = None,
variance_noise: Optional[torch.Tensor] = None,
return_dict: bool = True,
) -> Union[DDIMSchedulerOutput, Tuple]:
@@ -328,7 +341,7 @@ class CogVideoXDDIMScheduler(SchedulerMixin, ConfigMixin):
Args:
model_output (`torch.Tensor`):
The direct output from learned diffusion model.
timestep (`float`):
timestep (`int`):
The current discrete timestep in the diffusion chain.
sample (`torch.Tensor`):
A current instance of a sample created by the diffusion process.
@@ -487,5 +500,5 @@ class CogVideoXDDIMScheduler(SchedulerMixin, ConfigMixin):
velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample
return velocity
def __len__(self):
def __len__(self) -> int:
return self.config.num_train_timesteps

View File

@@ -22,6 +22,7 @@ import flax
import jax.numpy as jnp
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import logging
from .scheduling_utils_flax import (
CommonSchedulerState,
FlaxKarrasDiffusionSchedulers,
@@ -32,6 +33,9 @@ from .scheduling_utils_flax import (
)
logger = logging.get_logger(__name__)
@flax.struct.dataclass
class DDIMSchedulerState:
common: CommonSchedulerState
@@ -125,6 +129,10 @@ class FlaxDDIMScheduler(FlaxSchedulerMixin, ConfigMixin):
prediction_type: str = "epsilon",
dtype: jnp.dtype = jnp.float32,
):
logger.warning(
"Flax classes are deprecated and will be removed in Diffusers v1.0.0. We "
"recommend migrating to PyTorch classes or pinning your version of Diffusers."
)
self.dtype = dtype
def create_state(self, common: Optional[CommonSchedulerState] = None) -> DDIMSchedulerState:
@@ -152,7 +160,10 @@ class FlaxDDIMScheduler(FlaxSchedulerMixin, ConfigMixin):
)
def scale_model_input(
self, state: DDIMSchedulerState, sample: jnp.ndarray, timestep: Optional[int] = None
self,
state: DDIMSchedulerState,
sample: jnp.ndarray,
timestep: Optional[int] = None,
) -> jnp.ndarray:
"""
Args:
@@ -190,7 +201,9 @@ class FlaxDDIMScheduler(FlaxSchedulerMixin, ConfigMixin):
def _get_variance(self, state: DDIMSchedulerState, timestep, prev_timestep):
alpha_prod_t = state.common.alphas_cumprod[timestep]
alpha_prod_t_prev = jnp.where(
prev_timestep >= 0, state.common.alphas_cumprod[prev_timestep], state.final_alpha_cumprod
prev_timestep >= 0,
state.common.alphas_cumprod[prev_timestep],
state.final_alpha_cumprod,
)
beta_prod_t = 1 - alpha_prod_t
beta_prod_t_prev = 1 - alpha_prod_t_prev

View File

@@ -49,7 +49,7 @@ class DDIMSchedulerOutput(BaseOutput):
def betas_for_alpha_bar(
num_diffusion_timesteps: int,
max_beta: float = 0.999,
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
) -> torch.Tensor:
"""
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
@@ -63,8 +63,8 @@ def betas_for_alpha_bar(
The number of betas to produce.
max_beta (`float`, defaults to `0.999`):
The maximum beta to use; use values lower than 1 to avoid numerical instability.
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
alpha_transform_type (`str`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
Returns:
`torch.Tensor`:
@@ -99,7 +99,7 @@ def betas_for_alpha_bar(
# Copied from diffusers.schedulers.scheduling_ddim.rescale_zero_terminal_snr
def rescale_zero_terminal_snr(betas):
def rescale_zero_terminal_snr(betas: torch.Tensor) -> torch.Tensor:
"""
Rescales betas to have zero terminal SNR Based on https://huggingface.co/papers/2305.08891 (Algorithm 1)
@@ -187,14 +187,14 @@ class DDIMInverseScheduler(SchedulerMixin, ConfigMixin):
num_train_timesteps: int = 1000,
beta_start: float = 0.0001,
beta_end: float = 0.02,
beta_schedule: str = "linear",
beta_schedule: Literal["linear", "scaled_linear", "squaredcos_cap_v2"] = "linear",
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
clip_sample: bool = True,
set_alpha_to_one: bool = True,
steps_offset: int = 0,
prediction_type: str = "epsilon",
prediction_type: Literal["epsilon", "sample", "v_prediction"] = "epsilon",
clip_sample_range: float = 1.0,
timestep_spacing: str = "leading",
timestep_spacing: Literal["leading", "trailing"] = "leading",
rescale_betas_zero_snr: bool = False,
**kwargs,
):
@@ -210,7 +210,15 @@ class DDIMInverseScheduler(SchedulerMixin, ConfigMixin):
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
self.betas = (
torch.linspace(
beta_start**0.5,
beta_end**0.5,
num_train_timesteps,
dtype=torch.float32,
)
** 2
)
elif beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
self.betas = betas_for_alpha_bar(num_train_timesteps)
@@ -256,7 +264,11 @@ class DDIMInverseScheduler(SchedulerMixin, ConfigMixin):
"""
return sample
def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
def set_timesteps(
self,
num_inference_steps: int,
device: Optional[Union[str, torch.device]] = None,
) -> None:
"""
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
@@ -308,20 +320,10 @@ class DDIMInverseScheduler(SchedulerMixin, ConfigMixin):
Args:
model_output (`torch.Tensor`):
The direct output from learned diffusion model.
timestep (`float`):
timestep (`int`):
The current discrete timestep in the diffusion chain.
sample (`torch.Tensor`):
A current instance of a sample created by the diffusion process.
eta (`float`):
The weight of noise for added noise in diffusion step.
use_clipped_model_output (`bool`, defaults to `False`):
If `True`, computes "corrected" `model_output` from the clipped predicted original sample. Necessary
because predicted original sample is clipped to [-1, 1] when `self.config.clip_sample` is `True`. If no
clipping has happened, "corrected" `model_output` would coincide with the one provided as input and
`use_clipped_model_output` has no effect.
variance_noise (`torch.Tensor`):
Alternative to generating noise with `generator` by directly providing the noise for the variance
itself. Useful for methods such as [`CycleDiffusion`].
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~schedulers.scheduling_ddim_inverse.DDIMInverseSchedulerOutput`] or
`tuple`.
@@ -335,7 +337,8 @@ class DDIMInverseScheduler(SchedulerMixin, ConfigMixin):
# 1. get previous step value (=t+1)
prev_timestep = timestep
timestep = min(
timestep - self.config.num_train_timesteps // self.num_inference_steps, self.config.num_train_timesteps - 1
timestep - self.config.num_train_timesteps // self.num_inference_steps,
self.config.num_train_timesteps - 1,
)
# 2. compute alphas, betas
@@ -378,5 +381,5 @@ class DDIMInverseScheduler(SchedulerMixin, ConfigMixin):
return (prev_sample, pred_original_sample)
return DDIMSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)
def __len__(self):
def __len__(self) -> int:
return self.config.num_train_timesteps

View File

@@ -51,7 +51,7 @@ class DDIMParallelSchedulerOutput(BaseOutput):
def betas_for_alpha_bar(
num_diffusion_timesteps: int,
max_beta: float = 0.999,
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
) -> torch.Tensor:
"""
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
@@ -65,8 +65,8 @@ def betas_for_alpha_bar(
The number of betas to produce.
max_beta (`float`, defaults to `0.999`):
The maximum beta to use; use values lower than 1 to avoid numerical instability.
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
alpha_transform_type (`str`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
Returns:
`torch.Tensor`:
@@ -101,7 +101,7 @@ def betas_for_alpha_bar(
# Copied from diffusers.schedulers.scheduling_ddim.rescale_zero_terminal_snr
def rescale_zero_terminal_snr(betas):
def rescale_zero_terminal_snr(betas: torch.Tensor) -> torch.Tensor:
"""
Rescales betas to have zero terminal SNR Based on https://huggingface.co/papers/2305.08891 (Algorithm 1)
@@ -266,7 +266,7 @@ class DDIMParallelScheduler(SchedulerMixin, ConfigMixin):
"""
return sample
def _get_variance(self, timestep, prev_timestep=None):
def _get_variance(self, timestep: int, prev_timestep: Optional[int] = None) -> torch.Tensor:
if prev_timestep is None:
prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps
@@ -279,7 +279,7 @@ class DDIMParallelScheduler(SchedulerMixin, ConfigMixin):
return variance
def _batch_get_variance(self, t, prev_t):
def _batch_get_variance(self, t: torch.Tensor, prev_t: torch.Tensor) -> torch.Tensor:
alpha_prod_t = self.alphas_cumprod[t]
alpha_prod_t_prev = self.alphas_cumprod[torch.clip(prev_t, min=0)]
alpha_prod_t_prev[prev_t < 0] = torch.tensor(1.0)
@@ -335,7 +335,7 @@ class DDIMParallelScheduler(SchedulerMixin, ConfigMixin):
return sample
# Copied from diffusers.schedulers.scheduling_ddim.DDIMScheduler.set_timesteps
def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None) -> None:
"""
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
@@ -392,7 +392,7 @@ class DDIMParallelScheduler(SchedulerMixin, ConfigMixin):
sample: torch.Tensor,
eta: float = 0.0,
use_clipped_model_output: bool = False,
generator=None,
generator: Optional[torch.Generator] = None,
variance_noise: Optional[torch.Tensor] = None,
return_dict: bool = True,
) -> Union[DDIMParallelSchedulerOutput, Tuple]:
@@ -406,11 +406,13 @@ class DDIMParallelScheduler(SchedulerMixin, ConfigMixin):
sample (`torch.Tensor`):
current instance of sample being created by diffusion process.
eta (`float`): weight of noise for added noise in diffusion step.
use_clipped_model_output (`bool`): if `True`, compute "corrected" `model_output` from the clipped
predicted original sample. Necessary because predicted original sample is clipped to [-1, 1] when
`self.config.clip_sample` is `True`. If no clipping has happened, "corrected" `model_output` would
coincide with the one provided as input and `use_clipped_model_output` will have not effect.
generator: random number generator.
use_clipped_model_output (`bool`, defaults to `False`):
If `True`, compute "corrected" `model_output` from the clipped predicted original sample. This
correction is necessary because the predicted original sample is clipped to [-1, 1] when
`self.config.clip_sample` is `True`. If no clipping occurred, the "corrected" `model_output` matches
the input and `use_clipped_model_output` has no effect.
generator (`torch.Generator`, *optional*):
Random number generator.
variance_noise (`torch.Tensor`): instead of generating noise for the variance using `generator`, we
can directly provide the noise for the variance itself. This is useful for methods such as
CycleDiffusion. (https://huggingface.co/papers/2210.05559)
@@ -496,7 +498,10 @@ class DDIMParallelScheduler(SchedulerMixin, ConfigMixin):
if variance_noise is None:
variance_noise = randn_tensor(
model_output.shape, generator=generator, device=model_output.device, dtype=model_output.dtype
model_output.shape,
generator=generator,
device=model_output.device,
dtype=model_output.dtype,
)
variance = std_dev_t * variance_noise
@@ -513,7 +518,7 @@ class DDIMParallelScheduler(SchedulerMixin, ConfigMixin):
def batch_step_no_noise(
self,
model_output: torch.Tensor,
timesteps: List[int],
timesteps: torch.Tensor,
sample: torch.Tensor,
eta: float = 0.0,
use_clipped_model_output: bool = False,
@@ -528,7 +533,7 @@ class DDIMParallelScheduler(SchedulerMixin, ConfigMixin):
Args:
model_output (`torch.Tensor`): direct output from learned diffusion model.
timesteps (`List[int]`):
timesteps (`torch.Tensor`):
current discrete timesteps in the diffusion chain. This is now a list of integers.
sample (`torch.Tensor`):
current instance of sample being created by diffusion process.
@@ -696,5 +701,5 @@ class DDIMParallelScheduler(SchedulerMixin, ConfigMixin):
velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample
return velocity
def __len__(self):
def __len__(self) -> int:
return self.config.num_train_timesteps

View File

@@ -48,7 +48,7 @@ class DDPMSchedulerOutput(BaseOutput):
def betas_for_alpha_bar(
num_diffusion_timesteps: int,
max_beta: float = 0.999,
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
) -> torch.Tensor:
"""
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
@@ -62,8 +62,8 @@ def betas_for_alpha_bar(
The number of betas to produce.
max_beta (`float`, defaults to `0.999`):
The maximum beta to use; use values lower than 1 to avoid numerical instability.
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
alpha_transform_type (`str`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
Returns:
`torch.Tensor`:
@@ -192,7 +192,12 @@ class DDPMScheduler(SchedulerMixin, ConfigMixin):
beta_schedule: Literal["linear", "scaled_linear", "squaredcos_cap_v2", "sigmoid"] = "linear",
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
variance_type: Literal[
"fixed_small", "fixed_small_log", "fixed_large", "fixed_large_log", "learned", "learned_range"
"fixed_small",
"fixed_small_log",
"fixed_large",
"fixed_large_log",
"learned",
"learned_range",
] = "fixed_small",
clip_sample: bool = True,
prediction_type: Literal["epsilon", "sample", "v_prediction"] = "epsilon",
@@ -210,7 +215,15 @@ class DDPMScheduler(SchedulerMixin, ConfigMixin):
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
self.betas = (
torch.linspace(
beta_start**0.5,
beta_end**0.5,
num_train_timesteps,
dtype=torch.float32,
)
** 2
)
elif beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
self.betas = betas_for_alpha_bar(num_train_timesteps)
@@ -268,7 +281,7 @@ class DDPMScheduler(SchedulerMixin, ConfigMixin):
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
Args:
num_inference_steps (`int`):
num_inference_steps (`int`, *optional*):
The number of diffusion steps used when generating samples with a pre-trained model. If used,
`timesteps` must be `None`.
device (`str` or `torch.device`, *optional*):
@@ -337,7 +350,14 @@ class DDPMScheduler(SchedulerMixin, ConfigMixin):
t: int,
predicted_variance: Optional[torch.Tensor] = None,
variance_type: Optional[
Literal["fixed_small", "fixed_small_log", "fixed_large", "fixed_large_log", "learned", "learned_range"]
Literal[
"fixed_small",
"fixed_small_log",
"fixed_large",
"fixed_large_log",
"learned",
"learned_range",
]
] = None,
) -> torch.Tensor:
"""
@@ -472,7 +492,10 @@ class DDPMScheduler(SchedulerMixin, ConfigMixin):
prev_t = self.previous_timestep(t)
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]:
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in [
"learned",
"learned_range",
]:
model_output, predicted_variance = torch.split(model_output, sample.shape[1], dim=1)
else:
predicted_variance = None
@@ -521,7 +544,10 @@ class DDPMScheduler(SchedulerMixin, ConfigMixin):
if t > 0:
device = model_output.device
variance_noise = randn_tensor(
model_output.shape, generator=generator, device=device, dtype=model_output.dtype
model_output.shape,
generator=generator,
device=device,
dtype=model_output.dtype,
)
if self.variance_type == "fixed_small_log":
variance = self._get_variance(t, predicted_variance=predicted_variance) * variance_noise
@@ -620,7 +646,7 @@ class DDPMScheduler(SchedulerMixin, ConfigMixin):
def __len__(self) -> int:
return self.config.num_train_timesteps
def previous_timestep(self, timestep: int) -> int:
def previous_timestep(self, timestep: int) -> Union[int, torch.Tensor]:
"""
Compute the previous timestep in the diffusion chain.
@@ -629,7 +655,7 @@ class DDPMScheduler(SchedulerMixin, ConfigMixin):
The current timestep.
Returns:
`int`:
`int` or `torch.Tensor`:
The previous timestep.
"""
if self.custom_timesteps or self.num_inference_steps:

View File

@@ -22,6 +22,7 @@ import jax
import jax.numpy as jnp
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import logging
from .scheduling_utils_flax import (
CommonSchedulerState,
FlaxKarrasDiffusionSchedulers,
@@ -32,6 +33,9 @@ from .scheduling_utils_flax import (
)
logger = logging.get_logger(__name__)
@flax.struct.dataclass
class DDPMSchedulerState:
common: CommonSchedulerState
@@ -42,7 +46,12 @@ class DDPMSchedulerState:
num_inference_steps: Optional[int] = None
@classmethod
def create(cls, common: CommonSchedulerState, init_noise_sigma: jnp.ndarray, timesteps: jnp.ndarray):
def create(
cls,
common: CommonSchedulerState,
init_noise_sigma: jnp.ndarray,
timesteps: jnp.ndarray,
):
return cls(common=common, init_noise_sigma=init_noise_sigma, timesteps=timesteps)
@@ -105,6 +114,10 @@ class FlaxDDPMScheduler(FlaxSchedulerMixin, ConfigMixin):
prediction_type: str = "epsilon",
dtype: jnp.dtype = jnp.float32,
):
logger.warning(
"Flax classes are deprecated and will be removed in Diffusers v1.0.0. We "
"recommend migrating to PyTorch classes or pinning your version of Diffusers."
)
self.dtype = dtype
def create_state(self, common: Optional[CommonSchedulerState] = None) -> DDPMSchedulerState:
@@ -123,7 +136,10 @@ class FlaxDDPMScheduler(FlaxSchedulerMixin, ConfigMixin):
)
def scale_model_input(
self, state: DDPMSchedulerState, sample: jnp.ndarray, timestep: Optional[int] = None
self,
state: DDPMSchedulerState,
sample: jnp.ndarray,
timestep: Optional[int] = None,
) -> jnp.ndarray:
"""
Args:

View File

@@ -50,7 +50,7 @@ class DDPMParallelSchedulerOutput(BaseOutput):
def betas_for_alpha_bar(
num_diffusion_timesteps: int,
max_beta: float = 0.999,
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
) -> torch.Tensor:
"""
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
@@ -64,8 +64,8 @@ def betas_for_alpha_bar(
The number of betas to produce.
max_beta (`float`, defaults to `0.999`):
The maximum beta to use; use values lower than 1 to avoid numerical instability.
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
alpha_transform_type (`str`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
Returns:
`torch.Tensor`:
@@ -149,38 +149,41 @@ class DDPMParallelScheduler(SchedulerMixin, ConfigMixin):
For more details, see the original paper: https://huggingface.co/papers/2006.11239
Args:
num_train_timesteps (`int`): number of diffusion steps used to train the model.
beta_start (`float`): the starting `beta` value of inference.
beta_end (`float`): the final `beta` value.
beta_schedule (`str`):
the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
num_train_timesteps (`int`, defaults to 1000):
The number of diffusion steps to train the model.
beta_start (`float`, defaults to 0.0001):
The starting `beta` value of inference.
beta_end (`float`, defaults to 0.02):
The final `beta` value.
beta_schedule (`str`, defaults to `"linear"`):
The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
`linear`, `scaled_linear`, `squaredcos_cap_v2` or `sigmoid`.
trained_betas (`np.ndarray`, optional):
option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
variance_type (`str`):
options to clip the variance used when adding noise to the denoised sample. Choose from `fixed_small`,
trained_betas (`np.ndarray`, *optional*):
Option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
variance_type (`str`, defaults to `"fixed_small"`):
Options to clip the variance used when adding noise to the denoised sample. Choose from `fixed_small`,
`fixed_small_log`, `fixed_large`, `fixed_large_log`, `learned` or `learned_range`.
clip_sample (`bool`, default `True`):
option to clip predicted sample for numerical stability.
clip_sample_range (`float`, default `1.0`):
the maximum magnitude for sample clipping. Valid only when `clip_sample=True`.
prediction_type (`str`, default `epsilon`, optional):
prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion
clip_sample (`bool`, defaults to `True`):
Option to clip predicted sample for numerical stability.
prediction_type (`str`, defaults to `"epsilon"`):
Prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion
process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4
https://huggingface.co/papers/2210.02303)
thresholding (`bool`, default `False`):
whether to use the "dynamic thresholding" method (introduced by Imagen,
thresholding (`bool`, defaults to `False`):
Whether to use the "dynamic thresholding" method (introduced by Imagen,
https://huggingface.co/papers/2205.11487). Note that the thresholding method is unsuitable for latent-space
diffusion models (such as stable-diffusion).
dynamic_thresholding_ratio (`float`, default `0.995`):
the ratio for the dynamic thresholding method. Default is `0.995`, the same as Imagen
dynamic_thresholding_ratio (`float`, defaults to 0.995):
The ratio for the dynamic thresholding method. Default is `0.995`, the same as Imagen
(https://huggingface.co/papers/2205.11487). Valid only when `thresholding=True`.
sample_max_value (`float`, default `1.0`):
the threshold value for dynamic thresholding. Valid only when `thresholding=True`.
timestep_spacing (`str`, default `"leading"`):
clip_sample_range (`float`, defaults to 1.0):
The maximum magnitude for sample clipping. Valid only when `clip_sample=True`.
sample_max_value (`float`, defaults to 1.0):
The threshold value for dynamic thresholding. Valid only when `thresholding=True`.
timestep_spacing (`str`, defaults to `"leading"`):
The way the timesteps should be scaled. Refer to Table 2. of [Common Diffusion Noise Schedules and Sample
Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
steps_offset (`int`, default `0`):
steps_offset (`int`, defaults to 0):
An offset added to the inference steps, as required by some model families.
rescale_betas_zero_snr (`bool`, defaults to `False`):
Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and
@@ -202,7 +205,12 @@ class DDPMParallelScheduler(SchedulerMixin, ConfigMixin):
beta_schedule: Literal["linear", "scaled_linear", "squaredcos_cap_v2", "sigmoid"] = "linear",
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
variance_type: Literal[
"fixed_small", "fixed_small_log", "fixed_large", "fixed_large_log", "learned", "learned_range"
"fixed_small",
"fixed_small_log",
"fixed_large",
"fixed_large_log",
"learned",
"learned_range",
] = "fixed_small",
clip_sample: bool = True,
prediction_type: Literal["epsilon", "sample", "v_prediction"] = "epsilon",
@@ -220,7 +228,15 @@ class DDPMParallelScheduler(SchedulerMixin, ConfigMixin):
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
self.betas = (
torch.linspace(
beta_start**0.5,
beta_end**0.5,
num_train_timesteps,
dtype=torch.float32,
)
** 2
)
elif beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
self.betas = betas_for_alpha_bar(num_train_timesteps)
@@ -280,7 +296,7 @@ class DDPMParallelScheduler(SchedulerMixin, ConfigMixin):
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
Args:
num_inference_steps (`int`):
num_inference_steps (`int`, *optional*):
The number of diffusion steps used when generating samples with a pre-trained model. If used,
`timesteps` must be `None`.
device (`str` or `torch.device`, *optional*):
@@ -350,7 +366,14 @@ class DDPMParallelScheduler(SchedulerMixin, ConfigMixin):
t: int,
predicted_variance: Optional[torch.Tensor] = None,
variance_type: Optional[
Literal["fixed_small", "fixed_small_log", "fixed_large", "fixed_large_log", "learned", "learned_range"]
Literal[
"fixed_small",
"fixed_small_log",
"fixed_large",
"fixed_large_log",
"learned",
"learned_range",
]
] = None,
) -> torch.Tensor:
"""
@@ -458,7 +481,7 @@ class DDPMParallelScheduler(SchedulerMixin, ConfigMixin):
model_output: torch.Tensor,
timestep: int,
sample: torch.Tensor,
generator=None,
generator: Optional[torch.Generator] = None,
return_dict: bool = True,
) -> Union[DDPMParallelSchedulerOutput, Tuple]:
"""
@@ -470,7 +493,8 @@ class DDPMParallelScheduler(SchedulerMixin, ConfigMixin):
timestep (`int`): current discrete timestep in the diffusion chain.
sample (`torch.Tensor`):
current instance of sample being created by diffusion process.
generator: random number generator.
generator (`torch.Generator`, *optional*):
Random number generator.
return_dict (`bool`): option for returning tuple rather than DDPMParallelSchedulerOutput class
Returns:
@@ -483,7 +507,10 @@ class DDPMParallelScheduler(SchedulerMixin, ConfigMixin):
prev_t = self.previous_timestep(t)
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]:
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in [
"learned",
"learned_range",
]:
model_output, predicted_variance = torch.split(model_output, sample.shape[1], dim=1)
else:
predicted_variance = None
@@ -532,7 +559,10 @@ class DDPMParallelScheduler(SchedulerMixin, ConfigMixin):
if t > 0:
device = model_output.device
variance_noise = randn_tensor(
model_output.shape, generator=generator, device=device, dtype=model_output.dtype
model_output.shape,
generator=generator,
device=device,
dtype=model_output.dtype,
)
if self.variance_type == "fixed_small_log":
variance = self._get_variance(t, predicted_variance=predicted_variance) * variance_noise
@@ -555,7 +585,7 @@ class DDPMParallelScheduler(SchedulerMixin, ConfigMixin):
def batch_step_no_noise(
self,
model_output: torch.Tensor,
timesteps: List[int],
timesteps: torch.Tensor,
sample: torch.Tensor,
) -> torch.Tensor:
"""
@@ -568,8 +598,8 @@ class DDPMParallelScheduler(SchedulerMixin, ConfigMixin):
Args:
model_output (`torch.Tensor`): direct output from learned diffusion model.
timesteps (`List[int]`):
current discrete timesteps in the diffusion chain. This is now a list of integers.
timesteps (`torch.Tensor`):
Current discrete timesteps in the diffusion chain. This is a tensor of integers.
sample (`torch.Tensor`):
current instance of sample being created by diffusion process.
@@ -583,7 +613,10 @@ class DDPMParallelScheduler(SchedulerMixin, ConfigMixin):
t = t.view(-1, *([1] * (model_output.ndim - 1)))
prev_t = prev_t.view(-1, *([1] * (model_output.ndim - 1)))
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]:
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in [
"learned",
"learned_range",
]:
model_output, predicted_variance = torch.split(model_output, sample.shape[1], dim=1)
else:
pass
@@ -714,7 +747,7 @@ class DDPMParallelScheduler(SchedulerMixin, ConfigMixin):
return self.config.num_train_timesteps
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.previous_timestep
def previous_timestep(self, timestep):
def previous_timestep(self, timestep: int) -> Union[int, torch.Tensor]:
"""
Compute the previous timestep in the diffusion chain.
@@ -723,7 +756,7 @@ class DDPMParallelScheduler(SchedulerMixin, ConfigMixin):
The current timestep.
Returns:
`int`:
`int` or `torch.Tensor`:
The previous timestep.
"""
if self.custom_timesteps or self.num_inference_steps:

View File

@@ -34,7 +34,7 @@ if is_scipy_available():
def betas_for_alpha_bar(
num_diffusion_timesteps: int,
max_beta: float = 0.999,
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
) -> torch.Tensor:
"""
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
@@ -48,8 +48,8 @@ def betas_for_alpha_bar(
The number of betas to produce.
max_beta (`float`, defaults to `0.999`):
The maximum beta to use; use values lower than 1 to avoid numerical instability.
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
alpha_transform_type (`str`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
Returns:
`torch.Tensor`:

View File

@@ -52,7 +52,7 @@ class DDIMSchedulerOutput(BaseOutput):
def betas_for_alpha_bar(
num_diffusion_timesteps: int,
max_beta: float = 0.999,
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
) -> torch.Tensor:
"""
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
@@ -66,8 +66,8 @@ def betas_for_alpha_bar(
The number of betas to produce.
max_beta (`float`, defaults to `0.999`):
The maximum beta to use; use values lower than 1 to avoid numerical instability.
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
alpha_transform_type (`str`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
Returns:
`torch.Tensor`:

View File

@@ -34,7 +34,7 @@ if is_scipy_available():
def betas_for_alpha_bar(
num_diffusion_timesteps: int,
max_beta: float = 0.999,
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
) -> torch.Tensor:
"""
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
@@ -48,8 +48,8 @@ def betas_for_alpha_bar(
The number of betas to produce.
max_beta (`float`, defaults to `0.999`):
The maximum beta to use; use values lower than 1 to avoid numerical instability.
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
alpha_transform_type (`str`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
Returns:
`torch.Tensor`:

View File

@@ -34,7 +34,7 @@ if is_scipy_available():
def betas_for_alpha_bar(
num_diffusion_timesteps: int,
max_beta: float = 0.999,
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
) -> torch.Tensor:
"""
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
@@ -48,8 +48,8 @@ def betas_for_alpha_bar(
The number of betas to produce.
max_beta (`float`, defaults to `0.999`):
The maximum beta to use; use values lower than 1 to avoid numerical instability.
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
alpha_transform_type (`str`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
Returns:
`torch.Tensor`:

View File

@@ -117,7 +117,7 @@ class BrownianTreeNoiseSampler:
def betas_for_alpha_bar(
num_diffusion_timesteps: int,
max_beta: float = 0.999,
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
) -> torch.Tensor:
"""
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
@@ -131,8 +131,8 @@ def betas_for_alpha_bar(
The number of betas to produce.
max_beta (`float`, defaults to `0.999`):
The maximum beta to use; use values lower than 1 to avoid numerical instability.
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
alpha_transform_type (`str`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
Returns:
`torch.Tensor`:

View File

@@ -36,7 +36,7 @@ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
def betas_for_alpha_bar(
num_diffusion_timesteps: int,
max_beta: float = 0.999,
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
) -> torch.Tensor:
"""
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
@@ -50,8 +50,8 @@ def betas_for_alpha_bar(
The number of betas to produce.
max_beta (`float`, defaults to `0.999`):
The maximum beta to use; use values lower than 1 to avoid numerical instability.
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
alpha_transform_type (`str`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
Returns:
`torch.Tensor`:

View File

@@ -51,7 +51,7 @@ class EulerAncestralDiscreteSchedulerOutput(BaseOutput):
def betas_for_alpha_bar(
num_diffusion_timesteps: int,
max_beta: float = 0.999,
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
) -> torch.Tensor:
"""
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
@@ -65,8 +65,8 @@ def betas_for_alpha_bar(
The number of betas to produce.
max_beta (`float`, defaults to `0.999`):
The maximum beta to use; use values lower than 1 to avoid numerical instability.
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
alpha_transform_type (`str`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
Returns:
`torch.Tensor`:

View File

@@ -54,7 +54,7 @@ class EulerDiscreteSchedulerOutput(BaseOutput):
def betas_for_alpha_bar(
num_diffusion_timesteps: int,
max_beta: float = 0.999,
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
) -> torch.Tensor:
"""
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
@@ -68,8 +68,8 @@ def betas_for_alpha_bar(
The number of betas to produce.
max_beta (`float`, defaults to `0.999`):
The maximum beta to use; use values lower than 1 to avoid numerical instability.
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
alpha_transform_type (`str`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
Returns:
`torch.Tensor`:

View File

@@ -51,7 +51,7 @@ class HeunDiscreteSchedulerOutput(BaseOutput):
def betas_for_alpha_bar(
num_diffusion_timesteps: int,
max_beta: float = 0.999,
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
) -> torch.Tensor:
"""
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
@@ -65,8 +65,8 @@ def betas_for_alpha_bar(
The number of betas to produce.
max_beta (`float`, defaults to `0.999`):
The maximum beta to use; use values lower than 1 to avoid numerical instability.
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
alpha_transform_type (`str`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
Returns:
`torch.Tensor`:

View File

@@ -52,7 +52,7 @@ class KDPM2AncestralDiscreteSchedulerOutput(BaseOutput):
def betas_for_alpha_bar(
num_diffusion_timesteps: int,
max_beta: float = 0.999,
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
) -> torch.Tensor:
"""
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
@@ -66,8 +66,8 @@ def betas_for_alpha_bar(
The number of betas to produce.
max_beta (`float`, defaults to `0.999`):
The maximum beta to use; use values lower than 1 to avoid numerical instability.
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
alpha_transform_type (`str`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
Returns:
`torch.Tensor`:

View File

@@ -51,7 +51,7 @@ class KDPM2DiscreteSchedulerOutput(BaseOutput):
def betas_for_alpha_bar(
num_diffusion_timesteps: int,
max_beta: float = 0.999,
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
) -> torch.Tensor:
"""
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
@@ -65,8 +65,8 @@ def betas_for_alpha_bar(
The number of betas to produce.
max_beta (`float`, defaults to `0.999`):
The maximum beta to use; use values lower than 1 to avoid numerical instability.
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
alpha_transform_type (`str`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
Returns:
`torch.Tensor`:

View File

@@ -53,7 +53,7 @@ class LCMSchedulerOutput(BaseOutput):
def betas_for_alpha_bar(
num_diffusion_timesteps: int,
max_beta: float = 0.999,
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
) -> torch.Tensor:
"""
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
@@ -67,8 +67,8 @@ def betas_for_alpha_bar(
The number of betas to produce.
max_beta (`float`, defaults to `0.999`):
The maximum beta to use; use values lower than 1 to avoid numerical instability.
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
alpha_transform_type (`str`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
Returns:
`torch.Tensor`:
@@ -722,7 +722,7 @@ class LCMScheduler(SchedulerMixin, ConfigMixin):
The current timestep.
Returns:
`int`:
`int` or `torch.Tensor`:
The previous timestep.
"""
if self.custom_timesteps or self.num_inference_steps:

View File

@@ -49,7 +49,7 @@ class LMSDiscreteSchedulerOutput(BaseOutput):
def betas_for_alpha_bar(
num_diffusion_timesteps: int,
max_beta: float = 0.999,
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
) -> torch.Tensor:
"""
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
@@ -63,8 +63,8 @@ def betas_for_alpha_bar(
The number of betas to produce.
max_beta (`float`, defaults to `0.999`):
The maximum beta to use; use values lower than 1 to avoid numerical instability.
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
alpha_transform_type (`str`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
Returns:
`torch.Tensor`:

View File

@@ -28,7 +28,7 @@ from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, Schedul
def betas_for_alpha_bar(
num_diffusion_timesteps: int,
max_beta: float = 0.999,
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
) -> torch.Tensor:
"""
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
@@ -42,8 +42,8 @@ def betas_for_alpha_bar(
The number of betas to produce.
max_beta (`float`, defaults to `0.999`):
The maximum beta to use; use values lower than 1 to avoid numerical instability.
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
alpha_transform_type (`str`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
Returns:
`torch.Tensor`:

View File

@@ -47,7 +47,7 @@ class RePaintSchedulerOutput(BaseOutput):
def betas_for_alpha_bar(
num_diffusion_timesteps: int,
max_beta: float = 0.999,
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
) -> torch.Tensor:
"""
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
@@ -61,8 +61,8 @@ def betas_for_alpha_bar(
The number of betas to produce.
max_beta (`float`, defaults to `0.999`):
The maximum beta to use; use values lower than 1 to avoid numerical instability.
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
alpha_transform_type (`str`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
Returns:
`torch.Tensor`:

View File

@@ -35,7 +35,7 @@ if is_scipy_available():
def betas_for_alpha_bar(
num_diffusion_timesteps: int,
max_beta: float = 0.999,
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
) -> torch.Tensor:
"""
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
@@ -49,8 +49,8 @@ def betas_for_alpha_bar(
The number of betas to produce.
max_beta (`float`, defaults to `0.999`):
The maximum beta to use; use values lower than 1 to avoid numerical instability.
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
alpha_transform_type (`str`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
Returns:
`torch.Tensor`:

View File

@@ -52,7 +52,7 @@ class TCDSchedulerOutput(BaseOutput):
def betas_for_alpha_bar(
num_diffusion_timesteps: int,
max_beta: float = 0.999,
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
) -> torch.Tensor:
"""
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
@@ -66,8 +66,8 @@ def betas_for_alpha_bar(
The number of betas to produce.
max_beta (`float`, defaults to `0.999`):
The maximum beta to use; use values lower than 1 to avoid numerical instability.
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
alpha_transform_type (`str`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
Returns:
`torch.Tensor`:
@@ -777,7 +777,7 @@ class TCDScheduler(SchedulerMixin, ConfigMixin):
The current timestep.
Returns:
`int`:
`int` or `torch.Tensor`:
The previous timestep.
"""
if self.custom_timesteps or self.num_inference_steps:

View File

@@ -48,7 +48,7 @@ class UnCLIPSchedulerOutput(BaseOutput):
def betas_for_alpha_bar(
num_diffusion_timesteps: int,
max_beta: float = 0.999,
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
) -> torch.Tensor:
"""
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
@@ -62,8 +62,8 @@ def betas_for_alpha_bar(
The number of betas to produce.
max_beta (`float`, defaults to `0.999`):
The maximum beta to use; use values lower than 1 to avoid numerical instability.
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
alpha_transform_type (`str`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
Returns:
`torch.Tensor`:

View File

@@ -34,7 +34,7 @@ if is_scipy_available():
def betas_for_alpha_bar(
num_diffusion_timesteps: int,
max_beta: float = 0.999,
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
) -> torch.Tensor:
"""
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
@@ -48,8 +48,8 @@ def betas_for_alpha_bar(
The number of betas to produce.
max_beta (`float`, defaults to `0.999`):
The maximum beta to use; use values lower than 1 to avoid numerical instability.
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
alpha_transform_type (`str`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
Returns:
`torch.Tensor`:
@@ -226,6 +226,7 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
time_shift_type: Literal["exponential"] = "exponential",
sigma_min: Optional[float] = None,
sigma_max: Optional[float] = None,
shift_terminal: Optional[float] = None,
) -> None:
if self.config.use_beta_sigmas and not is_scipy_available():
raise ImportError("Make sure to install scipy if you want to use beta sigmas.")
@@ -245,6 +246,8 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
self.betas = betas_for_alpha_bar(num_train_timesteps)
else:
raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
if shift_terminal is not None and not use_flow_sigmas:
raise ValueError("`shift_terminal` is only supported when `use_flow_sigmas=True`.")
if rescale_betas_zero_snr:
self.betas = rescale_zero_terminal_snr(self.betas)
@@ -313,8 +316,12 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
self._begin_index = begin_index
def set_timesteps(
self, num_inference_steps: int, device: Optional[Union[str, torch.device]] = None, mu: Optional[float] = None
) -> None:
self,
num_inference_steps: Optional[int] = None,
device: Union[str, torch.device] = None,
sigmas: Optional[List[float]] = None,
mu: Optional[float] = None,
):
"""
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
@@ -323,13 +330,24 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
The number of diffusion steps used when generating samples with a pre-trained model.
device (`str` or `torch.device`, *optional*):
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
sigmas (`List[float]`, *optional*):
Custom values for sigmas to be used for each diffusion step. If `None`, the sigmas are computed
automatically.
mu (`float`, *optional*):
Optional mu parameter for dynamic shifting when using exponential time shift type.
"""
if self.config.use_dynamic_shifting and mu is None:
raise ValueError("`mu` must be passed when `use_dynamic_shifting` is set to be `True`")
if sigmas is not None:
if not self.config.use_flow_sigmas:
raise ValueError(
"Passing `sigmas` is only supported when `use_flow_sigmas=True`. "
"Please set `use_flow_sigmas=True` during scheduler initialization."
)
num_inference_steps = len(sigmas)
# "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://huggingface.co/papers/2305.08891
if mu is not None:
assert self.config.use_dynamic_shifting and self.config.time_shift_type == "exponential"
self.config.flow_shift = np.exp(mu)
if self.config.timestep_spacing == "linspace":
timesteps = (
np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps + 1)
@@ -354,8 +372,9 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
)
sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
if self.config.use_karras_sigmas:
if sigmas is None:
sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
log_sigmas = np.log(sigmas)
sigmas = np.flip(sigmas).copy()
sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
@@ -375,6 +394,8 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
)
sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32)
elif self.config.use_exponential_sigmas:
if sigmas is None:
sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
log_sigmas = np.log(sigmas)
sigmas = np.flip(sigmas).copy()
sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
@@ -389,6 +410,8 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
)
sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32)
elif self.config.use_beta_sigmas:
if sigmas is None:
sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
log_sigmas = np.log(sigmas)
sigmas = np.flip(sigmas).copy()
sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
@@ -403,9 +426,18 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
)
sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32)
elif self.config.use_flow_sigmas:
alphas = np.linspace(1, 1 / self.config.num_train_timesteps, num_inference_steps + 1)
sigmas = 1.0 - alphas
sigmas = np.flip(self.config.flow_shift * sigmas / (1 + (self.config.flow_shift - 1) * sigmas))[:-1].copy()
if sigmas is None:
sigmas = np.linspace(1, 1 / self.config.num_train_timesteps, num_inference_steps + 1)[:-1]
if self.config.use_dynamic_shifting:
sigmas = self.time_shift(mu, 1.0, sigmas)
else:
sigmas = self.config.flow_shift * sigmas / (1 + (self.config.flow_shift - 1) * sigmas)
if self.config.shift_terminal:
sigmas = self.stretch_shift_to_terminal(sigmas)
eps = 1e-6
if np.fabs(sigmas[0] - 1) < eps:
# to avoid inf torch.log(alpha_si) in multistep_uni_p_bh_update during first/second update
sigmas[0] -= eps
timesteps = (sigmas * self.config.num_train_timesteps).copy()
if self.config.final_sigmas_type == "sigma_min":
sigma_last = sigmas[-1]
@@ -417,6 +449,8 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
)
sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32)
else:
if sigmas is None:
sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
if self.config.final_sigmas_type == "sigma_min":
sigma_last = ((1 - self.alphas_cumprod[0]) / self.alphas_cumprod[0]) ** 0.5
@@ -446,6 +480,43 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
self._begin_index = None
self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
# Copied from diffusers.schedulers.scheduling_flow_match_euler_discrete.FlowMatchEulerDiscreteScheduler.time_shift
def time_shift(self, mu: float, sigma: float, t: torch.Tensor):
if self.config.time_shift_type == "exponential":
return self._time_shift_exponential(mu, sigma, t)
elif self.config.time_shift_type == "linear":
return self._time_shift_linear(mu, sigma, t)
# Copied from diffusers.schedulers.scheduling_flow_match_euler_discrete.FlowMatchEulerDiscreteScheduler.stretch_shift_to_terminal
def stretch_shift_to_terminal(self, t: torch.Tensor) -> torch.Tensor:
r"""
Stretches and shifts the timestep schedule to ensure it terminates at the configured `shift_terminal` config
value.
Reference:
https://github.com/Lightricks/LTX-Video/blob/a01a171f8fe3d99dce2728d60a73fecf4d4238ae/ltx_video/schedulers/rf.py#L51
Args:
t (`torch.Tensor`):
A tensor of timesteps to be stretched and shifted.
Returns:
`torch.Tensor`:
A tensor of adjusted timesteps such that the final value equals `self.config.shift_terminal`.
"""
one_minus_z = 1 - t
scale_factor = one_minus_z[-1] / (1 - self.config.shift_terminal)
stretched_t = 1 - (one_minus_z / scale_factor)
return stretched_t
# Copied from diffusers.schedulers.scheduling_flow_match_euler_discrete.FlowMatchEulerDiscreteScheduler._time_shift_exponential
def _time_shift_exponential(self, mu, sigma, t):
return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)
# Copied from diffusers.schedulers.scheduling_flow_match_euler_discrete.FlowMatchEulerDiscreteScheduler._time_shift_linear
def _time_shift_linear(self, mu, sigma, t):
return mu / (mu + (1 / t - 1) ** sigma)
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor:
"""

View File

@@ -587,6 +587,21 @@ class AuraFlowPipeline(metaclass=DummyObject):
requires_backends(cls, ["torch", "transformers"])
class BriaFiboEditPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
class BriaFiboPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]

View File

@@ -0,0 +1,192 @@
# Copyright 2024 Bria AI and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import AutoTokenizer
from transformers.models.smollm3.modeling_smollm3 import SmolLM3Config, SmolLM3ForCausalLM
from diffusers import (
AutoencoderKLWan,
BriaFiboEditPipeline,
FlowMatchEulerDiscreteScheduler,
)
from diffusers.models.transformers.transformer_bria_fibo import BriaFiboTransformer2DModel
from tests.pipelines.test_pipelines_common import PipelineTesterMixin
from ...testing_utils import (
enable_full_determinism,
torch_device,
)
enable_full_determinism()
class BriaFiboPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = BriaFiboEditPipeline
params = frozenset(["prompt", "height", "width", "guidance_scale"])
batch_params = frozenset(["prompt"])
test_xformers_attention = False
test_layerwise_casting = False
test_group_offloading = False
supports_dduf = False
def get_dummy_components(self):
torch.manual_seed(0)
transformer = BriaFiboTransformer2DModel(
patch_size=1,
in_channels=16,
num_layers=1,
num_single_layers=1,
attention_head_dim=8,
num_attention_heads=2,
joint_attention_dim=64,
text_encoder_dim=32,
pooled_projection_dim=None,
axes_dims_rope=[0, 4, 4],
)
vae = AutoencoderKLWan(
base_dim=80,
decoder_base_dim=128,
dim_mult=[1, 2, 4, 4],
dropout=0.0,
in_channels=12,
latents_mean=[0.0] * 16,
latents_std=[1.0] * 16,
is_residual=True,
num_res_blocks=2,
out_channels=12,
patch_size=2,
scale_factor_spatial=16,
scale_factor_temporal=4,
temperal_downsample=[False, True, True],
z_dim=16,
)
scheduler = FlowMatchEulerDiscreteScheduler()
text_encoder = SmolLM3ForCausalLM(SmolLM3Config(hidden_size=32))
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
components = {
"scheduler": scheduler,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"transformer": transformer,
"vae": vae,
}
return components
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device="cpu").manual_seed(seed)
inputs = {
"prompt": '{"text": "A painting of a squirrel eating a burger","edit_instruction": "A painting of a squirrel eating a burger"}',
"negative_prompt": "bad, ugly",
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 5.0,
"height": 192,
"width": 336,
"output_type": "np",
}
image = Image.new("RGB", (336, 192), (255, 255, 255))
inputs["image"] = image
return inputs
@unittest.skip(reason="will not be supported due to dim-fusion")
def test_encode_prompt_works_in_isolation(self):
pass
@unittest.skip(reason="Batching is not supported yet")
def test_num_images_per_prompt(self):
pass
@unittest.skip(reason="Batching is not supported yet")
def test_inference_batch_consistent(self):
pass
@unittest.skip(reason="Batching is not supported yet")
def test_inference_batch_single_identical(self):
pass
def test_bria_fibo_different_prompts(self):
pipe = self.pipeline_class(**self.get_dummy_components())
pipe = pipe.to(torch_device)
inputs = self.get_dummy_inputs(torch_device)
output_same_prompt = pipe(**inputs).images[0]
inputs = self.get_dummy_inputs(torch_device)
inputs["prompt"] = {"edit_instruction": "a different prompt"}
output_different_prompts = pipe(**inputs).images[0]
max_diff = np.abs(output_same_prompt - output_different_prompts).max()
assert max_diff > 1e-6
def test_image_output_shape(self):
pipe = self.pipeline_class(**self.get_dummy_components())
pipe = pipe.to(torch_device)
inputs = self.get_dummy_inputs(torch_device)
height_width_pairs = [(32, 32), (64, 64), (32, 64)]
for height, width in height_width_pairs:
expected_height = height
expected_width = width
inputs.update({"height": height, "width": width})
image = pipe(**inputs).images[0]
output_height, output_width, _ = image.shape
assert (output_height, output_width) == (expected_height, expected_width)
def test_bria_fibo_edit_mask(self):
pipe = self.pipeline_class(**self.get_dummy_components())
pipe = pipe.to(torch_device)
inputs = self.get_dummy_inputs(torch_device)
mask = Image.fromarray((np.ones((192, 336)) * 255).astype(np.uint8), mode="L")
inputs.update({"mask": mask})
output = pipe(**inputs).images[0]
assert output.shape == (192, 336, 3)
def test_bria_fibo_edit_mask_image_size_mismatch(self):
pipe = self.pipeline_class(**self.get_dummy_components())
pipe = pipe.to(torch_device)
inputs = self.get_dummy_inputs(torch_device)
mask = Image.fromarray((np.ones((64, 64)) * 255).astype(np.uint8), mode="L")
inputs.update({"mask": mask})
with self.assertRaisesRegex(ValueError, "Mask and image must have the same size"):
pipe(**inputs)
def test_bria_fibo_edit_mask_no_image(self):
pipe = self.pipeline_class(**self.get_dummy_components())
pipe = pipe.to(torch_device)
inputs = self.get_dummy_inputs(torch_device)
mask = Image.fromarray((np.ones((32, 32)) * 255).astype(np.uint8), mode="L")
# Remove image from inputs if it's there (it shouldn't be by default from get_dummy_inputs)
inputs.pop("image", None)
inputs.update({"mask": mask})
with self.assertRaisesRegex(ValueError, "If mask is provided, image must also be provided"):
pipe(**inputs)

View File

@@ -248,6 +248,9 @@ class KandinskyV22InpaintPipelineFastTests(PipelineTesterMixin, unittest.TestCas
def test_float16_inference(self):
super().test_float16_inference(expected_max_diff=5e-1)
def test_save_load_dduf(self):
super().test_save_load_dduf(atol=1e-3, rtol=1e-3)
@is_flaky()
def test_model_cpu_offload_forward_pass(self):
super().test_inference_batch_single_identical(expected_max_diff=8e-4)

View File

@@ -191,6 +191,9 @@ class Kandinsky3Img2ImgPipelineFastTests(PipelineTesterMixin, unittest.TestCase)
def test_inference_batch_single_identical(self):
super().test_inference_batch_single_identical(expected_max_diff=1e-2)
def test_save_load_dduf(self):
super().test_save_load_dduf(atol=1e-3, rtol=1e-3)
@slow
@require_torch_accelerator