1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00

Improve LCM(-LoRA) Distillation Scripts (#6420)

* Make WDS pipeline interpolation type configurable.

* Make the VAE encoding batch size configurable.

* Make lora_alpha and lora_dropout configurable for LCM LoRA scripts.

* Generalize scalings_for_boundary_conditions function and make the timestep scaling configurable.

* Make LoRA target modules configurable for LCM-LoRA scripts.

* Move resolve_interpolation_mode to src/diffusers/training_utils.py and make interpolation type configurable in non-WDS script.

* apply suggestions from review
This commit is contained in:
dg845
2024-01-04 17:25:13 -08:00
committed by GitHub
parent acd926f4f2
commit f3d1333e02
6 changed files with 374 additions and 53 deletions

View File

@@ -61,6 +61,7 @@ from diffusers import (
UNet2DConditionModel,
)
from diffusers.optimization import get_scheduler
from diffusers.training_utils import resolve_interpolation_mode
from diffusers.utils import check_min_version, is_wandb_available
from diffusers.utils.import_utils import is_xformers_available
@@ -165,6 +166,7 @@ class SDText2ImageDataset:
global_batch_size: int,
num_workers: int,
resolution: int = 512,
interpolation_type: str = "bilinear",
shuffle_buffer_size: int = 1000,
pin_memory: bool = False,
persistent_workers: bool = False,
@@ -174,10 +176,12 @@ class SDText2ImageDataset:
# flatten list using itertools
train_shards_path_or_url = list(itertools.chain.from_iterable(train_shards_path_or_url))
interpolation_mode = resolve_interpolation_mode(interpolation_type)
def transform(example):
# resize image
image = example["image"]
image = TF.resize(image, resolution, interpolation=transforms.InterpolationMode.BILINEAR)
image = TF.resize(image, resolution, interpolation=interpolation_mode)
# get crop coordinates and crop image
c_top, c_left, _, _ = transforms.RandomCrop.get_params(image, output_size=(resolution, resolution))
@@ -353,8 +357,9 @@ def append_dims(x, target_dims):
# From LCMScheduler.get_scalings_for_boundary_condition_discrete
def scalings_for_boundary_conditions(timestep, sigma_data=0.5, timestep_scaling=10.0):
c_skip = sigma_data**2 / ((timestep / 0.1) ** 2 + sigma_data**2)
c_out = (timestep / 0.1) / ((timestep / 0.1) ** 2 + sigma_data**2) ** 0.5
scaled_timestep = timestep_scaling * timestep
c_skip = sigma_data**2 / (scaled_timestep**2 + sigma_data**2)
c_out = scaled_timestep / (scaled_timestep**2 + sigma_data**2) ** 0.5
return c_skip, c_out
@@ -572,6 +577,15 @@ def parse_args():
" resolution"
),
)
parser.add_argument(
"--interpolation_type",
type=str,
default="bilinear",
help=(
"The interpolation function used when resizing images to the desired resolution. Choose between `bilinear`,"
" `bicubic`, `box`, `nearest`, `nearest_exact`, `hamming`, and `lanczos`."
),
)
parser.add_argument(
"--center_crop",
default=False,
@@ -710,6 +724,50 @@ def parse_args():
default=64,
help="The rank of the LoRA projection matrix.",
)
parser.add_argument(
"--lora_alpha",
type=int,
default=64,
help=(
"The value of the LoRA alpha parameter, which controls the scaling factor in front of the LoRA weight"
" update delta_W. No scaling will be performed if this value is equal to `lora_rank`."
),
)
parser.add_argument(
"--lora_dropout",
type=float,
default=0.0,
help="The dropout probability for the dropout layer added before applying the LoRA to each layer input.",
)
parser.add_argument(
"--lora_target_modules",
type=str,
default=None,
help=(
"A comma-separated string of target module keys to add LoRA to. If not set, a default list of modules will"
" be used. By default, LoRA will be applied to all conv and linear layers."
),
)
parser.add_argument(
"--vae_encode_batch_size",
type=int,
default=32,
required=False,
help=(
"The batch size used when encoding (and decoding) images to latents (and vice versa) using the VAE."
" Encoding or decoding the whole batch at once may run into OOM issues."
),
)
parser.add_argument(
"--timestep_scaling_factor",
type=float,
default=10.0,
help=(
"The multiplicative timestep scaling factor used when calculating the boundary scalings for LCM. The"
" higher the scaling is, the lower the approximation error, but the default value of 10.0 should typically"
" suffice."
),
)
# ----Mixed Precision----
parser.add_argument(
"--mixed_precision",
@@ -915,9 +973,10 @@ def main(args):
)
# 8. Add LoRA to the student U-Net, only the LoRA projection matrix will be updated by the optimizer.
lora_config = LoraConfig(
r=args.lora_rank,
target_modules=[
if args.lora_target_modules is not None:
lora_target_modules = [module_key.strip() for module_key in args.lora_target_modules.split(",")]
else:
lora_target_modules = [
"to_q",
"to_k",
"to_v",
@@ -932,7 +991,12 @@ def main(args):
"downsamplers.0.conv",
"upsamplers.0.conv",
"time_emb_proj",
],
]
lora_config = LoraConfig(
r=args.lora_rank,
target_modules=lora_target_modules,
lora_alpha=args.lora_alpha,
lora_dropout=args.lora_dropout,
)
unet = get_peft_model(unet, lora_config)
@@ -1051,6 +1115,7 @@ def main(args):
global_batch_size=args.train_batch_size * accelerator.num_processes,
num_workers=args.dataloader_num_workers,
resolution=args.resolution,
interpolation_type=args.interpolation_type,
shuffle_buffer_size=1000,
pin_memory=True,
persistent_workers=True,
@@ -1162,10 +1227,10 @@ def main(args):
if vae.dtype != weight_dtype:
vae.to(dtype=weight_dtype)
# encode pixel values with batch size of at most 32
# encode pixel values with batch size of at most args.vae_encode_batch_size
latents = []
for i in range(0, pixel_values.shape[0], 32):
latents.append(vae.encode(pixel_values[i : i + 32]).latent_dist.sample())
for i in range(0, pixel_values.shape[0], args.vae_encode_batch_size):
latents.append(vae.encode(pixel_values[i : i + args.vae_encode_batch_size]).latent_dist.sample())
latents = torch.cat(latents, dim=0)
latents = latents * vae.config.scaling_factor
@@ -1181,9 +1246,13 @@ def main(args):
timesteps = torch.where(timesteps < 0, torch.zeros_like(timesteps), timesteps)
# 3. Get boundary scalings for start_timesteps and (end) timesteps.
c_skip_start, c_out_start = scalings_for_boundary_conditions(start_timesteps)
c_skip_start, c_out_start = scalings_for_boundary_conditions(
start_timesteps, timestep_scaling=args.timestep_scaling_factor
)
c_skip_start, c_out_start = [append_dims(x, latents.ndim) for x in [c_skip_start, c_out_start]]
c_skip, c_out = scalings_for_boundary_conditions(timesteps)
c_skip, c_out = scalings_for_boundary_conditions(
timesteps, timestep_scaling=args.timestep_scaling_factor
)
c_skip, c_out = [append_dims(x, latents.ndim) for x in [c_skip, c_out]]
# 4. Sample noise from the prior and add it to the latents according to the noise magnitude at each

View File

@@ -51,6 +51,7 @@ from diffusers import (
UNet2DConditionModel,
)
from diffusers.optimization import get_scheduler
from diffusers.training_utils import resolve_interpolation_mode
from diffusers.utils import check_min_version, convert_state_dict_to_diffusers, is_wandb_available
from diffusers.utils.import_utils import is_xformers_available
@@ -193,8 +194,9 @@ def append_dims(x, target_dims):
# From LCMScheduler.get_scalings_for_boundary_condition_discrete
def scalings_for_boundary_conditions(timestep, sigma_data=0.5, timestep_scaling=10.0):
c_skip = sigma_data**2 / ((timestep / 0.1) ** 2 + sigma_data**2)
c_out = (timestep / 0.1) / ((timestep / 0.1) ** 2 + sigma_data**2) ** 0.5
scaled_timestep = timestep_scaling * timestep
c_skip = sigma_data**2 / (scaled_timestep**2 + sigma_data**2)
c_out = scaled_timestep / (scaled_timestep**2 + sigma_data**2) ** 0.5
return c_skip, c_out
@@ -396,6 +398,15 @@ def parse_args():
" resolution"
),
)
parser.add_argument(
"--interpolation_type",
type=str,
default="bilinear",
help=(
"The interpolation function used when resizing images to the desired resolution. Choose between `bilinear`,"
" `bicubic`, `box`, `nearest`, `nearest_exact`, `hamming`, and `lanczos`."
),
)
parser.add_argument(
"--center_crop",
default=False,
@@ -534,6 +545,50 @@ def parse_args():
default=64,
help="The rank of the LoRA projection matrix.",
)
parser.add_argument(
"--lora_alpha",
type=int,
default=64,
help=(
"The value of the LoRA alpha parameter, which controls the scaling factor in front of the LoRA weight"
" update delta_W. No scaling will be performed if this value is equal to `lora_rank`."
),
)
parser.add_argument(
"--lora_dropout",
type=float,
default=0.0,
help="The dropout probability for the dropout layer added before applying the LoRA to each layer input.",
)
parser.add_argument(
"--lora_target_modules",
type=str,
default=None,
help=(
"A comma-separated string of target module keys to add LoRA to. If not set, a default list of modules will"
" be used. By default, LoRA will be applied to all conv and linear layers."
),
)
parser.add_argument(
"--vae_encode_batch_size",
type=int,
default=8,
required=False,
help=(
"The batch size used when encoding (and decoding) images to latents (and vice versa) using the VAE."
" Encoding or decoding the whole batch at once may run into OOM issues."
),
)
parser.add_argument(
"--timestep_scaling_factor",
type=float,
default=10.0,
help=(
"The multiplicative timestep scaling factor used when calculating the boundary scalings for LCM. The"
" higher the scaling is, the lower the approximation error, but the default value of 10.0 should typically"
" suffice."
),
)
# ----Mixed Precision----
parser.add_argument(
"--mixed_precision",
@@ -776,10 +831,10 @@ def main(args):
text_encoder_two.to(accelerator.device, dtype=weight_dtype)
# 9. Add LoRA to the student U-Net, only the LoRA projection matrix will be updated by the optimizer.
lora_config = LoraConfig(
r=args.lora_rank,
lora_alpha=args.lora_rank,
target_modules=[
if args.lora_target_modules is not None:
lora_target_modules = [module_key.strip() for module_key in args.lora_target_modules.split(",")]
else:
lora_target_modules = [
"to_q",
"to_k",
"to_v",
@@ -794,7 +849,12 @@ def main(args):
"downsamplers.0.conv",
"upsamplers.0.conv",
"time_emb_proj",
],
]
lora_config = LoraConfig(
r=args.lora_rank,
target_modules=lora_target_modules,
lora_alpha=args.lora_alpha,
lora_dropout=args.lora_dropout,
)
unet.add_adapter(lora_config)
@@ -929,7 +989,8 @@ def main(args):
)
# Preprocessing the datasets.
train_resize = transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR)
interpolation_mode = resolve_interpolation_mode(args.interpolation_type)
train_resize = transforms.Resize(args.resolution, interpolation=interpolation_mode)
train_crop = transforms.CenterCrop(args.resolution) if args.center_crop else transforms.RandomCrop(args.resolution)
train_flip = transforms.RandomHorizontalFlip(p=1.0)
train_transforms = transforms.Compose([transforms.ToTensor(), transforms.Normalize([0.5], [0.5])])
@@ -1121,11 +1182,11 @@ def main(args):
encoded_text = compute_embeddings_fn(text, orig_size, crop_coords)
# encode pixel values with batch size of at most 8
# encode pixel values with batch size of at most args.vae_encode_batch_size
pixel_values = pixel_values.to(dtype=vae.dtype)
latents = []
for i in range(0, pixel_values.shape[0], args.encode_batch_size):
latents.append(vae.encode(pixel_values[i : i + args.encode_batch_size]).latent_dist.sample())
for i in range(0, pixel_values.shape[0], args.vae_encode_batch_size):
latents.append(vae.encode(pixel_values[i : i + args.vae_encode_batch_size]).latent_dist.sample())
latents = torch.cat(latents, dim=0)
latents = latents * vae.config.scaling_factor
@@ -1142,9 +1203,13 @@ def main(args):
timesteps = torch.where(timesteps < 0, torch.zeros_like(timesteps), timesteps)
# 3. Get boundary scalings for start_timesteps and (end) timesteps.
c_skip_start, c_out_start = scalings_for_boundary_conditions(start_timesteps)
c_skip_start, c_out_start = scalings_for_boundary_conditions(
start_timesteps, timestep_scaling=args.timestep_scaling_factor
)
c_skip_start, c_out_start = [append_dims(x, latents.ndim) for x in [c_skip_start, c_out_start]]
c_skip, c_out = scalings_for_boundary_conditions(timesteps)
c_skip, c_out = scalings_for_boundary_conditions(
timesteps, timestep_scaling=args.timestep_scaling_factor
)
c_skip, c_out = [append_dims(x, latents.ndim) for x in [c_skip, c_out]]
# 4. Sample noise from the prior and add it to the latents according to the noise magnitude at each

View File

@@ -62,6 +62,7 @@ from diffusers import (
UNet2DConditionModel,
)
from diffusers.optimization import get_scheduler
from diffusers.training_utils import resolve_interpolation_mode
from diffusers.utils import check_min_version, is_wandb_available
from diffusers.utils.import_utils import is_xformers_available
@@ -171,6 +172,7 @@ class SDXLText2ImageDataset:
global_batch_size: int,
num_workers: int,
resolution: int = 1024,
interpolation_type: str = "bilinear",
shuffle_buffer_size: int = 1000,
pin_memory: bool = False,
persistent_workers: bool = False,
@@ -187,10 +189,12 @@ class SDXLText2ImageDataset:
else:
return (int(json.get(WDS_JSON_WIDTH, 0.0)), int(json.get(WDS_JSON_HEIGHT, 0.0)))
interpolation_mode = resolve_interpolation_mode(interpolation_type)
def transform(example):
# resize image
image = example["image"]
image = TF.resize(image, resolution, interpolation=transforms.InterpolationMode.BILINEAR)
image = TF.resize(image, resolution, interpolation=interpolation_mode)
# get crop coordinates and crop image
c_top, c_left, _, _ = transforms.RandomCrop.get_params(image, output_size=(resolution, resolution))
@@ -340,8 +344,9 @@ def append_dims(x, target_dims):
# From LCMScheduler.get_scalings_for_boundary_condition_discrete
def scalings_for_boundary_conditions(timestep, sigma_data=0.5, timestep_scaling=10.0):
c_skip = sigma_data**2 / ((timestep / 0.1) ** 2 + sigma_data**2)
c_out = (timestep / 0.1) / ((timestep / 0.1) ** 2 + sigma_data**2) ** 0.5
scaled_timestep = timestep_scaling * timestep
c_skip = sigma_data**2 / (scaled_timestep**2 + sigma_data**2)
c_out = scaled_timestep / (scaled_timestep**2 + sigma_data**2) ** 0.5
return c_skip, c_out
@@ -546,6 +551,15 @@ def parse_args():
" resolution"
),
)
parser.add_argument(
"--interpolation_type",
type=str,
default="bilinear",
help=(
"The interpolation function used when resizing images to the desired resolution. Choose between `bilinear`,"
" `bicubic`, `box`, `nearest`, `nearest_exact`, `hamming`, and `lanczos`."
),
)
parser.add_argument(
"--use_fix_crop_and_size",
action="store_true",
@@ -690,6 +704,50 @@ def parse_args():
default=64,
help="The rank of the LoRA projection matrix.",
)
parser.add_argument(
"--lora_alpha",
type=int,
default=64,
help=(
"The value of the LoRA alpha parameter, which controls the scaling factor in front of the LoRA weight"
" update delta_W. No scaling will be performed if this value is equal to `lora_rank`."
),
)
parser.add_argument(
"--lora_dropout",
type=float,
default=0.0,
help="The dropout probability for the dropout layer added before applying the LoRA to each layer input.",
)
parser.add_argument(
"--lora_target_modules",
type=str,
default=None,
help=(
"A comma-separated string of target module keys to add LoRA to. If not set, a default list of modules will"
" be used. By default, LoRA will be applied to all conv and linear layers."
),
)
parser.add_argument(
"--vae_encode_batch_size",
type=int,
default=8,
required=False,
help=(
"The batch size used when encoding (and decoding) images to latents (and vice versa) using the VAE."
" Encoding or decoding the whole batch at once may run into OOM issues."
),
)
parser.add_argument(
"--timestep_scaling_factor",
type=float,
default=10.0,
help=(
"The multiplicative timestep scaling factor used when calculating the boundary scalings for LCM. The"
" higher the scaling is, the lower the approximation error, but the default value of 10.0 should typically"
" suffice."
),
)
# ----Mixed Precision----
parser.add_argument(
"--mixed_precision",
@@ -929,9 +987,10 @@ def main(args):
)
# 8. Add LoRA to the student U-Net, only the LoRA projection matrix will be updated by the optimizer.
lora_config = LoraConfig(
r=args.lora_rank,
target_modules=[
if args.lora_target_modules is not None:
lora_target_modules = [module_key.strip() for module_key in args.lora_target_modules.split(",")]
else:
lora_target_modules = [
"to_q",
"to_k",
"to_v",
@@ -946,7 +1005,12 @@ def main(args):
"downsamplers.0.conv",
"upsamplers.0.conv",
"time_emb_proj",
],
]
lora_config = LoraConfig(
r=args.lora_rank,
target_modules=lora_target_modules,
lora_alpha=args.lora_alpha,
lora_dropout=args.lora_dropout,
)
unet = get_peft_model(unet, lora_config)
@@ -1090,6 +1154,7 @@ def main(args):
global_batch_size=args.train_batch_size * accelerator.num_processes,
num_workers=args.dataloader_num_workers,
resolution=args.resolution,
interpolation_type=args.interpolation_type,
shuffle_buffer_size=1000,
pin_memory=True,
persistent_workers=True,
@@ -1214,10 +1279,10 @@ def main(args):
else:
pixel_values = image
# encode pixel values with batch size of at most 8
# encode pixel values with batch size of at most args.vae_encode_batch_size
latents = []
for i in range(0, pixel_values.shape[0], 8):
latents.append(vae.encode(pixel_values[i : i + 8]).latent_dist.sample())
for i in range(0, pixel_values.shape[0], args.vae_encode_batch_size):
latents.append(vae.encode(pixel_values[i : i + args.vae_encode_batch_size]).latent_dist.sample())
latents = torch.cat(latents, dim=0)
latents = latents * vae.config.scaling_factor
@@ -1234,9 +1299,13 @@ def main(args):
timesteps = torch.where(timesteps < 0, torch.zeros_like(timesteps), timesteps)
# 3. Get boundary scalings for start_timesteps and (end) timesteps.
c_skip_start, c_out_start = scalings_for_boundary_conditions(start_timesteps)
c_skip_start, c_out_start = scalings_for_boundary_conditions(
start_timesteps, timestep_scaling=args.timestep_scaling_factor
)
c_skip_start, c_out_start = [append_dims(x, latents.ndim) for x in [c_skip_start, c_out_start]]
c_skip, c_out = scalings_for_boundary_conditions(timesteps)
c_skip, c_out = scalings_for_boundary_conditions(
timesteps, timestep_scaling=args.timestep_scaling_factor
)
c_skip, c_out = [append_dims(x, latents.ndim) for x in [c_skip, c_out]]
# 4. Sample noise from the prior and add it to the latents according to the noise magnitude at each

View File

@@ -60,6 +60,7 @@ from diffusers import (
UNet2DConditionModel,
)
from diffusers.optimization import get_scheduler
from diffusers.training_utils import resolve_interpolation_mode
from diffusers.utils import check_min_version, is_wandb_available
from diffusers.utils.import_utils import is_xformers_available
@@ -147,6 +148,7 @@ class SDText2ImageDataset:
global_batch_size: int,
num_workers: int,
resolution: int = 512,
interpolation_type: str = "bilinear",
shuffle_buffer_size: int = 1000,
pin_memory: bool = False,
persistent_workers: bool = False,
@@ -156,10 +158,12 @@ class SDText2ImageDataset:
# flatten list using itertools
train_shards_path_or_url = list(itertools.chain.from_iterable(train_shards_path_or_url))
interpolation_mode = resolve_interpolation_mode(interpolation_type)
def transform(example):
# resize image
image = example["image"]
image = TF.resize(image, resolution, interpolation=transforms.InterpolationMode.BILINEAR)
image = TF.resize(image, resolution, interpolation=interpolation_mode)
# get crop coordinates and crop image
c_top, c_left, _, _ = transforms.RandomCrop.get_params(image, output_size=(resolution, resolution))
@@ -330,8 +334,9 @@ def append_dims(x, target_dims):
# From LCMScheduler.get_scalings_for_boundary_condition_discrete
def scalings_for_boundary_conditions(timestep, sigma_data=0.5, timestep_scaling=10.0):
c_skip = sigma_data**2 / ((timestep / 0.1) ** 2 + sigma_data**2)
c_out = (timestep / 0.1) / ((timestep / 0.1) ** 2 + sigma_data**2) ** 0.5
scaled_timestep = timestep_scaling * timestep
c_skip = sigma_data**2 / (scaled_timestep**2 + sigma_data**2)
c_out = scaled_timestep / (scaled_timestep**2 + sigma_data**2) ** 0.5
return c_skip, c_out
@@ -549,6 +554,15 @@ def parse_args():
" resolution"
),
)
parser.add_argument(
"--interpolation_type",
type=str,
default="bilinear",
help=(
"The interpolation function used when resizing images to the desired resolution. Choose between `bilinear`,"
" `bicubic`, `box`, `nearest`, `nearest_exact`, `hamming`, and `lanczos`."
),
)
parser.add_argument(
"--center_crop",
default=False,
@@ -690,6 +704,26 @@ def parse_args():
" does not have `time_cond_proj_dim` set."
),
)
parser.add_argument(
"--vae_encode_batch_size",
type=int,
default=32,
required=False,
help=(
"The batch size used when encoding (and decoding) images to latents (and vice versa) using the VAE."
" Encoding or decoding the whole batch at once may run into OOM issues."
),
)
parser.add_argument(
"--timestep_scaling_factor",
type=float,
default=10.0,
help=(
"The multiplicative timestep scaling factor used when calculating the boundary scalings for LCM. The"
" higher the scaling is, the lower the approximation error, but the default value of 10.0 should typically"
" suffice."
),
)
# ----Exponential Moving Average (EMA)----
parser.add_argument(
"--ema_decay",
@@ -1034,6 +1068,7 @@ def main(args):
global_batch_size=args.train_batch_size * accelerator.num_processes,
num_workers=args.dataloader_num_workers,
resolution=args.resolution,
interpolation_type=args.interpolation_type,
shuffle_buffer_size=1000,
pin_memory=True,
persistent_workers=True,
@@ -1145,10 +1180,10 @@ def main(args):
if vae.dtype != weight_dtype:
vae.to(dtype=weight_dtype)
# encode pixel values with batch size of at most 32
# encode pixel values with batch size of at most args.vae_encode_batch_size
latents = []
for i in range(0, pixel_values.shape[0], 32):
latents.append(vae.encode(pixel_values[i : i + 32]).latent_dist.sample())
for i in range(0, pixel_values.shape[0], args.vae_encode_batch_size):
latents.append(vae.encode(pixel_values[i : i + args.vae_encode_batch_size]).latent_dist.sample())
latents = torch.cat(latents, dim=0)
latents = latents * vae.config.scaling_factor
@@ -1164,9 +1199,13 @@ def main(args):
timesteps = torch.where(timesteps < 0, torch.zeros_like(timesteps), timesteps)
# 3. Get boundary scalings for start_timesteps and (end) timesteps.
c_skip_start, c_out_start = scalings_for_boundary_conditions(start_timesteps)
c_skip_start, c_out_start = scalings_for_boundary_conditions(
start_timesteps, timestep_scaling=args.timestep_scaling_factor
)
c_skip_start, c_out_start = [append_dims(x, latents.ndim) for x in [c_skip_start, c_out_start]]
c_skip, c_out = scalings_for_boundary_conditions(timesteps)
c_skip, c_out = scalings_for_boundary_conditions(
timesteps, timestep_scaling=args.timestep_scaling_factor
)
c_skip, c_out = [append_dims(x, latents.ndim) for x in [c_skip, c_out]]
# 4. Sample noise from the prior and add it to the latents according to the noise magnitude at each

View File

@@ -61,6 +61,7 @@ from diffusers import (
UNet2DConditionModel,
)
from diffusers.optimization import get_scheduler
from diffusers.training_utils import resolve_interpolation_mode
from diffusers.utils import check_min_version, is_wandb_available
from diffusers.utils.import_utils import is_xformers_available
@@ -153,6 +154,7 @@ class SDXLText2ImageDataset:
global_batch_size: int,
num_workers: int,
resolution: int = 1024,
interpolation_type: str = "bilinear",
shuffle_buffer_size: int = 1000,
pin_memory: bool = False,
persistent_workers: bool = False,
@@ -169,10 +171,12 @@ class SDXLText2ImageDataset:
else:
return (int(json.get(WDS_JSON_WIDTH, 0.0)), int(json.get(WDS_JSON_HEIGHT, 0.0)))
interpolation_mode = resolve_interpolation_mode(interpolation_type)
def transform(example):
# resize image
image = example["image"]
image = TF.resize(image, resolution, interpolation=transforms.InterpolationMode.BILINEAR)
image = TF.resize(image, resolution, interpolation=interpolation_mode)
# get crop coordinates and crop image
c_top, c_left, _, _ = transforms.RandomCrop.get_params(image, output_size=(resolution, resolution))
@@ -318,8 +322,9 @@ def append_dims(x, target_dims):
# From LCMScheduler.get_scalings_for_boundary_condition_discrete
def scalings_for_boundary_conditions(timestep, sigma_data=0.5, timestep_scaling=10.0):
c_skip = sigma_data**2 / ((timestep / 0.1) ** 2 + sigma_data**2)
c_out = (timestep / 0.1) / ((timestep / 0.1) ** 2 + sigma_data**2) ** 0.5
scaled_timestep = timestep_scaling * timestep
c_skip = sigma_data**2 / (scaled_timestep**2 + sigma_data**2)
c_out = scaled_timestep / (scaled_timestep**2 + sigma_data**2) ** 0.5
return c_skip, c_out
@@ -568,6 +573,15 @@ def parse_args():
" resolution"
),
)
parser.add_argument(
"--interpolation_type",
type=str,
default="bilinear",
help=(
"The interpolation function used when resizing images to the desired resolution. Choose between `bilinear`,"
" `bicubic`, `box`, `nearest`, `nearest_exact`, `hamming`, and `lanczos`."
),
)
parser.add_argument(
"--use_fix_crop_and_size",
action="store_true",
@@ -715,6 +729,26 @@ def parse_args():
" does not have `time_cond_proj_dim` set."
),
)
parser.add_argument(
"--vae_encode_batch_size",
type=int,
default=8,
required=False,
help=(
"The batch size used when encoding (and decoding) images to latents (and vice versa) using the VAE."
" Encoding or decoding the whole batch at once may run into OOM issues."
),
)
parser.add_argument(
"--timestep_scaling_factor",
type=float,
default=10.0,
help=(
"The multiplicative timestep scaling factor used when calculating the boundary scalings for LCM. The"
" higher the scaling is, the lower the approximation error, but the default value of 10.0 should typically"
" suffice."
),
)
# ----Exponential Moving Average (EMA)----
parser.add_argument(
"--ema_decay",
@@ -1118,6 +1152,7 @@ def main(args):
global_batch_size=args.train_batch_size * accelerator.num_processes,
num_workers=args.dataloader_num_workers,
resolution=args.resolution,
interpolation_type=args.interpolation_type,
shuffle_buffer_size=1000,
pin_memory=True,
persistent_workers=True,
@@ -1242,10 +1277,10 @@ def main(args):
else:
pixel_values = image
# encode pixel values with batch size of at most 8
# encode pixel values with batch size of at most args.vae_encode_batch_size
latents = []
for i in range(0, pixel_values.shape[0], 8):
latents.append(vae.encode(pixel_values[i : i + 8]).latent_dist.sample())
for i in range(0, pixel_values.shape[0], args.vae_encode_batch_size):
latents.append(vae.encode(pixel_values[i : i + args.vae_encode_batch_size]).latent_dist.sample())
latents = torch.cat(latents, dim=0)
latents = latents * vae.config.scaling_factor
@@ -1262,9 +1297,13 @@ def main(args):
timesteps = torch.where(timesteps < 0, torch.zeros_like(timesteps), timesteps)
# 3. Get boundary scalings for start_timesteps and (end) timesteps.
c_skip_start, c_out_start = scalings_for_boundary_conditions(start_timesteps)
c_skip_start, c_out_start = scalings_for_boundary_conditions(
start_timesteps, timestep_scaling=args.timestep_scaling_factor
)
c_skip_start, c_out_start = [append_dims(x, latents.ndim) for x in [c_skip_start, c_out_start]]
c_skip, c_out = scalings_for_boundary_conditions(timesteps)
c_skip, c_out = scalings_for_boundary_conditions(
timesteps, timestep_scaling=args.timestep_scaling_factor
)
c_skip, c_out = [append_dims(x, latents.ndim) for x in [c_skip, c_out]]
# 4. Sample noise from the prior and add it to the latents according to the noise magnitude at each

View File

@@ -5,6 +5,7 @@ from typing import Any, Dict, Iterable, Optional, Union
import numpy as np
import torch
from torchvision import transforms
from .models import UNet2DConditionModel
from .utils import deprecate, is_transformers_available
@@ -53,6 +54,45 @@ def compute_snr(noise_scheduler, timesteps):
return snr
def resolve_interpolation_mode(interpolation_type: str):
"""
Maps a string describing an interpolation function to the corresponding torchvision `InterpolationMode` enum. The
full list of supported enums is documented at
https://pytorch.org/vision/0.9/transforms.html#torchvision.transforms.functional.InterpolationMode.
Args:
interpolation_type (`str`):
A string describing an interpolation method. Currently, `bilinear`, `bicubic`, `box`, `nearest`,
`nearest_exact`, `hamming`, and `lanczos` are supported, corresponding to the supported interpolation modes
in torchvision.
Returns:
`torchvision.transforms.InterpolationMode`: an `InterpolationMode` enum used by torchvision's `resize`
transform.
"""
if interpolation_type == "bilinear":
interpolation_mode = transforms.InterpolationMode.BILINEAR
elif interpolation_type == "bicubic":
interpolation_mode = transforms.InterpolationMode.BICUBIC
elif interpolation_type == "box":
interpolation_mode = transforms.InterpolationMode.BOX
elif interpolation_type == "nearest":
interpolation_mode = transforms.InterpolationMode.NEAREST
elif interpolation_type == "nearest_exact":
interpolation_mode = transforms.InterpolationMode.NEAREST_EXACT
elif interpolation_type == "hamming":
interpolation_mode = transforms.InterpolationMode.HAMMING
elif interpolation_type == "lanczos":
interpolation_mode = transforms.InterpolationMode.LANCZOS
else:
raise ValueError(
f"The given interpolation mode {interpolation_type} is not supported. Currently supported interpolation"
f" modes are `bilinear`, `bicubic`, `box`, `nearest`, `nearest_exact`, `hamming`, and `lanczos`."
)
return interpolation_mode
def unet_lora_state_dict(unet: UNet2DConditionModel) -> Dict[str, torch.Tensor]:
r"""
Returns: