1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00

Japanese docs (#5478)

* Finished _toctree.yml and index.md

* Finished installation.md

* Properly finished installation.md and almost finished quicktour

* Finished quicktour

* Finished stable diffusion doc

* Fixed _toctree.yml

* Fixed requests

* Fix country code

* Properly push
This commit is contained in:
Isamu Isozaki
2023-10-24 14:30:04 -04:00
committed by GitHub
parent c7617e482a
commit b8896a154a
7 changed files with 831 additions and 2 deletions

View File

@@ -16,7 +16,7 @@ jobs:
install_libgl1: true
package: diffusers
notebook_folder: diffusers_doc
languages: en ko zh
languages: en ko zh ja
secrets:
token: ${{ secrets.HUGGINGFACE_PUSH }}

View File

@@ -15,4 +15,4 @@ jobs:
pr_number: ${{ github.event.number }}
install_libgl1: true
package: diffusers
languages: en ko zh
languages: en ko zh ja

View File

@@ -0,0 +1,10 @@
- sections:
- local: index
title: 🧨 Diffusers
- local: quicktour
title: 簡単な案内
- local: stable_diffusion
title: 効果的で効率的な拡散モデル
- local: installation
title: インストール
title: はじめに

98
docs/source/ja/index.md Normal file
View File

@@ -0,0 +1,98 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
<p align="center">
<br>
<img src="https://raw.githubusercontent.com/huggingface/diffusers/77aadfee6a891ab9fcfb780f87c693f7a5beeb8e/docs/source/imgs/diffusers_library.jpg" width="400"/>
<br>
</p>
# Diffusers
🤗 Diffusers は、画像や音声、さらには分子の3D構造を生成するための、最先端の事前学習済みDiffusion Model(拡散モデル)を提供するライブラリです。シンプルな生成ソリューションをお探しの場合でも、独自の拡散モデルをトレーニングしたい場合でも、🤗 Diffusers はその両方をサポートするモジュール式のツールボックスです。我々のライブラリは、[性能より使いやすさ](conceptual/philosophy#usability-over-performance)、[簡単よりシンプル](conceptual/philosophy#simple-over-easy)、[抽象化よりカスタマイズ性](conceptual/philosophy#tweakable-contributorfriendly-over-abstraction)に重点を置いて設計されています。
このライブラリには3つの主要コンポーネントがあります:
- 最先端の[拡散パイプライン](api/pipelines/overview)で数行のコードで生成が可能です。
- 交換可能な[ノイズスケジューラ](api/schedulers/overview)で生成速度と品質のトレードオフのバランスをとれます。
- 事前に訓練された[モデル](api/models)は、ビルディングブロックとして使用することができ、スケジューラと組み合わせることで、独自のエンドツーエンドの拡散システムを作成することができます。
<div class="mt-10">
<div class="w-full flex flex-col space-y-4 md:space-y-0 md:grid md:grid-cols-2 md:gap-y-4 md:gap-x-5">
<a class="!no-underline border dark:border-gray-700 p-5 rounded-lg shadow hover:shadow-lg" href="./tutorials/tutorial_overview"
><div class="w-full text-center bg-gradient-to-br from-blue-400 to-blue-500 rounded-lg py-1.5 font-semibold mb-5 text-white text-lg leading-relaxed">チュートリアル</div>
<p class="text-gray-700">出力の生成、独自の拡散システムの構築、拡散モデルのトレーニングを開始するために必要な基本的なスキルを学ぶことができます。初めて🤗Diffusersを使用する場合は、ここから始めることをお勧めします</p>
</a>
<a class="!no-underline border dark:border-gray-700 p-5 rounded-lg shadow hover:shadow-lg" href="./using-diffusers/loading_overview"
><div class="w-full text-center bg-gradient-to-br from-indigo-400 to-indigo-500 rounded-lg py-1.5 font-semibold mb-5 text-white text-lg leading-relaxed">ガイド</div>
<p class="text-gray-700">パイプライン、モデル、スケジューラのロードに役立つ実践的なガイドです。また、特定のタスクにパイプラインを使用する方法、出力の生成方法を制御する方法、生成速度を最適化する方法、さまざまなトレーニング手法についても学ぶことができます。</p>
</a>
<a class="!no-underline border dark:border-gray-700 p-5 rounded-lg shadow hover:shadow-lg" href="./conceptual/philosophy"
><div class="w-full text-center bg-gradient-to-br from-pink-400 to-pink-500 rounded-lg py-1.5 font-semibold mb-5 text-white text-lg leading-relaxed">Conceptual guides</div>
<p class="text-gray-700">ライブラリがなぜこのように設計されたのかを理解し、ライブラリを利用する際の倫理的ガイドラインや安全対策について詳しく学べます。</p>
</a>
<a class="!no-underline border dark:border-gray-700 p-5 rounded-lg shadow hover:shadow-lg" href="./api/models/overview"
><div class="w-full text-center bg-gradient-to-br from-purple-400 to-purple-500 rounded-lg py-1.5 font-semibold mb-5 text-white text-lg leading-relaxed">Reference</div>
<p class="text-gray-700">🤗 Diffusersのクラスとメソッドがどのように機能するかについての技術的な説明です。</p>
</a>
</div>
</div>
## Supported pipelines
| Pipeline | Paper/Repository | Tasks |
|---|---|:---:|
| [alt_diffusion](./api/pipelines/alt_diffusion) | [AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities](https://arxiv.org/abs/2211.06679) | Image-to-Image Text-Guided Generation |
| [audio_diffusion](./api/pipelines/audio_diffusion) | [Audio Diffusion](https://github.com/teticio/audio-diffusion.git) | Unconditional Audio Generation |
| [controlnet](./api/pipelines/controlnet) | [Adding Conditional Control to Text-to-Image Diffusion Models](https://arxiv.org/abs/2302.05543) | Image-to-Image Text-Guided Generation |
| [cycle_diffusion](./api/pipelines/cycle_diffusion) | [Unifying Diffusion Models' Latent Space, with Applications to CycleDiffusion and Guidance](https://arxiv.org/abs/2210.05559) | Image-to-Image Text-Guided Generation |
| [dance_diffusion](./api/pipelines/dance_diffusion) | [Dance Diffusion](https://github.com/williamberman/diffusers.git) | Unconditional Audio Generation |
| [ddpm](./api/pipelines/ddpm) | [Denoising Diffusion Probabilistic Models](https://arxiv.org/abs/2006.11239) | Unconditional Image Generation |
| [ddim](./api/pipelines/ddim) | [Denoising Diffusion Implicit Models](https://arxiv.org/abs/2010.02502) | Unconditional Image Generation |
| [if](./if) | [**IF**](./api/pipelines/if) | Image Generation |
| [if_img2img](./if) | [**IF**](./api/pipelines/if) | Image-to-Image Generation |
| [if_inpainting](./if) | [**IF**](./api/pipelines/if) | Image-to-Image Generation |
| [latent_diffusion](./api/pipelines/latent_diffusion) | [High-Resolution Image Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752)| Text-to-Image Generation |
| [latent_diffusion](./api/pipelines/latent_diffusion) | [High-Resolution Image Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752)| Super Resolution Image-to-Image |
| [latent_diffusion_uncond](./api/pipelines/latent_diffusion_uncond) | [High-Resolution Image Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) | Unconditional Image Generation |
| [paint_by_example](./api/pipelines/paint_by_example) | [Paint by Example: Exemplar-based Image Editing with Diffusion Models](https://arxiv.org/abs/2211.13227) | Image-Guided Image Inpainting |
| [pndm](./api/pipelines/pndm) | [Pseudo Numerical Methods for Diffusion Models on Manifolds](https://arxiv.org/abs/2202.09778) | Unconditional Image Generation |
| [score_sde_ve](./api/pipelines/score_sde_ve) | [Score-Based Generative Modeling through Stochastic Differential Equations](https://openreview.net/forum?id=PxTIG12RRHS) | Unconditional Image Generation |
| [score_sde_vp](./api/pipelines/score_sde_vp) | [Score-Based Generative Modeling through Stochastic Differential Equations](https://openreview.net/forum?id=PxTIG12RRHS) | Unconditional Image Generation |
| [semantic_stable_diffusion](./api/pipelines/semantic_stable_diffusion) | [Semantic Guidance](https://arxiv.org/abs/2301.12247) | Text-Guided Generation |
| [stable_diffusion_adapter](./api/pipelines/stable_diffusion/adapter) | [**T2I-Adapter**](https://arxiv.org/abs/2302.08453) | Image-to-Image Text-Guided Generation | -
| [stable_diffusion_text2img](./api/pipelines/stable_diffusion/text2img) | [Stable Diffusion](https://stability.ai/blog/stable-diffusion-public-release) | Text-to-Image Generation |
| [stable_diffusion_img2img](./api/pipelines/stable_diffusion/img2img) | [Stable Diffusion](https://stability.ai/blog/stable-diffusion-public-release) | Image-to-Image Text-Guided Generation |
| [stable_diffusion_inpaint](./api/pipelines/stable_diffusion/inpaint) | [Stable Diffusion](https://stability.ai/blog/stable-diffusion-public-release) | Text-Guided Image Inpainting |
| [stable_diffusion_panorama](./api/pipelines/stable_diffusion/panorama) | [MultiDiffusion](https://multidiffusion.github.io/) | Text-to-Panorama Generation |
| [stable_diffusion_pix2pix](./api/pipelines/stable_diffusion/pix2pix) | [InstructPix2Pix: Learning to Follow Image Editing Instructions](https://arxiv.org/abs/2211.09800) | Text-Guided Image Editing|
| [stable_diffusion_pix2pix_zero](./api/pipelines/stable_diffusion/pix2pix_zero) | [Zero-shot Image-to-Image Translation](https://pix2pixzero.github.io/) | Text-Guided Image Editing |
| [stable_diffusion_attend_and_excite](./api/pipelines/stable_diffusion/attend_and_excite) | [Attend-and-Excite: Attention-Based Semantic Guidance for Text-to-Image Diffusion Models](https://arxiv.org/abs/2301.13826) | Text-to-Image Generation |
| [stable_diffusion_self_attention_guidance](./api/pipelines/stable_diffusion/self_attention_guidance) | [Improving Sample Quality of Diffusion Models Using Self-Attention Guidance](https://arxiv.org/abs/2210.00939) | Text-to-Image Generation Unconditional Image Generation |
| [stable_diffusion_image_variation](./stable_diffusion/image_variation) | [Stable Diffusion Image Variations](https://github.com/LambdaLabsML/lambda-diffusers#stable-diffusion-image-variations) | Image-to-Image Generation |
| [stable_diffusion_latent_upscale](./stable_diffusion/latent_upscale) | [Stable Diffusion Latent Upscaler](https://twitter.com/StabilityAI/status/1590531958815064065) | Text-Guided Super Resolution Image-to-Image |
| [stable_diffusion_model_editing](./api/pipelines/stable_diffusion/model_editing) | [Editing Implicit Assumptions in Text-to-Image Diffusion Models](https://time-diffusion.github.io/) | Text-to-Image Model Editing |
| [stable_diffusion_2](./api/pipelines/stable_diffusion_2) | [Stable Diffusion 2](https://stability.ai/blog/stable-diffusion-v2-release) | Text-to-Image Generation |
| [stable_diffusion_2](./api/pipelines/stable_diffusion_2) | [Stable Diffusion 2](https://stability.ai/blog/stable-diffusion-v2-release) | Text-Guided Image Inpainting |
| [stable_diffusion_2](./api/pipelines/stable_diffusion_2) | [Depth-Conditional Stable Diffusion](https://github.com/Stability-AI/stablediffusion#depth-conditional-stable-diffusion) | Depth-to-Image Generation |
| [stable_diffusion_2](./api/pipelines/stable_diffusion_2) | [Stable Diffusion 2](https://stability.ai/blog/stable-diffusion-v2-release) | Text-Guided Super Resolution Image-to-Image |
| [stable_diffusion_safe](./api/pipelines/stable_diffusion_safe) | [Safe Stable Diffusion](https://arxiv.org/abs/2211.05105) | Text-Guided Generation |
| [stable_unclip](./stable_unclip) | Stable unCLIP | Text-to-Image Generation |
| [stable_unclip](./stable_unclip) | Stable unCLIP | Image-to-Image Text-Guided Generation |
| [stochastic_karras_ve](./api/pipelines/stochastic_karras_ve) | [Elucidating the Design Space of Diffusion-Based Generative Models](https://arxiv.org/abs/2206.00364) | Unconditional Image Generation |
| [text_to_video_sd](./api/pipelines/text_to_video) | [Modelscope's Text-to-video-synthesis Model in Open Domain](https://modelscope.cn/models/damo/text-to-video-synthesis/summary) | Text-to-Video Generation |
| [unclip](./api/pipelines/unclip) | [Hierarchical Text-Conditional Image Generation with CLIP Latents](https://arxiv.org/abs/2204.06125)(implementation by [kakaobrain](https://github.com/kakaobrain/karlo)) | Text-to-Image Generation |
| [versatile_diffusion](./api/pipelines/versatile_diffusion) | [Versatile Diffusion: Text, Images and Variations All in One Diffusion Model](https://arxiv.org/abs/2211.08332) | Text-to-Image Generation |
| [versatile_diffusion](./api/pipelines/versatile_diffusion) | [Versatile Diffusion: Text, Images and Variations All in One Diffusion Model](https://arxiv.org/abs/2211.08332) | Image Variations Generation |
| [versatile_diffusion](./api/pipelines/versatile_diffusion) | [Versatile Diffusion: Text, Images and Variations All in One Diffusion Model](https://arxiv.org/abs/2211.08332) | Dual Image and Text Guided Generation |
| [vq_diffusion](./api/pipelines/vq_diffusion) | [Vector Quantized Diffusion Model for Text-to-Image Synthesis](https://arxiv.org/abs/2111.14822) | Text-to-Image Generation |
| [stable_diffusion_ldm3d](./api/pipelines/stable_diffusion/ldm3d_diffusion) | [LDM3D: Latent Diffusion Model for 3D](https://arxiv.org/abs/2305.10853) | Text to Image and Depth Generation |

View File

@@ -0,0 +1,145 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# インストール
お使いのディープラーニングライブラリに合わせてDiffusersをインストールできます。
🤗 DiffusersはPython 3.8+、PyTorch 1.7.0+、Flaxでテストされています。使用するディープラーニングライブラリの以下のインストール手順に従ってください
- [PyTorch](https://pytorch.org/get-started/locally/)のインストール手順。
- [Flax](https://flax.readthedocs.io/en/latest/)のインストール手順。
## pip でインストール
Diffusersは[仮想環境](https://docs.python.org/3/library/venv.html)の中でインストールすることが推奨されています。
Python の仮想環境についてよく知らない場合は、こちらの [ガイド](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/) を参照してください。
仮想環境は異なるプロジェクトの管理を容易にし、依存関係間の互換性の問題を回避します。
ではさっそく、プロジェクトディレクトリに仮想環境を作ってみます:
```bash
python -m venv .env
```
仮想環境をアクティブにします:
```bash
source .env/bin/activate
```
🤗 Diffusers もまた 🤗 Transformers ライブラリに依存しており、以下のコマンドで両方をインストールできます:
<frameworkcontent>
<pt>
```bash
pip install diffusers["torch"] transformers
```
</pt>
<jax>
```bash
pip install diffusers["flax"] transformers
```
</jax>
</frameworkcontent>
## ソースからのインストール
ソースから🤗 Diffusersをインストールする前に、`torch`と🤗 Accelerateがインストールされていることを確認してください。
`torch`のインストールについては、`torch` [インストール](https://pytorch.org/get-started/locally/#start-locally)ガイドを参照してください。
🤗 Accelerateをインストールするには
```bash
pip install accelerate
```
以下のコマンドでソースから🤗 Diffusersをインストールできます
```bash
pip install git+https://github.com/huggingface/diffusers
```
このコマンドは最新の `stable` バージョンではなく、最先端の `main` バージョンをインストールします。
`main`バージョンは最新の開発に対応するのに便利です。
例えば、前回の公式リリース以降にバグが修正されたが、新しいリリースがまだリリースされていない場合などには都合がいいです。
しかし、これは `main` バージョンが常に安定しているとは限らないです。
私たちは `main` バージョンを運用し続けるよう努力しており、ほとんどの問題は通常数時間から1日以内に解決されます。
もし問題が発生した場合は、[Issue](https://github.com/huggingface/diffusers/issues/new/choose) を開いてください!
## 編集可能なインストール
以下の場合、編集可能なインストールが必要です:
* ソースコードの `main` バージョンを使用する。
* 🤗 Diffusers に貢献し、コードの変更をテストする必要がある場合。
リポジトリをクローンし、次のコマンドで 🤗 Diffusers をインストールしてください:
```bash
git clone https://github.com/huggingface/diffusers.git
cd diffusers
```
<frameworkcontent>
<pt>
```bash
pip install -e ".[torch]"
```
</pt>
<jax>
```bash
pip install -e ".[flax]"
```
</jax>
</frameworkcontent>
これらのコマンドは、リポジトリをクローンしたフォルダと Python のライブラリパスをリンクします。
Python は通常のライブラリパスに加えて、クローンしたフォルダの中を探すようになります。
例えば、Python パッケージが通常 `~/anaconda3/envs/main/lib/python3.8/site-packages/` にインストールされている場合、Python はクローンした `~/diffusers/` フォルダも同様に参照します。
<Tip warning={true}>
ライブラリを使い続けたい場合は、`diffusers`フォルダを残しておく必要があります。
</Tip>
これで、以下のコマンドで簡単にクローンを最新版の🤗 Diffusersにアップデートできます
```bash
cd ~/diffusers/
git pull
```
Python環境は次の実行時に `main` バージョンの🤗 Diffusersを見つけます。
## テレメトリー・ロギングに関するお知らせ
このライブラリは `from_pretrained()` リクエスト中にデータを収集します。
このデータには Diffusers と PyTorch/Flax のバージョン、要求されたモデルやパイプラインクラスが含まれます。
また、Hubでホストされている場合は、事前に学習されたチェックポイントへのパスが含まれます。
この使用データは問題のデバッグや新機能の優先順位付けに役立ちます。
テレメトリーはHuggingFace Hubからモデルやパイプラインをロードするときのみ送信されます。ローカルでの使用中は収集されません。
我々は、すべての人が追加情報を共有したくないことを理解し、あなたのプライバシーを尊重します。
そのため、ターミナルから `DISABLE_TELEMETRY` 環境変数を設定することで、データ収集を無効にすることができます:
Linux/MacOSの場合
```bash
export DISABLE_TELEMETRY=YES
```
Windows の場合
```bash
set DISABLE_TELEMETRY=YES
```

316
docs/source/ja/quicktour.md Normal file
View File

@@ -0,0 +1,316 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
[[open-in-colab]]
# 簡単な案内
拡散モデル(Diffusion Model)は、ランダムな正規分布から段階的にイズ除去するように学習され、画像や音声などの目的のものを生成できます。これは生成AIに多大な関心を呼び起こしました。インターネット上で拡散によって生成された画像の例を見たことがあるでしょう。🧨 Diffusersは、誰もが拡散モデルに広くアクセスできるようにすることを目的としたライブラリです。
この案内では、開発者または日常的なユーザーに関わらず、🧨 Diffusers を紹介し、素早く目的のものを生成できるようにしますこのライブラリには3つの主要コンポーネントがあります:
* [`DiffusionPipeline`]は事前に学習された拡散モデルからサンプルを迅速に生成するために設計された高レベルのエンドツーエンドクラス。
* 拡散システムを作成するためのビルディングブロックとして使用できる、人気のある事前学習された[モデル](./api/models)アーキテクチャとモジュール。
* 多くの異なる[スケジューラ](./api/schedulers/overview) - ノイズがどのようにトレーニングのために加えられるか、そして生成中にどのようにノイズ除去された画像を生成するかを制御するアルゴリズム。
この案内では、[`DiffusionPipeline`]を生成に使用する方法を紹介し、モデルとスケジューラを組み合わせて[`DiffusionPipeline`]の内部で起こっていることを再現する方法を説明します。
<Tip>
この案内は🧨 Diffusers [ノートブック](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/diffusers_intro.ipynb)を簡略化したもので、すぐに使い始めることができます。Diffusers 🧨のゴール、設計哲学、コアAPIの詳細についてもっと知りたい方は、ートブックをご覧ください
</Tip>
始める前に必要なライブラリーがすべてインストールされていることを確認してください:
```py
# uncomment to install the necessary libraries in Colab
#!pip install --upgrade diffusers accelerate transformers
```
- [🤗 Accelerate](https://huggingface.co/docs/accelerate/index)生成とトレーニングのためのモデルのロードを高速化します
- [Stable Diffusion](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/overview)ような最も一般的な拡散モデルを実行するには、[🤗 Transformers](https://huggingface.co/docs/transformers/index)が必要です。
## 拡散パイプライン
[`DiffusionPipeline`]は事前学習された拡散システムを生成に使用する最も簡単な方法です。これはモデルとスケジューラを含むエンドツーエンドのシステムです。[`DiffusionPipeline`]は多くの作業/タスクにすぐに使用することができます。また、サポートされているタスクの完全なリストについては[🧨Diffusersの概要](./api/pipelines/overview#diffusers-summary)の表を参照してください。
| **タスク** | **説明** | **パイプライン**
|------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------|
| Unconditional Image Generation | 正規分布から画像生成 | [unconditional_image_generation](./using-diffusers/unconditional_image_generation) |
| Text-Guided Image Generation | 文章から画像生成 | [conditional_image_generation](./using-diffusers/conditional_image_generation) |
| Text-Guided Image-to-Image Translation | 画像と文章から新たな画像生成 | [img2img](./using-diffusers/img2img) |
| Text-Guided Image-Inpainting | 画像、マスク、および文章が指定された場合に、画像のマスクされた部分を文章をもとに修復 | [inpaint](./using-diffusers/inpaint) |
| Text-Guided Depth-to-Image Translation | 文章と深度推定によって構造を保持しながら画像生成 | [depth2img](./using-diffusers/depth2img) |
まず、[`DiffusionPipeline`]のインスタンスを作成し、ダウンロードしたいパイプラインのチェックポイントを指定します。
この[`DiffusionPipeline`]はHugging Face Hubに保存されている任意の[チェックポイント](https://huggingface.co/models?library=diffusers&sort=downloads)を使用することができます。
この案内では、[`stable-diffusion-v1-5`](https://huggingface.co/runwayml/stable-diffusion-v1-5)チェックポイントでテキストから画像へ生成します。
<Tip warning={true}>
[Stable Diffusion]モデルについては、モデルを実行する前にまず[ライセンス](https://huggingface.co/spaces/CompVis/stable-diffusion-license)を注意深くお読みください。🧨 Diffusers は、攻撃的または有害なコンテンツを防ぐために [`safety_checker`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/safety_checker.py) を実装していますが、モデルの改良された画像生成機能により、潜在的に有害なコンテンツが生成される可能性があります。
</Tip>
モデルを[`~DiffusionPipeline.from_pretrained`]メソッドでロードします:
```python
>>> from diffusers import DiffusionPipeline
>>> pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", use_safetensors=True)
```
[`DiffusionPipeline`]は全てのモデリング、トークン化、スケジューリングコンポーネントをダウンロードしてキャッシュします。Stable Diffusionパイプラインは[`UNet2DConditionModel`]と[`PNDMScheduler`]などで構成されています:
```py
>>> pipeline
StableDiffusionPipeline {
"_class_name": "StableDiffusionPipeline",
"_diffusers_version": "0.13.1",
...,
"scheduler": [
"diffusers",
"PNDMScheduler"
],
...,
"unet": [
"diffusers",
"UNet2DConditionModel"
],
"vae": [
"diffusers",
"AutoencoderKL"
]
}
```
このモデルはおよそ14億個のパラメータで構成されているため、GPU上でパイプラインを実行することを強く推奨します。
PyTorchと同じように、ジェネレータオブジェクトをGPUに移すことができます
```python
>>> pipeline.to("cuda")
```
これで、文章を `pipeline` に渡して画像を生成し、ノイズ除去された画像にアクセスできるようになりました。デフォルトでは、画像出力は[`PIL.Image`](https://pillow.readthedocs.io/en/stable/reference/Image.html?highlight=image#the-image-class)オブジェクトでラップされます。
```python
>>> image = pipeline("An image of a squirrel in Picasso style").images[0]
>>> image
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/image_of_squirrel_painting.png"/>
</div>
`save`関数で画像を保存できます:
```python
>>> image.save("image_of_squirrel_painting.png")
```
### ローカルパイプライン
ローカルでパイプラインを使用することもできます。唯一の違いは、最初にウェイトをダウンロードする必要があることです:
```bash
!git lfs install
!git clone https://huggingface.co/runwayml/stable-diffusion-v1-5
```
保存したウェイトをパイプラインにロードします:
```python
>>> pipeline = DiffusionPipeline.from_pretrained("./stable-diffusion-v1-5", use_safetensors=True)
```
これで、上のセクションと同じようにパイプラインを動かすことができます。
### スケジューラの交換
スケジューラーによって、イズ除去のスピードや品質のトレードオフが異なります。どれが自分に最適かを知る最善の方法は、実際に試してみることですDiffusers 🧨の主な機能の1つは、スケジューラを簡単に切り替えることができることです。例えば、デフォルトの[`PNDMScheduler`]を[`EulerDiscreteScheduler`]に置き換えるには、[`~diffusers.ConfigMixin.from_config`]メソッドでロードできます:
```py
>>> from diffusers import EulerDiscreteScheduler
>>> pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", use_safetensors=True)
>>> pipeline.scheduler = EulerDiscreteScheduler.from_config(pipeline.scheduler.config)
```
新しいスケジューラを使って画像を生成し、その違いに気づくかどうか試してみてください!
次のセクションでは、[`DiffusionPipeline`]を構成するコンポーネント(モデルとスケジューラ)を詳しく見て、これらのコンポーネントを使って猫の画像を生成する方法を学びます。
## モデル
ほとんどのモデルはノイズの多いサンプルを取り、各タイムステップで*残りのノイズ*を予測します(他のモデルは前のサンプルを直接予測するか、速度または[`v-prediction`](https://github.com/huggingface/diffusers/blob/5e5ce13e2f89ac45a0066cb3f369462a3cf1d9ef/src/diffusers/schedulers/scheduling_ddim.py#L110)を予測するように学習します)。モデルを混ぜて他の拡散システムを作ることもできます。
モデルは[`~ModelMixin.from_pretrained`]メソッドで開始されます。このメソッドはモデルをローカルにキャッシュするので、次にモデルをロードするときに高速になります。この案内では、[`UNet2DModel`]をロードします。これは基本的な画像生成モデルであり、猫画像で学習されたチェックポイントを使います:
```py
>>> from diffusers import UNet2DModel
>>> repo_id = "google/ddpm-cat-256"
>>> model = UNet2DModel.from_pretrained(repo_id, use_safetensors=True)
```
モデルのパラメータにアクセスするには、`model.config` を呼び出せます:
```py
>>> model.config
```
モデル構成は🧊凍結🧊されたディクショナリであり、モデル作成後にこれらのパラメー タを変更することはできません。これは意図的なもので、最初にモデル・アーキテクチャを定義するために使用されるパラメータが同じままであることを保証します。他のパラメータは生成中に調整することができます。
最も重要なパラメータは以下の通りです:
* sample_size`: 入力サンプルの高さと幅。
* `in_channels`: 入力サンプルの入力チャンネル数。
* down_block_types` と `up_block_types`: UNet アーキテクチャを作成するために使用されるダウンサンプリングブロックとアップサンプリングブロックのタイプ。
* block_out_channels`: ダウンサンプリングブロックの出力チャンネル数。逆順でアップサンプリングブロックの入力チャンネル数にも使用されます。
* layer_per_block`: 各 UNet ブロックに含まれる ResNet ブロックの数。
このモデルを生成に使用するには、ランダムな画像の形の正規分布を作成します。このモデルは複数のランダムな正規分布を受け取ることができるため`batch`軸を入れます。入力チャンネル数に対応する`channel`軸も必要です。画像の高さと幅に対応する`sample_size`軸を持つ必要があります:
```py
>>> import torch
>>> torch.manual_seed(0)
>>> noisy_sample = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size)
>>> noisy_sample.shape
torch.Size([1, 3, 256, 256])
```
画像生成には、ノイズの多い画像と `timestep` をモデルに渡します。`timestep`は入力画像がどの程度ノイズが多いかを示します。これは、モデルが拡散プロセスにおける自分の位置を決定するのに役立ちます。モデルの出力を得るには `sample` メソッドを使用します:
```py
>>> with torch.no_grad():
... noisy_residual = model(sample=noisy_sample, timestep=2).sample
```
しかし、実際の例を生成するには、ノイズ除去プロセスをガイドするスケジューラが必要です。次のセクションでは、モデルをスケジューラと組み合わせる方法を学びます。
## スケジューラ
スケジューラは、モデルの出力(この場合は `noisy_residual` )が与えられたときに、ノイズの多いサンプルからノイズの少ないサンプルへの移行を管理します。
<Tip>
🧨 Diffusersは拡散システムを構築するためのツールボックスです。[`DiffusionPipeline`]は事前に構築された拡散システムを使い始めるのに便利な方法ですが、独自のモデルとスケジューラコンポーネントを個別に選択してカスタム拡散システムを構築することもできます。
</Tip>
この案内では、[`DDPMScheduler`]を[`~diffusers.ConfigMixin.from_config`]メソッドでインスタンス化します:
```py
>>> from diffusers import DDPMScheduler
>>> scheduler = DDPMScheduler.from_config(repo_id)
>>> scheduler
DDPMScheduler {
"_class_name": "DDPMScheduler",
"_diffusers_version": "0.13.1",
"beta_end": 0.02,
"beta_schedule": "linear",
"beta_start": 0.0001,
"clip_sample": true,
"clip_sample_range": 1.0,
"num_train_timesteps": 1000,
"prediction_type": "epsilon",
"trained_betas": null,
"variance_type": "fixed_small"
}
```
<Tip>
💡 スケジューラがどのようにコンフィギュレーションからインスタンス化されるかに注目してください。モデルとは異なり、スケジューラは学習可能な重みを持たず、パラメーターを持ちません!
</Tip>
最も重要なパラメータは以下の通りです:
* num_train_timesteps`: ノイズ除去処理の長さ、言い換えれば、ランダムな正規分布をデータサンプルに処理するのに必要なタイムステップ数です。
* `beta_schedule`: 生成とトレーニングに使用するノイズスケジュールのタイプ。
* `beta_start``beta_end`: ノイズスケジュールの開始値と終了値。
少しノイズの少ない画像を予測するには、スケジューラの [`~diffusers.DDPMScheduler.step`] メソッドに以下を渡します: モデルの出力、`timestep`、現在の `sample`
```py
>>> less_noisy_sample = scheduler.step(model_output=noisy_residual, timestep=2, sample=noisy_sample).prev_sample
>>> less_noisy_sample.shape
```
`less_noisy_sample`は次の`timestep`に渡すことができ、そこでさらにノイズが少なくなります!
では、すべてをまとめて、ノイズ除去プロセス全体を視覚化してみましょう。
まず、ノイズ除去された画像を後処理して `PIL.Image` として表示する関数を作成します:
```py
>>> import PIL.Image
>>> import numpy as np
>>> def display_sample(sample, i):
... image_processed = sample.cpu().permute(0, 2, 3, 1)
... image_processed = (image_processed + 1.0) * 127.5
... image_processed = image_processed.numpy().astype(np.uint8)
... image_pil = PIL.Image.fromarray(image_processed[0])
... display(f"Image at step {i}")
... display(image_pil)
```
イズ除去処理を高速化するために入力とモデルをGPUに移します
```py
>>> model.to("cuda")
>>> noisy_sample = noisy_sample.to("cuda")
```
ここで、ノイズが少なくなったサンプルの残りのノイズを予測するノイズ除去ループを作成し、スケジューラを使ってさらにノイズの少ないサンプルを計算します:
```py
>>> import tqdm
>>> sample = noisy_sample
>>> for i, t in enumerate(tqdm.tqdm(scheduler.timesteps)):
... # 1. predict noise residual
... with torch.no_grad():
... residual = model(sample, t).sample
... # 2. compute less noisy image and set x_t -> x_t-1
... sample = scheduler.step(residual, t, sample).prev_sample
... # 3. optionally look at image
... if (i + 1) % 50 == 0:
... display_sample(sample, i + 1)
```
何もないところから猫が生成されるのを、座って見てください!😻
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/diffusion-quicktour.png"/>
</div>
## 次のステップ
このクイックツアーで、🧨ディフューザーを使ったクールな画像をいくつか作成できたと思います!次のステップとして
* モデルをトレーニングまたは微調整については、[training](./tutorials/basic_training)チュートリアルを参照してください。
* 様々な使用例については、公式およびコミュニティの[training or finetuning scripts](https://github.com/huggingface/diffusers/tree/main/examples#-diffusers-examples)の例を参照してください。
* スケジューラのロード、アクセス、変更、比較については[Using different Schedulers](./using-diffusers/schedulers)ガイドを参照してください。
* プロンプトエンジニアリング、スピードとメモリの最適化、より高品質な画像を生成するためのヒントやトリックについては、[Stable Diffusion](./stable_diffusion)ガイドを参照してください。
* 🧨 Diffusers の高速化については、最適化された [PyTorch on a GPU](./optimization/fp16)のガイド、[Stable Diffusion on Apple Silicon (M1/M2)](./optimization/mps)と[ONNX Runtime](./optimization/onnx)を参照してください。

View File

@@ -0,0 +1,260 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# 効果的で効率的な拡散モデル
[[open-in-colab]]
[`DiffusionPipeline`]を使って特定のスタイルで画像を生成したり、希望する画像を生成したりするのは難しいことです。多くの場合、[`DiffusionPipeline`]を何度か実行してからでないと満足のいく画像は得られません。しかし、何もないところから何かを生成するにはたくさんの計算が必要です。生成を何度も何度も実行する場合、特にたくさんの計算量が必要になります。
そのため、パイプラインから*計算*(速度)と*メモリ*GPU RAMの効率を最大限に引き出し、生成サイクル間の時間を短縮することで、より高速な反復処理を行えるようにすることが重要です。
このチュートリアルでは、[`DiffusionPipeline`]を用いて、より速く、より良い計算を行う方法を説明します。
まず、[`runwayml/stable-diffusion-v1-5`](https://huggingface.co/runwayml/stable-diffusion-v1-5)モデルをロードします:
```python
from diffusers import DiffusionPipeline
model_id = "runwayml/stable-diffusion-v1-5"
pipeline = DiffusionPipeline.from_pretrained(model_id, use_safetensors=True)
```
ここで使用するプロンプトの例は年老いた戦士の長の肖像画ですが、ご自由に変更してください:
```python
prompt = "portrait photo of a old warrior chief"
```
## Speed
<Tip>
💡 GPUを利用できない場合は、[Colab](https://colab.research.google.com/)のようなGPUプロバイダーから無料で利用できます
</Tip>
画像生成を高速化する最も簡単な方法の1つは、PyTorchモジュールと同じようにGPU上にパイプラインを配置することです
```python
pipeline = pipeline.to("cuda")
```
同じイメージを使って改良できるようにするには、[`Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html)を使い、[reproducibility](./using-diffusers/reproducibility)の種を設定します:
```python
import torch
generator = torch.Generator("cuda").manual_seed(0)
```
これで画像を生成できます:
```python
image = pipeline(prompt, generator=generator).images[0]
image
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/stable_diffusion_101/sd_101_1.png">
</div>
この処理にはT4 GPUで~30秒かかりました割り当てられているGPUがT4より優れている場合はもっと速いかもしれません。デフォルトでは、[`DiffusionPipeline`]は完全な`float32`精度で生成を50ステップ実行します。float16`のような低い精度に変更するか、推論ステップ数を減らすことで高速化することができます。
まずは `float16` でモデルをロードして画像を生成してみましょう:
```python
import torch
pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16, use_safetensors=True)
pipeline = pipeline.to("cuda")
generator = torch.Generator("cuda").manual_seed(0)
image = pipeline(prompt, generator=generator).images[0]
image
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/stable_diffusion_101/sd_101_2.png">
</div>
今回、画像生成にかかった時間はわずか11秒で、以前より3倍近く速くなりました
<Tip>
💡 パイプラインは常に `float16` で実行することを強くお勧めします。
</Tip>
生成ステップ数を減らすという方法もあります。より効率的なスケジューラを選択することで、出力品質を犠牲にすることなくステップ数を減らすことができます。`compatibles`メソッドを呼び出すことで、[`DiffusionPipeline`]の現在のモデルと互換性のあるスケジューラを見つけることができます:
```python
pipeline.scheduler.compatibles
[
diffusers.schedulers.scheduling_lms_discrete.LMSDiscreteScheduler,
diffusers.schedulers.scheduling_unipc_multistep.UniPCMultistepScheduler,
diffusers.schedulers.scheduling_k_dpm_2_discrete.KDPM2DiscreteScheduler,
diffusers.schedulers.scheduling_deis_multistep.DEISMultistepScheduler,
diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler,
diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler,
diffusers.schedulers.scheduling_ddpm.DDPMScheduler,
diffusers.schedulers.scheduling_dpmsolver_singlestep.DPMSolverSinglestepScheduler,
diffusers.schedulers.scheduling_k_dpm_2_ancestral_discrete.KDPM2AncestralDiscreteScheduler,
diffusers.schedulers.scheduling_heun_discrete.HeunDiscreteScheduler,
diffusers.schedulers.scheduling_pndm.PNDMScheduler,
diffusers.schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteScheduler,
diffusers.schedulers.scheduling_ddim.DDIMScheduler,
]
```
Stable Diffusionモデルはデフォルトで[`PNDMScheduler`]を使用します。このスケジューラは通常~50の推論ステップを必要としますが、[`DPMSolverMultistepScheduler`]のような高性能なスケジューラでは~20または25の推論ステップで済みます。[`ConfigMixin.from_config`]メソッドを使用すると、新しいスケジューラをロードすることができます:
```python
from diffusers import DPMSolverMultistepScheduler
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config)
```
ここで `num_inference_steps` を20に設定します
```python
generator = torch.Generator("cuda").manual_seed(0)
image = pipeline(prompt, generator=generator, num_inference_steps=20).images[0]
image
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/stable_diffusion_101/sd_101_3.png">
</div>
推論時間をわずか4秒に短縮することに成功した
## メモリー
パイプラインのパフォーマンスを向上させるもう1つの鍵は、消費メモリを少なくすることです。一度に生成できる画像の数を確認する最も簡単な方法は、`OutOfMemoryError`OOMが発生するまで、さまざまなバッチサイズを試してみることです。
文章と `Generators` のリストから画像のバッチを生成する関数を作成します。各 `Generator` にシードを割り当てて、良い結果が得られた場合に再利用できるようにします。
```python
def get_inputs(batch_size=1):
generator = [torch.Generator("cuda").manual_seed(i) for i in range(batch_size)]
prompts = batch_size * [prompt]
num_inference_steps = 20
return {"prompt": prompts, "generator": generator, "num_inference_steps": num_inference_steps}
```
`batch_size=4`で開始し、どれだけメモリを消費したかを確認します:
```python
from diffusers.utils import make_image_grid
images = pipeline(**get_inputs(batch_size=4)).images
make_image_grid(images, 2, 2)
```
大容量のRAMを搭載したGPUでない限り、上記のコードはおそらく`OOM`エラーを返したはずです!メモリの大半はクロスアテンションレイヤーが占めています。この処理をバッチで実行する代わりに、逐次実行することでメモリを大幅に節約できます。必要なのは、[`~DiffusionPipeline.enable_attention_slicing`]関数を使用することだけです:
```python
pipeline.enable_attention_slicing()
```
今度は`batch_size`を8にしてみてください
```python
images = pipeline(**get_inputs(batch_size=8)).images
make_image_grid(images, rows=2, cols=4)
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/stable_diffusion_101/sd_101_5.png">
</div>
以前は4枚の画像のバッチを生成することさえできませんでしたが、今では8枚の画像のバッチを1枚あたり3.5秒で生成できますこれはおそらく、品質を犠牲にすることなくT4 GPUでできる最速の処理速度です。
## 品質
前の2つのセクションでは、`fp16` を使ってパイプラインの速度を最適化する方法、よりパフォーマン スなスケジューラーを使って生成ステップ数を減らす方法、アテンションスライスを有効 にしてメモリ消費量を減らす方法について学びました。今度は、生成される画像の品質を向上させる方法に焦点を当てます。
### より良いチェックポイント
最も単純なステップは、より良いチェックポイントを使うことです。Stable Diffusionモデルは良い出発点であり、公式発表以来、いくつかの改良版もリリースされています。しかし、新しいバージョンを使ったからといって、自動的に良い結果が得られるわけではありません。最良の結果を得るためには、自分でさまざまなチェックポイントを試してみたり、ちょっとした研究[ネガティブプロンプト](https://minimaxir.com/2022/11/stable-diffusion-negative-prompt/)の使用など)をしたりする必要があります。
この分野が成長するにつれて、特定のスタイルを生み出すために微調整された、より質の高いチェックポイントが増えています。[Hub](https://huggingface.co/models?library=diffusers&sort=downloads)や[Diffusers Gallery](https://huggingface.co/spaces/huggingface-projects/diffusers-gallery)を探索して、興味のあるものを見つけてみてください!
### より良いパイプラインコンポーネント
現在のパイプラインコンポーネントを新しいバージョンに置き換えてみることもできます。Stability AIが提供する最新の[autodecoder](https://huggingface.co/stabilityai/stable-diffusion-2-1/tree/main/vae)をパイプラインにロードし、画像を生成してみましょう:
```python
from diffusers import AutoencoderKL
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16).to("cuda")
pipeline.vae = vae
images = pipeline(**get_inputs(batch_size=8)).images
make_image_grid(images, rows=2, cols=4)
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/stable_diffusion_101/sd_101_6.png">
</div>
### より良いプロンプト・エンジニアリング
画像を生成するために使用する文章は、*プロンプトエンジニアリング*と呼ばれる分野を作られるほど、非常に重要です。プロンプト・エンジニアリングで考慮すべき点は以下の通りです:
- 生成したい画像やその類似画像は、インターネット上にどのように保存されているか?
- 私が望むスタイルにモデルを誘導するために、どのような追加詳細を与えるべきか?
このことを念頭に置いて、プロンプトに色やより質の高いディテールを含めるように改良してみましょう:
```python
prompt += ", tribal panther make up, blue on red, side profile, looking away, serious eyes"
prompt += " 50mm portrait photography, hard rim lighting photography--beta --ar 2:3 --beta --upbeta"
```
新しいプロンプトで画像のバッチを生成しましょう:
```python
images = pipeline(**get_inputs(batch_size=8)).images
make_image_grid(images, rows=2, cols=4)
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/stable_diffusion_101/sd_101_7.png">
</div>
かなりいいです!種が`1`の`Generator`に対応する2番目の画像に、被写体の年齢に関するテキストを追加して、もう少し手を加えてみましょう
```python
prompts = [
"portrait photo of the oldest warrior chief, tribal panther make up, blue on red, side profile, looking away, serious eyes 50mm portrait photography, hard rim lighting photography--beta --ar 2:3 --beta --upbeta",
"portrait photo of a old warrior chief, tribal panther make up, blue on red, side profile, looking away, serious eyes 50mm portrait photography, hard rim lighting photography--beta --ar 2:3 --beta --upbeta",
"portrait photo of a warrior chief, tribal panther make up, blue on red, side profile, looking away, serious eyes 50mm portrait photography, hard rim lighting photography--beta --ar 2:3 --beta --upbeta",
"portrait photo of a young warrior chief, tribal panther make up, blue on red, side profile, looking away, serious eyes 50mm portrait photography, hard rim lighting photography--beta --ar 2:3 --beta --upbeta",
]
generator = [torch.Generator("cuda").manual_seed(1) for _ in range(len(prompts))]
images = pipeline(prompt=prompts, generator=generator, num_inference_steps=25).images
make_image_grid(images, 2, 2)
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/stable_diffusion_101/sd_101_8.png">
</div>
## 次のステップ
このチュートリアルでは、[`DiffusionPipeline`]を最適化して計算効率とメモリ効率を向上させ、生成される出力の品質を向上させる方法を学びました。パイプラインをさらに高速化することに興味があれば、以下のリソースを参照してください:
- [PyTorch 2.0](./optimization/torch2.0)と[`torch.compile`](https://pytorch.org/docs/stable/generated/torch.compile.html)がどのように生成速度を5-300%高速化できるかを学んでください。A100 GPUの場合、画像生成は最大50%速くなります!
- PyTorch 2が使えない場合は、[xFormers](./optimization/xformers)をインストールすることをお勧めします。このライブラリのメモリ効率の良いアテンションメカニズムは PyTorch 1.13.1 と相性が良く、高速化とメモリ消費量の削減を同時に実現します。
- モデルのオフロードなど、その他の最適化テクニックは [this guide](./optimization/fp16) でカバーされています。