1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00

Register BaseOutput subclasses as supported torch.utils._pytree nodes (#5459)

* Register BaseOutput subclasses as supported torch.utils._pytree nodes

* lint

---------

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
This commit is contained in:
Bowen Bao
2023-10-24 02:31:47 -07:00
committed by GitHub
parent 77241c48af
commit c7617e482a
2 changed files with 37 additions and 0 deletions

View File

@@ -51,6 +51,21 @@ class BaseOutput(OrderedDict):
</Tip>
"""
def __init_subclass__(cls) -> None:
"""Register subclasses as pytree nodes.
This is necessary to synchronize gradients when using `torch.nn.parallel.DistributedDataParallel` with
`static_graph=True` with modules that output `ModelOutput` subclasses.
"""
if is_torch_available():
import torch.utils._pytree
torch.utils._pytree._register_pytree_node(
cls,
torch.utils._pytree._dict_flatten,
lambda values, context: cls(**torch.utils._pytree._dict_unflatten(values, context)),
)
def __post_init__(self):
class_fields = fields(self)

View File

@@ -7,6 +7,7 @@ import numpy as np
import PIL.Image
from diffusers.utils.outputs import BaseOutput
from diffusers.utils.testing_utils import require_torch
@dataclass
@@ -69,3 +70,24 @@ class ConfigTester(unittest.TestCase):
assert dir(outputs_orig) == dir(outputs_copy)
assert dict(outputs_orig) == dict(outputs_copy)
assert vars(outputs_orig) == vars(outputs_copy)
@require_torch
def test_torch_pytree(self):
# ensure torch.utils._pytree treats ModelOutput subclasses as nodes (and not leaves)
# this is important for DistributedDataParallel gradient synchronization with static_graph=True
import torch
import torch.utils._pytree
data = np.random.rand(1, 3, 4, 4)
x = CustomOutput(images=data)
self.assertFalse(torch.utils._pytree._is_leaf(x))
expected_flat_outs = [data]
expected_tree_spec = torch.utils._pytree.TreeSpec(CustomOutput, ["images"], [torch.utils._pytree.LeafSpec()])
actual_flat_outs, actual_tree_spec = torch.utils._pytree.tree_flatten(x)
self.assertEqual(expected_flat_outs, actual_flat_outs)
self.assertEqual(expected_tree_spec, actual_tree_spec)
unflattened_x = torch.utils._pytree.tree_unflatten(actual_flat_outs, actual_tree_spec)
self.assertEqual(x, unflattened_x)