diff --git a/docs/source/en/api/pipelines/chroma.md b/docs/source/en/api/pipelines/chroma.md
new file mode 100644
index 0000000000..d11bcfabdc
--- /dev/null
+++ b/docs/source/en/api/pipelines/chroma.md
@@ -0,0 +1,90 @@
+
+
+# Chroma
+
+
+

+

+
+
+Chroma is a text to image generation model based on Flux.
+
+Original model checkpoints for Chroma can be found [here](https://huggingface.co/lodestones/Chroma).
+
+
+
+Chroma can use all the same optimizations as Flux.
+
+
+### Inference
+
+```python
+import torch
+from diffusers import ChromaPipeline
+
+pipe = ChromaPipeline.from_pretrained("chroma-diffusers-repo", torch_dtype=torch.bfloat16)
+pipe.enable_model_cpu_offload()
+
+prompt = "A cat holding a sign that says hello world"
+out = pipe(
+ prompt=prompt,
+ guidance_scale=4.0,
+ height=1024,
+ width=1024,
+ num_inference_steps=26,
+).images[0]
+out.save("image.png")
+```
+
+## Single File Loading for the `ChromaTransformer2DModel`
+
+The `ChromaTransformer2DModel` supports loading checkpoints in the original format. This is also useful when trying to load finetunes or quantized versions of the models that have been published by the community.
+
+The following example demonstrates how to run Chroma from a single file.
+
+Then run the following example
+
+```python
+import torch
+from diffusers import ChromaTransformer2DModel, ChromaPipeline
+from transformers import T5EncoderModel
+
+bfl_repo = "black-forest-labs/FLUX.1-dev"
+dtype = torch.bfloat16
+
+transformer = ChromaTransformer2DModel.from_single_file("https://huggingface.co/lodestones/Chroma/blob/main/chroma-unlocked-v35.safetensors", torch_dtype=dtype)
+
+text_encoder = T5EncoderModel.from_pretrained(bfl_repo, subfolder="text_encoder_2", torch_dtype=dtype)
+tokenizer = T5Tokenizer.from_pretrained(bfl_repo, subfolder="tokenizer_2", torch_dtype=dtype)
+
+pipe = ChromaPipeline.from_pretrained(bfl_repo, transformer=transformer, text_encoder=text_encoder, tokenizer=tokenizer, torch_dtype=dtype)
+
+pipe.enable_model_cpu_offload()
+
+prompt = "A cat holding a sign that says hello world"
+image = pipe(
+ prompt,
+ guidance_scale=4.0,
+ output_type="pil",
+ num_inference_steps=26,
+ generator=torch.Generator("cpu").manual_seed(0)
+).images[0]
+
+image.save("image.png")
+```
+
+## ChromaPipeline
+
+[[autodoc]] ChromaPipeline
+ - all
+ - __call__