diff --git a/src/diffusers/models/resnet.py b/src/diffusers/models/resnet.py index ae6754b1d8..e55b83e962 100644 --- a/src/diffusers/models/resnet.py +++ b/src/diffusers/models/resnet.py @@ -957,19 +957,6 @@ def downsample_2d(x, k=None, factor=2, gain=1): return upfirdn2d(x, torch.tensor(k, device=x.device), down=factor, pad=((p + 1) // 2, p // 2)) -def naive_upsample_2d(x, factor=2): - _N, C, H, W = x.shape - x = torch.reshape(x, (-1, C, H, 1, W, 1)) - x = x.repeat(1, 1, 1, factor, 1, factor) - return torch.reshape(x, (-1, C, H * factor, W * factor)) - - -def naive_downsample_2d(x, factor=2): - _N, C, H, W = x.shape - x = torch.reshape(x, (-1, C, H // factor, factor, W // factor, factor)) - return torch.mean(x, dim=(3, 5)) - - class NIN(nn.Module): def __init__(self, in_dim, num_units, init_scale=0.1): super().__init__() diff --git a/src/diffusers/models/unet_sde_score_estimation.py b/src/diffusers/models/unet_sde_score_estimation.py index 508bac141b..dda144457f 100644 --- a/src/diffusers/models/unet_sde_score_estimation.py +++ b/src/diffusers/models/unet_sde_score_estimation.py @@ -123,19 +123,6 @@ class Conv2d(nn.Module): return x -def naive_upsample_2d(x, factor=2): - _N, C, H, W = x.shape - x = torch.reshape(x, (-1, C, H, 1, W, 1)) - x = x.repeat(1, 1, 1, factor, 1, factor) - return torch.reshape(x, (-1, C, H * factor, W * factor)) - - -def naive_downsample_2d(x, factor=2): - _N, C, H, W = x.shape - x = torch.reshape(x, (-1, C, H // factor, factor, W // factor, factor)) - return torch.mean(x, dim=(3, 5)) - - def upsample_conv_2d(x, w, k=None, factor=2, gain=1): """Fused `upsample_2d()` followed by `tf.nn.conv2d()`.