1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-29 07:22:12 +03:00

adaptive projected guidance

This commit is contained in:
Aryan
2025-04-03 05:01:54 +02:00
parent 05d74ef3e7
commit 77324c40c4
5 changed files with 158 additions and 3 deletions

View File

@@ -131,7 +131,7 @@ except OptionalDependencyNotAvailable:
else:
_import_structure["guiders"].extend(
["ClassifierFreeGuidance", "ClassifierFreeZeroStarGuidance", "SkipLayerGuidance"]
["AdaptiveProjectedGuidance", "ClassifierFreeGuidance", "ClassifierFreeZeroStarGuidance", "SkipLayerGuidance"]
)
_import_structure["hooks"].extend(
[
@@ -716,7 +716,12 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
except OptionalDependencyNotAvailable:
from .utils.dummy_pt_objects import * # noqa F403
else:
from .guiders import ClassifierFreeGuidance, ClassifierFreeZeroStarGuidance, SkipLayerGuidance
from .guiders import (
AdaptiveProjectedGuidance,
ClassifierFreeGuidance,
ClassifierFreeZeroStarGuidance,
SkipLayerGuidance,
)
from .hooks import (
FasterCacheConfig,
FirstBlockCacheConfig,

View File

@@ -16,6 +16,7 @@ from ..utils import is_torch_available
if is_torch_available():
from .adaptive_projected_guidance import AdaptiveProjectedGuidance
from .classifier_free_guidance import ClassifierFreeGuidance
from .classifier_free_zero_star_guidance import ClassifierFreeZeroStarGuidance
from .guider_utils import GuidanceMixin, _raise_guidance_deprecation_warning

View File

@@ -0,0 +1,134 @@
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from typing import Optional
import torch
from .guider_utils import GuidanceMixin, rescale_noise_cfg
class AdaptiveProjectedGuidance(GuidanceMixin):
"""
Adaptive Projected Guidance (APG): https://huggingface.co/papers/2410.02416
Args:
guidance_scale (`float`, defaults to `7.5`):
The scale parameter for classifier-free guidance. Higher values result in stronger conditioning on the text
prompt, while lower values allow for more freedom in generation. Higher values may lead to saturation and
deterioration of image quality.
adaptive_projected_guidance_momentum (`float`, defaults to `None`):
The momentum parameter for the adaptive projected guidance. Disabled if set to `None`.
adaptive_projected_guidance_rescale (`float`, defaults to `15.0`):
The rescale factor applied to the noise predictions. This is used to improve image quality and fix
guidance_rescale (`float`, defaults to `0.0`):
The rescale factor applied to the noise predictions. This is used to improve image quality and fix
overexposure. Based on Section 3.4 from [Common Diffusion Noise Schedules and Sample Steps are
Flawed](https://huggingface.co/papers/2305.08891).
use_original_formulation (`bool`, defaults to `False`):
Whether to use the original formulation of classifier-free guidance as proposed in the paper. By default,
we use the diffusers-native implementation that has been in the codebase for a long time.
"""
def __init__(
self,
guidance_scale: float = 7.5,
adaptive_projected_guidance_momentum: Optional[float] = None,
adaptive_projected_guidance_rescale: float = 15.0,
eta: float = 1.0,
guidance_rescale: float = 0.0,
use_original_formulation: bool = False,
):
self.guidance_scale = guidance_scale
self.adaptive_projected_guidance_momentum = adaptive_projected_guidance_momentum
self.adaptive_projected_guidance_rescale = adaptive_projected_guidance_rescale
self.eta = eta
self.guidance_rescale = guidance_rescale
self.use_original_formulation = use_original_formulation
self.momentum_buffer = None
def prepare_inputs(self, *args):
if self._step == 0:
if self.adaptive_projected_guidance_momentum is not None:
self.momentum_buffer = MomentumBuffer(self.adaptive_projected_guidance_momentum)
return super().prepare_inputs(*args)
def forward(self, pred_cond: torch.Tensor, pred_uncond: Optional[torch.Tensor] = None) -> torch.Tensor:
pred = None
if math.isclose(self.guidance_scale, 1.0):
pred = pred_cond
else:
pred = normalized_guidance(
pred_cond,
pred_uncond,
self.guidance_scale,
self.momentum_buffer,
self.eta,
self.adaptive_projected_guidance_rescale,
self.use_original_formulation,
)
if self.guidance_rescale > 0.0:
pred = rescale_noise_cfg(pred, pred_cond, self.guidance_rescale)
return pred
@property
def num_conditions(self) -> int:
num_conditions = 1
if not math.isclose(self.guidance_scale, 1.0):
num_conditions += 1
return num_conditions
class MomentumBuffer:
def __init__(self, momentum: float):
self.momentum = momentum
self.running_average = 0
def update(self, update_value: torch.Tensor):
new_average = self.momentum * self.running_average
self.running_average = update_value + new_average
def normalized_guidance(
pred_cond: torch.Tensor,
pred_uncond: torch.Tensor,
guidance_scale: float,
momentum_buffer: Optional[MomentumBuffer] = None,
eta: float = 1.0,
norm_threshold: float = 0.0,
use_original_formulation: bool = False,
):
diff = pred_cond - pred_uncond
dim = [-i for i in range(1, len(diff.shape))]
if momentum_buffer is not None:
momentum_buffer.update(diff)
diff = momentum_buffer.running_average
if norm_threshold > 0:
ones = torch.ones_like(diff)
diff_norm = diff.norm(p=2, dim=dim, keepdim=True)
scale_factor = torch.minimum(ones, norm_threshold / diff_norm)
diff = diff * scale_factor
v0, v1 = diff.double(), pred_cond.double()
v1 = torch.nn.functional.normalize(v1, dim=dim)
v0_parallel = (v0 * v1).sum(dim=dim, keepdim=True) * v1
v0_orthogonal = v0 - v0_parallel
diff_parallel, diff_orthogonal = v0_parallel.type_as(diff), v0_orthogonal.type_as(diff)
normalized_update = diff_orthogonal + eta * diff_parallel
pred = pred_cond if use_original_formulation else pred_uncond
pred = pred + (guidance_scale - 1) * normalized_update
return pred

View File

@@ -97,4 +97,4 @@ def cfg_zero_star_scale(cond: torch.Tensor, uncond: torch.Tensor, eps: float = 1
squared_norm = torch.sum(uncond**2, dim=1, keepdim=True) + eps
# st_star = v_cond^T * v_uncond / ||v_uncond||^2
scale = dot_product / squared_norm
return scale.to(cond.dtype)
return scale.type_as(cond)

View File

@@ -2,6 +2,21 @@
from ..utils import DummyObject, requires_backends
class AdaptiveProjectedGuidance(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
class ClassifierFreeGuidance(metaclass=DummyObject):
_backends = ["torch"]