mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
enhance_vae_properties if vae is provided only
This commit is contained in:
@@ -234,8 +234,8 @@ class PhotonPipeline(
|
||||
The Photon transformer model to denoise the encoded image latents.
|
||||
scheduler ([`FlowMatchEulerDiscreteScheduler`]):
|
||||
A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
|
||||
text_encoder ([`T5EncoderModel`] or [`T5GemmaEncoder`]):
|
||||
Text encoder model for encoding prompts. Supports T5EncoderModel or T5GemmaEncoder.
|
||||
text_encoder ([`T5GemmaEncoder`]):
|
||||
Text encoder model for encoding prompts.
|
||||
tokenizer ([`T5TokenizerFast` or `GemmaTokenizerFast`]):
|
||||
Tokenizer for the text encoder.
|
||||
vae ([`AutoencoderKL`] or [`AutoencoderDC`]):
|
||||
@@ -251,9 +251,9 @@ class PhotonPipeline(
|
||||
self,
|
||||
transformer: PhotonTransformer2DModel,
|
||||
scheduler: FlowMatchEulerDiscreteScheduler,
|
||||
text_encoder: Union[T5EncoderModel, T5GemmaEncoder],
|
||||
text_encoder: Union[T5GemmaEncoder],
|
||||
tokenizer: Union[T5TokenizerFast, GemmaTokenizerFast, AutoTokenizer],
|
||||
vae: Union[AutoencoderKL, AutoencoderDC],
|
||||
vae: Optional[Union[AutoencoderKL, AutoencoderDC]] = None,
|
||||
default_sample_size: Optional[int] = DEFAULT_RESOLUTION,
|
||||
):
|
||||
super().__init__()
|
||||
@@ -277,8 +277,9 @@ class PhotonPipeline(
|
||||
|
||||
self.register_to_config(default_sample_size=default_sample_size)
|
||||
|
||||
# Enhance VAE with universal properties for both AutoencoderKL and AutoencoderDC
|
||||
self._enhance_vae_properties()
|
||||
if vae is not None:
|
||||
# Enhance VAE with universal properties for both AutoencoderKL and AutoencoderDC
|
||||
self._enhance_vae_properties()
|
||||
|
||||
self.image_processor = PixArtImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
||||
|
||||
|
||||
Reference in New Issue
Block a user