mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-29 07:22:12 +03:00
remove naive up/down sample
This commit is contained in:
@@ -957,19 +957,6 @@ def downsample_2d(x, k=None, factor=2, gain=1):
|
||||
return upfirdn2d(x, torch.tensor(k, device=x.device), down=factor, pad=((p + 1) // 2, p // 2))
|
||||
|
||||
|
||||
def naive_upsample_2d(x, factor=2):
|
||||
_N, C, H, W = x.shape
|
||||
x = torch.reshape(x, (-1, C, H, 1, W, 1))
|
||||
x = x.repeat(1, 1, 1, factor, 1, factor)
|
||||
return torch.reshape(x, (-1, C, H * factor, W * factor))
|
||||
|
||||
|
||||
def naive_downsample_2d(x, factor=2):
|
||||
_N, C, H, W = x.shape
|
||||
x = torch.reshape(x, (-1, C, H // factor, factor, W // factor, factor))
|
||||
return torch.mean(x, dim=(3, 5))
|
||||
|
||||
|
||||
class NIN(nn.Module):
|
||||
def __init__(self, in_dim, num_units, init_scale=0.1):
|
||||
super().__init__()
|
||||
|
||||
@@ -123,19 +123,6 @@ class Conv2d(nn.Module):
|
||||
return x
|
||||
|
||||
|
||||
def naive_upsample_2d(x, factor=2):
|
||||
_N, C, H, W = x.shape
|
||||
x = torch.reshape(x, (-1, C, H, 1, W, 1))
|
||||
x = x.repeat(1, 1, 1, factor, 1, factor)
|
||||
return torch.reshape(x, (-1, C, H * factor, W * factor))
|
||||
|
||||
|
||||
def naive_downsample_2d(x, factor=2):
|
||||
_N, C, H, W = x.shape
|
||||
x = torch.reshape(x, (-1, C, H // factor, factor, W // factor, factor))
|
||||
return torch.mean(x, dim=(3, 5))
|
||||
|
||||
|
||||
def upsample_conv_2d(x, w, k=None, factor=2, gain=1):
|
||||
"""Fused `upsample_2d()` followed by `tf.nn.conv2d()`.
|
||||
|
||||
|
||||
Reference in New Issue
Block a user