1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-29 07:22:12 +03:00

initial chroma docs

This commit is contained in:
Edna
2025-06-11 22:07:21 -06:00
committed by GitHub
parent f821f2ad5e
commit b0cf6803a7

View File

@@ -0,0 +1,90 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Chroma
<div class="flex flex-wrap space-x-1">
<img alt="LoRA" src="https://img.shields.io/badge/LoRA-d8b4fe?style=flat"/>
<img alt="MPS" src="https://img.shields.io/badge/MPS-000000?style=flat&logo=apple&logoColor=white%22">
</div>
Chroma is a text to image generation model based on Flux.
Original model checkpoints for Chroma can be found [here](https://huggingface.co/lodestones/Chroma).
<Tip>
Chroma can use all the same optimizations as Flux.
### Inference
```python
import torch
from diffusers import ChromaPipeline
pipe = ChromaPipeline.from_pretrained("chroma-diffusers-repo", torch_dtype=torch.bfloat16)
pipe.enable_model_cpu_offload()
prompt = "A cat holding a sign that says hello world"
out = pipe(
prompt=prompt,
guidance_scale=4.0,
height=1024,
width=1024,
num_inference_steps=26,
).images[0]
out.save("image.png")
```
## Single File Loading for the `ChromaTransformer2DModel`
The `ChromaTransformer2DModel` supports loading checkpoints in the original format. This is also useful when trying to load finetunes or quantized versions of the models that have been published by the community.
The following example demonstrates how to run Chroma from a single file.
Then run the following example
```python
import torch
from diffusers import ChromaTransformer2DModel, ChromaPipeline
from transformers import T5EncoderModel
bfl_repo = "black-forest-labs/FLUX.1-dev"
dtype = torch.bfloat16
transformer = ChromaTransformer2DModel.from_single_file("https://huggingface.co/lodestones/Chroma/blob/main/chroma-unlocked-v35.safetensors", torch_dtype=dtype)
text_encoder = T5EncoderModel.from_pretrained(bfl_repo, subfolder="text_encoder_2", torch_dtype=dtype)
tokenizer = T5Tokenizer.from_pretrained(bfl_repo, subfolder="tokenizer_2", torch_dtype=dtype)
pipe = ChromaPipeline.from_pretrained(bfl_repo, transformer=transformer, text_encoder=text_encoder, tokenizer=tokenizer, torch_dtype=dtype)
pipe.enable_model_cpu_offload()
prompt = "A cat holding a sign that says hello world"
image = pipe(
prompt,
guidance_scale=4.0,
output_type="pil",
num_inference_steps=26,
generator=torch.Generator("cpu").manual_seed(0)
).images[0]
image.save("image.png")
```
## ChromaPipeline
[[autodoc]] ChromaPipeline
- all
- __call__