mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
[Doc] Add DeepCache in section optimization/General optimizations (#6390)
* add documentation for DeepCache * fix typo * add wandb url for DeepCache * fix some typos * add item in _toctree.yml * update formats for arguments * Update deepcache.md * Update docs/source/en/optimization/deepcache.md Co-authored-by: Sayak Paul <spsayakpaul@gmail.com> * add StableDiffusionXLPipeline in doc * Separate SDPipeline and SDXLPipeline * Add the paper link of ablation experiments for hyper-parameters * Apply suggestions from code review Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> --------- Co-authored-by: Sayak Paul <spsayakpaul@gmail.com> Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
This commit is contained in:
@@ -160,6 +160,8 @@
|
||||
title: xFormers
|
||||
- local: optimization/tome
|
||||
title: Token merging
|
||||
- local: optimization/deepcache
|
||||
title: DeepCache
|
||||
title: General optimizations
|
||||
- sections:
|
||||
- local: using-diffusers/stable_diffusion_jax_how_to
|
||||
|
||||
62
docs/source/en/optimization/deepcache.md
Normal file
62
docs/source/en/optimization/deepcache.md
Normal file
@@ -0,0 +1,62 @@
|
||||
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
-->
|
||||
|
||||
# DeepCache
|
||||
[DeepCache](https://huggingface.co/papers/2312.00858) accelerates [`StableDiffusionPipeline`] and [`StableDiffusionXLPipeline`] by strategically caching and reusing high-level features while efficiently updating low-level features by taking advantage of the U-Net architecture.
|
||||
|
||||
Start by installing [DeepCache](https://github.com/horseee/DeepCache):
|
||||
```bash
|
||||
pip install DeepCache
|
||||
```
|
||||
|
||||
Then load and enable the [`DeepCacheSDHelper`](https://github.com/horseee/DeepCache#usage):
|
||||
|
||||
```diff
|
||||
import torch
|
||||
from diffusers import StableDiffusionPipeline
|
||||
pipe = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5', torch_dtype=torch.float16).to("cuda")
|
||||
|
||||
+ from DeepCache import DeepCacheSDHelper
|
||||
+ helper = DeepCacheSDHelper(pipe=pipe)
|
||||
+ helper.set_params(
|
||||
+ cache_interval=3,
|
||||
+ cache_branch_id=0,
|
||||
+ )
|
||||
+ helper.enable()
|
||||
|
||||
image = pipe("a photo of an astronaut on a moon").images[0]
|
||||
```
|
||||
|
||||
The `set_params` method accepts two arguments: `cache_interval` and `cache_branch_id`. `cache_interval` means the frequency of feature caching, specified as the number of steps between each cache operation. `cache_branch_id` identifies which branch of the network (ordered from the shallowest to the deepest layer) is responsible for executing the caching processes.
|
||||
Opting for a lower `cache_branch_id` or a larger `cache_interval` can lead to faster inference speed at the expense of reduced image quality (ablation experiments of these two hyperparameters can be found in the [paper](https://arxiv.org/abs/2312.00858)). Once those arguments are set, use the `enable` or `disable` methods to activate or deactivate the `DeepCacheSDHelper`.
|
||||
|
||||
<div class="flex justify-center">
|
||||
<img src="https://github.com/horseee/Diffusion_DeepCache/raw/master/static/images/example.png">
|
||||
</div>
|
||||
|
||||
You can find more generated samples (original pipeline vs DeepCache) and the corresponding inference latency in the [WandB report](https://wandb.ai/horseee/DeepCache/runs/jwlsqqgt?workspace=user-horseee). The prompts are randomly selected from the [MS-COCO 2017](https://cocodataset.org/#home) dataset.
|
||||
|
||||
## Benchmark
|
||||
|
||||
We tested how much faster DeepCache accelerates [Stable Diffusion v2.1](https://huggingface.co/stabilityai/stable-diffusion-2-1) with 50 inference steps on an NVIDIA RTX A5000, using different configurations for resolution, batch size, cache interval (I), and cache branch (B).
|
||||
|
||||
| **Resolution** | **Batch size** | **Original** | **DeepCache(I=3, B=0)** | **DeepCache(I=5, B=0)** | **DeepCache(I=5, B=1)** |
|
||||
|----------------|----------------|--------------|-------------------------|-------------------------|-------------------------|
|
||||
| 512| 8| 15.96| 6.88(2.32x)| 5.03(3.18x)| 7.27(2.20x)|
|
||||
| | 4| 8.39| 3.60(2.33x)| 2.62(3.21x)| 3.75(2.24x)|
|
||||
| | 1| 2.61| 1.12(2.33x)| 0.81(3.24x)| 1.11(2.35x)|
|
||||
| 768| 8| 43.58| 18.99(2.29x)| 13.96(3.12x)| 21.27(2.05x)|
|
||||
| | 4| 22.24| 9.67(2.30x)| 7.10(3.13x)| 10.74(2.07x)|
|
||||
| | 1| 6.33| 2.72(2.33x)| 1.97(3.21x)| 2.98(2.12x)|
|
||||
| 1024| 8| 101.95| 45.57(2.24x)| 33.72(3.02x)| 53.00(1.92x)|
|
||||
| | 4| 49.25| 21.86(2.25x)| 16.19(3.04x)| 25.78(1.91x)|
|
||||
| | 1| 13.83| 6.07(2.28x)| 4.43(3.12x)| 7.15(1.93x)|
|
||||
Reference in New Issue
Block a user