diff --git a/src/diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py b/src/diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py index a3442a0a87..3f7e19c754 100644 --- a/src/diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +++ b/src/diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py @@ -711,6 +711,7 @@ class StableDiffusionAdapterPipeline(DiffusionPipeline): # 7. Denoising loop adapter_state = self.adapter(adapter_input) + print(f"From pipeline (before rejigging): {len(adapter_state)}.") for k, v in enumerate(adapter_state): adapter_state[k] = v * adapter_conditioning_scale if num_images_per_prompt > 1: @@ -719,6 +720,7 @@ class StableDiffusionAdapterPipeline(DiffusionPipeline): if do_classifier_free_guidance: for k, v in enumerate(adapter_state): adapter_state[k] = torch.cat([v] * 2, dim=0) + print(f"From pipeline (after rejigging): {len(adapter_state)}.") num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order with self.progress_bar(total=num_inference_steps) as progress_bar: @@ -728,7 +730,6 @@ class StableDiffusionAdapterPipeline(DiffusionPipeline): latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) # predict the noise residual - print(f"From pipeline: {len(adapter_state)}.") noise_pred = self.unet( latent_model_input, t,