diff --git a/src/diffusers/pipelines/photon/pipeline_photon.py b/src/diffusers/pipelines/photon/pipeline_photon.py index 7673b89ca1..b30da7d627 100644 --- a/src/diffusers/pipelines/photon/pipeline_photon.py +++ b/src/diffusers/pipelines/photon/pipeline_photon.py @@ -234,8 +234,8 @@ class PhotonPipeline( The Photon transformer model to denoise the encoded image latents. scheduler ([`FlowMatchEulerDiscreteScheduler`]): A scheduler to be used in combination with `transformer` to denoise the encoded image latents. - text_encoder ([`T5EncoderModel`] or [`T5GemmaEncoder`]): - Text encoder model for encoding prompts. Supports T5EncoderModel or T5GemmaEncoder. + text_encoder ([`T5GemmaEncoder`]): + Text encoder model for encoding prompts. tokenizer ([`T5TokenizerFast` or `GemmaTokenizerFast`]): Tokenizer for the text encoder. vae ([`AutoencoderKL`] or [`AutoencoderDC`]): @@ -251,9 +251,9 @@ class PhotonPipeline( self, transformer: PhotonTransformer2DModel, scheduler: FlowMatchEulerDiscreteScheduler, - text_encoder: Union[T5EncoderModel, T5GemmaEncoder], + text_encoder: Union[T5GemmaEncoder], tokenizer: Union[T5TokenizerFast, GemmaTokenizerFast, AutoTokenizer], - vae: Union[AutoencoderKL, AutoencoderDC], + vae: Optional[Union[AutoencoderKL, AutoencoderDC]] = None, default_sample_size: Optional[int] = DEFAULT_RESOLUTION, ): super().__init__() @@ -277,8 +277,9 @@ class PhotonPipeline( self.register_to_config(default_sample_size=default_sample_size) - # Enhance VAE with universal properties for both AutoencoderKL and AutoencoderDC - self._enhance_vae_properties() + if vae is not None: + # Enhance VAE with universal properties for both AutoencoderKL and AutoencoderDC + self._enhance_vae_properties() self.image_processor = PixArtImageProcessor(vae_scale_factor=self.vae_scale_factor)