1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-29 07:22:12 +03:00

cfg zero star

This commit is contained in:
Aryan
2025-04-03 04:21:24 +02:00
parent 9997c223a8
commit 05d74ef3e7
6 changed files with 129 additions and 9 deletions

View File

@@ -130,7 +130,9 @@ except OptionalDependencyNotAvailable:
_import_structure["utils.dummy_pt_objects"] = [name for name in dir(dummy_pt_objects) if not name.startswith("_")]
else:
_import_structure["guiders"].extend(["ClassifierFreeGuidance", "SkipLayerGuidance"])
_import_structure["guiders"].extend(
["ClassifierFreeGuidance", "ClassifierFreeZeroStarGuidance", "SkipLayerGuidance"]
)
_import_structure["hooks"].extend(
[
"FasterCacheConfig",
@@ -714,7 +716,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
except OptionalDependencyNotAvailable:
from .utils.dummy_pt_objects import * # noqa F403
else:
from .guiders import ClassifierFreeGuidance, SkipLayerGuidance
from .guiders import ClassifierFreeGuidance, ClassifierFreeZeroStarGuidance, SkipLayerGuidance
from .hooks import (
FasterCacheConfig,
FirstBlockCacheConfig,

View File

@@ -17,5 +17,6 @@ from ..utils import is_torch_available
if is_torch_available():
from .classifier_free_guidance import ClassifierFreeGuidance
from .classifier_free_zero_star_guidance import ClassifierFreeZeroStarGuidance
from .guider_utils import GuidanceMixin, _raise_guidance_deprecation_warning
from .skip_layer_guidance import SkipLayerGuidance

View File

@@ -64,13 +64,18 @@ class ClassifierFreeGuidance(GuidanceMixin):
self.use_original_formulation = use_original_formulation
def forward(self, pred_cond: torch.Tensor, pred_uncond: Optional[torch.Tensor] = None) -> torch.Tensor:
pred = None
if math.isclose(self.guidance_scale, 1.0):
return pred_cond
shift = pred_cond - pred_uncond
pred = pred_cond if self.use_original_formulation else pred_uncond
pred = pred + self.guidance_scale * shift
pred = pred_cond
else:
shift = pred_cond - pred_uncond
pred = pred_cond if self.use_original_formulation else pred_uncond
pred = pred + self.guidance_scale * shift
if self.guidance_rescale > 0.0:
pred = rescale_noise_cfg(pred, pred_cond, self.guidance_rescale)
return pred
@property

View File

@@ -0,0 +1,100 @@
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from typing import Optional
import torch
from .guider_utils import GuidanceMixin, rescale_noise_cfg
class ClassifierFreeZeroStarGuidance(GuidanceMixin):
"""
Classifier-free Zero* (CFG-Zero*): https://huggingface.co/papers/2503.18886
This is an implementation of the Classifier-Free Zero* guidance technique, which is a variant of classifier-free
guidance. It proposes zero initialization of the noise predictions for the first few steps of the diffusion
process, and also introduces an optimal rescaling factor for the noise predictions, which can help in improving the
quality of generated images.
The authors of the paper suggest setting zero initialization in the first 4% of the inference steps.
Args:
guidance_scale (`float`, defaults to `7.5`):
The scale parameter for classifier-free guidance. Higher values result in stronger conditioning on the text
prompt, while lower values allow for more freedom in generation. Higher values may lead to saturation and
deterioration of image quality.
zero_init_steps (`int`, defaults to `1`):
The number of inference steps for which the noise predictions are zeroed out (see Section 4.2).
guidance_rescale (`float`, defaults to `0.0`):
The rescale factor applied to the noise predictions. This is used to improve image quality and fix
overexposure. Based on Section 3.4 from [Common Diffusion Noise Schedules and Sample Steps are
Flawed](https://huggingface.co/papers/2305.08891).
use_original_formulation (`bool`, defaults to `False`):
Whether to use the original formulation of classifier-free guidance as proposed in the paper. By default,
we use the diffusers-native implementation that has been in the codebase for a long time. See
[~guiders.classifier_free_guidance.ClassifierFreeGuidance] for more details.
"""
def __init__(
self,
guidance_scale: float = 7.5,
zero_init_steps: int = 1,
guidance_rescale: float = 0.0,
use_original_formulation: bool = False,
):
self.guidance_scale = guidance_scale
self.zero_init_steps = zero_init_steps
self.guidance_rescale = guidance_rescale
self.use_original_formulation = use_original_formulation
def forward(self, pred_cond: torch.Tensor, pred_uncond: Optional[torch.Tensor] = None) -> torch.Tensor:
pred = None
if self._step < self.zero_init_steps:
pred = torch.zeros_like(pred_cond)
elif math.isclose(self.guidance_scale, 1.0):
pred = pred_cond
else:
shift = pred_cond - pred_uncond
pred_cond_flat = pred_cond.flatten(1)
pred_uncond_flat = pred_uncond.flatten(1)
alpha = cfg_zero_star_scale(pred_cond_flat, pred_uncond_flat)
alpha = alpha.view(-1, *(1,) * (len(pred_cond.shape) - 1))
pred_uncond = pred_uncond * alpha
pred = pred_cond if self.use_original_formulation else pred_uncond
pred = pred + self.guidance_scale * shift
if self.guidance_rescale > 0.0:
pred = rescale_noise_cfg(pred, pred_cond, self.guidance_rescale)
return pred
@property
def num_conditions(self) -> int:
num_conditions = 1
if not math.isclose(self.guidance_scale, 1.0):
num_conditions += 1
return num_conditions
def cfg_zero_star_scale(cond: torch.Tensor, uncond: torch.Tensor, eps: float = 1e-8) -> torch.Tensor:
cond = cond.float()
uncond = uncond.float()
dot_product = torch.sum(cond * uncond, dim=1, keepdim=True)
squared_norm = torch.sum(uncond**2, dim=1, keepdim=True) + eps
# st_star = v_cond^T * v_uncond / ||v_uncond||^2
scale = dot_product / squared_norm
return scale.to(cond.dtype)

View File

@@ -175,7 +175,6 @@ class SkipLayerGuidance(GuidanceMixin):
if math.isclose(self.guidance_scale, 1.0) and math.isclose(self.skip_layer_guidance_scale, 1.0):
pred = pred_cond
elif math.isclose(self.guidance_scale, 1.0):
if skip_start_step < self._step < skip_stop_step:
shift = pred_cond - pred_cond_skip
@@ -183,12 +182,10 @@ class SkipLayerGuidance(GuidanceMixin):
pred = pred + self.skip_layer_guidance_scale * shift
else:
pred = pred_cond
elif math.isclose(self.skip_layer_guidance_scale, 1.0):
shift = pred_cond - pred_uncond
pred = pred_cond if self.use_original_formulation else pred_uncond
pred = pred + self.guidance_scale * shift
else:
shift = pred_cond - pred_uncond
pred = pred_cond if self.use_original_formulation else pred_uncond

View File

@@ -17,6 +17,21 @@ class ClassifierFreeGuidance(metaclass=DummyObject):
requires_backends(cls, ["torch"])
class ClassifierFreeZeroStarGuidance(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
class SkipLayerGuidance(metaclass=DummyObject):
_backends = ["torch"]