mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-29 07:22:12 +03:00
debugging
This commit is contained in:
@@ -711,6 +711,7 @@ class StableDiffusionAdapterPipeline(DiffusionPipeline):
|
||||
|
||||
# 7. Denoising loop
|
||||
adapter_state = self.adapter(adapter_input)
|
||||
print(f"From pipeline (before rejigging): {len(adapter_state)}.")
|
||||
for k, v in enumerate(adapter_state):
|
||||
adapter_state[k] = v * adapter_conditioning_scale
|
||||
if num_images_per_prompt > 1:
|
||||
@@ -719,6 +720,7 @@ class StableDiffusionAdapterPipeline(DiffusionPipeline):
|
||||
if do_classifier_free_guidance:
|
||||
for k, v in enumerate(adapter_state):
|
||||
adapter_state[k] = torch.cat([v] * 2, dim=0)
|
||||
print(f"From pipeline (after rejigging): {len(adapter_state)}.")
|
||||
|
||||
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
||||
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
||||
@@ -728,7 +730,6 @@ class StableDiffusionAdapterPipeline(DiffusionPipeline):
|
||||
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
||||
|
||||
# predict the noise residual
|
||||
print(f"From pipeline: {len(adapter_state)}.")
|
||||
noise_pred = self.unet(
|
||||
latent_model_input,
|
||||
t,
|
||||
|
||||
Reference in New Issue
Block a user