1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00

Remove *pooled_* mentions from Chroma inpaint (#13026)

Remove `*pooled_*` mentions from Chroma as it has just one TE.
This commit is contained in:
Hameer Abbasi
2026-01-26 14:18:29 +01:00
committed by GitHub
parent a7cb14efbe
commit 2af7baa040

View File

@@ -482,8 +482,6 @@ class ChromaInpaintPipeline(
negative_prompt=None,
prompt_embeds=None,
negative_prompt_embeds=None,
pooled_prompt_embeds=None,
negative_pooled_prompt_embeds=None,
callback_on_step_end_tensor_inputs=None,
padding_mask_crop=None,
max_sequence_length=None,
@@ -531,15 +529,6 @@ class ChromaInpaintPipeline(
f" {negative_prompt_embeds.shape}."
)
if prompt_embeds is not None and pooled_prompt_embeds is None:
raise ValueError(
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
)
if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
raise ValueError(
"If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
)
if prompt_embeds is not None and prompt_attention_mask is None:
raise ValueError("Cannot provide `prompt_embeds` without also providing `prompt_attention_mask")
@@ -793,13 +782,11 @@ class ChromaInpaintPipeline(
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
ip_adapter_image: Optional[PipelineImageInput] = None,
ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
negative_ip_adapter_image: Optional[PipelineImageInput] = None,
negative_ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
joint_attention_kwargs: Optional[Dict[str, Any]] = None,