mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
Accept pooled_prompt_embeds in the SDXL Controlnet pipeline. Fixes an error if prompt_embeds are passed. (#4309)
* Accept pooled_prompt_embeds in the SDXL Controlnet pipeline. Fixes an error if prompt_embeds are passed. * Add a test for pooled prompt embeds
This commit is contained in:
@@ -431,6 +431,8 @@ class StableDiffusionXLControlNetPipeline(DiffusionPipeline, TextualInversionLoa
|
||||
negative_prompt_2=None,
|
||||
prompt_embeds=None,
|
||||
negative_prompt_embeds=None,
|
||||
pooled_prompt_embeds=None,
|
||||
negative_pooled_prompt_embeds=None,
|
||||
controlnet_conditioning_scale=1.0,
|
||||
control_guidance_start=0.0,
|
||||
control_guidance_end=1.0,
|
||||
@@ -481,6 +483,16 @@ class StableDiffusionXLControlNetPipeline(DiffusionPipeline, TextualInversionLoa
|
||||
f" {negative_prompt_embeds.shape}."
|
||||
)
|
||||
|
||||
if prompt_embeds is not None and pooled_prompt_embeds is None:
|
||||
raise ValueError(
|
||||
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
|
||||
)
|
||||
|
||||
if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
|
||||
raise ValueError(
|
||||
"If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
|
||||
)
|
||||
|
||||
# Check `image`
|
||||
is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance(
|
||||
self.controlnet, torch._dynamo.eval_frame.OptimizedModule
|
||||
@@ -668,6 +680,8 @@ class StableDiffusionXLControlNetPipeline(DiffusionPipeline, TextualInversionLoa
|
||||
latents: Optional[torch.FloatTensor] = None,
|
||||
prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
output_type: Optional[str] = "pil",
|
||||
return_dict: bool = True,
|
||||
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
||||
@@ -738,6 +752,13 @@ class StableDiffusionXLControlNetPipeline(DiffusionPipeline, TextualInversionLoa
|
||||
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
||||
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
||||
argument.
|
||||
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
||||
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
||||
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
||||
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
||||
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
||||
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
||||
input argument.
|
||||
output_type (`str`, *optional*, defaults to `"pil"`):
|
||||
The output format of the generate image. Choose between
|
||||
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
||||
@@ -809,6 +830,8 @@ class StableDiffusionXLControlNetPipeline(DiffusionPipeline, TextualInversionLoa
|
||||
negative_prompt_2,
|
||||
prompt_embeds,
|
||||
negative_prompt_embeds,
|
||||
pooled_prompt_embeds,
|
||||
negative_pooled_prompt_embeds,
|
||||
controlnet_conditioning_scale,
|
||||
control_guidance_start,
|
||||
control_guidance_end,
|
||||
@@ -854,6 +877,8 @@ class StableDiffusionXLControlNetPipeline(DiffusionPipeline, TextualInversionLoa
|
||||
negative_prompt_2,
|
||||
prompt_embeds=prompt_embeds,
|
||||
negative_prompt_embeds=negative_prompt_embeds,
|
||||
pooled_prompt_embeds=pooled_prompt_embeds,
|
||||
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
||||
lora_scale=text_encoder_lora_scale,
|
||||
)
|
||||
|
||||
|
||||
@@ -258,3 +258,42 @@ class ControlNetPipelineSDXLFastTests(
|
||||
|
||||
# ensure the results are not equal
|
||||
assert np.abs(image_slice_1.flatten() - image_slice_3.flatten()).max() > 1e-4
|
||||
|
||||
# copied from test_stable_diffusion_xl.py
|
||||
def test_stable_diffusion_xl_prompt_embeds(self):
|
||||
components = self.get_dummy_components()
|
||||
sd_pipe = self.pipeline_class(**components)
|
||||
sd_pipe = sd_pipe.to(torch_device)
|
||||
sd_pipe = sd_pipe.to(torch_device)
|
||||
sd_pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
# forward without prompt embeds
|
||||
inputs = self.get_dummy_inputs(torch_device)
|
||||
inputs["prompt"] = 2 * [inputs["prompt"]]
|
||||
inputs["num_images_per_prompt"] = 2
|
||||
|
||||
output = sd_pipe(**inputs)
|
||||
image_slice_1 = output.images[0, -3:, -3:, -1]
|
||||
|
||||
# forward with prompt embeds
|
||||
inputs = self.get_dummy_inputs(torch_device)
|
||||
prompt = 2 * [inputs.pop("prompt")]
|
||||
|
||||
(
|
||||
prompt_embeds,
|
||||
negative_prompt_embeds,
|
||||
pooled_prompt_embeds,
|
||||
negative_pooled_prompt_embeds,
|
||||
) = sd_pipe.encode_prompt(prompt)
|
||||
|
||||
output = sd_pipe(
|
||||
**inputs,
|
||||
prompt_embeds=prompt_embeds,
|
||||
negative_prompt_embeds=negative_prompt_embeds,
|
||||
pooled_prompt_embeds=pooled_prompt_embeds,
|
||||
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
||||
)
|
||||
image_slice_2 = output.images[0, -3:, -3:, -1]
|
||||
|
||||
# make sure that it's equal
|
||||
assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4
|
||||
|
||||
Reference in New Issue
Block a user