1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00

PixArt-Sigma Implementation (#7654)

* support PixArt-DMD

---------

Co-authored-by: jschen <chenjunsong4@h-partners.com>
Co-authored-by: badayvedat <badayvedat@gmail.com>
Co-authored-by: Vedat Baday <54285744+badayvedat@users.noreply.github.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
Co-authored-by: yiyixuxu <yixu310@gmail,com>
This commit is contained in:
Junsong Chen
2024-04-24 16:33:08 +08:00
committed by GitHub
parent 9ef43f38d4
commit 39215aa30e
12 changed files with 1640 additions and 43 deletions

View File

@@ -0,0 +1,223 @@
import argparse
import os
import torch
from transformers import T5EncoderModel, T5Tokenizer
from diffusers import AutoencoderKL, DPMSolverMultistepScheduler, PixArtSigmaPipeline, Transformer2DModel
ckpt_id = "PixArt-alpha"
# https://github.com/PixArt-alpha/PixArt-sigma/blob/dd087141864e30ec44f12cb7448dd654be065e88/scripts/inference.py#L158
interpolation_scale = {256: 0.5, 512: 1, 1024: 2, 2048: 4}
def main(args):
all_state_dict = torch.load(args.orig_ckpt_path)
state_dict = all_state_dict.pop("state_dict")
converted_state_dict = {}
# Patch embeddings.
converted_state_dict["pos_embed.proj.weight"] = state_dict.pop("x_embedder.proj.weight")
converted_state_dict["pos_embed.proj.bias"] = state_dict.pop("x_embedder.proj.bias")
# Caption projection.
converted_state_dict["caption_projection.linear_1.weight"] = state_dict.pop("y_embedder.y_proj.fc1.weight")
converted_state_dict["caption_projection.linear_1.bias"] = state_dict.pop("y_embedder.y_proj.fc1.bias")
converted_state_dict["caption_projection.linear_2.weight"] = state_dict.pop("y_embedder.y_proj.fc2.weight")
converted_state_dict["caption_projection.linear_2.bias"] = state_dict.pop("y_embedder.y_proj.fc2.bias")
# AdaLN-single LN
converted_state_dict["adaln_single.emb.timestep_embedder.linear_1.weight"] = state_dict.pop(
"t_embedder.mlp.0.weight"
)
converted_state_dict["adaln_single.emb.timestep_embedder.linear_1.bias"] = state_dict.pop("t_embedder.mlp.0.bias")
converted_state_dict["adaln_single.emb.timestep_embedder.linear_2.weight"] = state_dict.pop(
"t_embedder.mlp.2.weight"
)
converted_state_dict["adaln_single.emb.timestep_embedder.linear_2.bias"] = state_dict.pop("t_embedder.mlp.2.bias")
if args.micro_condition:
# Resolution.
converted_state_dict["adaln_single.emb.resolution_embedder.linear_1.weight"] = state_dict.pop(
"csize_embedder.mlp.0.weight"
)
converted_state_dict["adaln_single.emb.resolution_embedder.linear_1.bias"] = state_dict.pop(
"csize_embedder.mlp.0.bias"
)
converted_state_dict["adaln_single.emb.resolution_embedder.linear_2.weight"] = state_dict.pop(
"csize_embedder.mlp.2.weight"
)
converted_state_dict["adaln_single.emb.resolution_embedder.linear_2.bias"] = state_dict.pop(
"csize_embedder.mlp.2.bias"
)
# Aspect ratio.
converted_state_dict["adaln_single.emb.aspect_ratio_embedder.linear_1.weight"] = state_dict.pop(
"ar_embedder.mlp.0.weight"
)
converted_state_dict["adaln_single.emb.aspect_ratio_embedder.linear_1.bias"] = state_dict.pop(
"ar_embedder.mlp.0.bias"
)
converted_state_dict["adaln_single.emb.aspect_ratio_embedder.linear_2.weight"] = state_dict.pop(
"ar_embedder.mlp.2.weight"
)
converted_state_dict["adaln_single.emb.aspect_ratio_embedder.linear_2.bias"] = state_dict.pop(
"ar_embedder.mlp.2.bias"
)
# Shared norm.
converted_state_dict["adaln_single.linear.weight"] = state_dict.pop("t_block.1.weight")
converted_state_dict["adaln_single.linear.bias"] = state_dict.pop("t_block.1.bias")
for depth in range(28):
# Transformer blocks.
converted_state_dict[f"transformer_blocks.{depth}.scale_shift_table"] = state_dict.pop(
f"blocks.{depth}.scale_shift_table"
)
# Attention is all you need 🤘
# Self attention.
q, k, v = torch.chunk(state_dict.pop(f"blocks.{depth}.attn.qkv.weight"), 3, dim=0)
q_bias, k_bias, v_bias = torch.chunk(state_dict.pop(f"blocks.{depth}.attn.qkv.bias"), 3, dim=0)
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_q.weight"] = q
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_q.bias"] = q_bias
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_k.weight"] = k
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_k.bias"] = k_bias
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_v.weight"] = v
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_v.bias"] = v_bias
# Projection.
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_out.0.weight"] = state_dict.pop(
f"blocks.{depth}.attn.proj.weight"
)
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_out.0.bias"] = state_dict.pop(
f"blocks.{depth}.attn.proj.bias"
)
if args.qk_norm:
converted_state_dict[f"transformer_blocks.{depth}.attn1.q_norm.weight"] = state_dict.pop(
f"blocks.{depth}.attn.q_norm.weight"
)
converted_state_dict[f"transformer_blocks.{depth}.attn1.q_norm.bias"] = state_dict.pop(
f"blocks.{depth}.attn.q_norm.bias"
)
converted_state_dict[f"transformer_blocks.{depth}.attn1.k_norm.weight"] = state_dict.pop(
f"blocks.{depth}.attn.k_norm.weight"
)
converted_state_dict[f"transformer_blocks.{depth}.attn1.k_norm.bias"] = state_dict.pop(
f"blocks.{depth}.attn.k_norm.bias"
)
# Feed-forward.
converted_state_dict[f"transformer_blocks.{depth}.ff.net.0.proj.weight"] = state_dict.pop(
f"blocks.{depth}.mlp.fc1.weight"
)
converted_state_dict[f"transformer_blocks.{depth}.ff.net.0.proj.bias"] = state_dict.pop(
f"blocks.{depth}.mlp.fc1.bias"
)
converted_state_dict[f"transformer_blocks.{depth}.ff.net.2.weight"] = state_dict.pop(
f"blocks.{depth}.mlp.fc2.weight"
)
converted_state_dict[f"transformer_blocks.{depth}.ff.net.2.bias"] = state_dict.pop(
f"blocks.{depth}.mlp.fc2.bias"
)
# Cross-attention.
q = state_dict.pop(f"blocks.{depth}.cross_attn.q_linear.weight")
q_bias = state_dict.pop(f"blocks.{depth}.cross_attn.q_linear.bias")
k, v = torch.chunk(state_dict.pop(f"blocks.{depth}.cross_attn.kv_linear.weight"), 2, dim=0)
k_bias, v_bias = torch.chunk(state_dict.pop(f"blocks.{depth}.cross_attn.kv_linear.bias"), 2, dim=0)
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_q.weight"] = q
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_q.bias"] = q_bias
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_k.weight"] = k
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_k.bias"] = k_bias
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_v.weight"] = v
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_v.bias"] = v_bias
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_out.0.weight"] = state_dict.pop(
f"blocks.{depth}.cross_attn.proj.weight"
)
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_out.0.bias"] = state_dict.pop(
f"blocks.{depth}.cross_attn.proj.bias"
)
# Final block.
converted_state_dict["proj_out.weight"] = state_dict.pop("final_layer.linear.weight")
converted_state_dict["proj_out.bias"] = state_dict.pop("final_layer.linear.bias")
converted_state_dict["scale_shift_table"] = state_dict.pop("final_layer.scale_shift_table")
# PixArt XL/2
transformer = Transformer2DModel(
sample_size=args.image_size // 8,
num_layers=28,
attention_head_dim=72,
in_channels=4,
out_channels=8,
patch_size=2,
attention_bias=True,
num_attention_heads=16,
cross_attention_dim=1152,
activation_fn="gelu-approximate",
num_embeds_ada_norm=1000,
norm_type="ada_norm_single",
norm_elementwise_affine=False,
norm_eps=1e-6,
caption_channels=4096,
interpolation_scale=interpolation_scale[args.image_size],
use_additional_conditions=args.micro_condition,
)
transformer.load_state_dict(converted_state_dict, strict=True)
assert transformer.pos_embed.pos_embed is not None
try:
state_dict.pop("y_embedder.y_embedding")
state_dict.pop("pos_embed")
except Exception as e:
print(f"Skipping {str(e)}")
pass
assert len(state_dict) == 0, f"State dict is not empty, {state_dict.keys()}"
num_model_params = sum(p.numel() for p in transformer.parameters())
print(f"Total number of transformer parameters: {num_model_params}")
if args.only_transformer:
transformer.save_pretrained(os.path.join(args.dump_path, "transformer"))
else:
# pixart-Sigma vae link: https://huggingface.co/PixArt-alpha/pixart_sigma_sdxlvae_T5_diffusers/tree/main/vae
vae = AutoencoderKL.from_pretrained(f"{ckpt_id}/pixart_sigma_sdxlvae_T5_diffusers", subfolder="vae")
scheduler = DPMSolverMultistepScheduler()
tokenizer = T5Tokenizer.from_pretrained(f"{ckpt_id}/pixart_sigma_sdxlvae_T5_diffusers", subfolder="tokenizer")
text_encoder = T5EncoderModel.from_pretrained(
f"{ckpt_id}/pixart_sigma_sdxlvae_T5_diffusers", subfolder="text_encoder"
)
pipeline = PixArtSigmaPipeline(
tokenizer=tokenizer, text_encoder=text_encoder, transformer=transformer, vae=vae, scheduler=scheduler
)
pipeline.save_pretrained(args.dump_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--micro_condition", action="store_true", help="If use Micro-condition in PixArtMS structure during training."
)
parser.add_argument("--qk_norm", action="store_true", help="If use qk norm during training.")
parser.add_argument(
"--orig_ckpt_path", default=None, type=str, required=False, help="Path to the checkpoint to convert."
)
parser.add_argument(
"--image_size",
default=1024,
type=int,
choices=[256, 512, 1024, 2048],
required=False,
help="Image size of pretrained model, 256, 512, 1024, or 2048.",
)
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output pipeline.")
parser.add_argument("--only_transformer", default=True, type=bool, required=True)
args = parser.parse_args()
main(args)

View File

@@ -261,6 +261,7 @@ else:
"PaintByExamplePipeline",
"PIAPipeline",
"PixArtAlphaPipeline",
"PixArtSigmaPipeline",
"SemanticStableDiffusionPipeline",
"ShapEImg2ImgPipeline",
"ShapEPipeline",
@@ -637,6 +638,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
PaintByExamplePipeline,
PIAPipeline,
PixArtAlphaPipeline,
PixArtSigmaPipeline,
SemanticStableDiffusionPipeline,
ShapEImg2ImgPipeline,
ShapEPipeline,

View File

@@ -994,3 +994,77 @@ class IPAdapterMaskProcessor(VaeImageProcessor):
)
return mask_downsample
class PixArtImageProcessor(VaeImageProcessor):
"""
Image processor for PixArt image resize and crop.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to downscale the image's (height, width) dimensions to multiples of `vae_scale_factor`. Can accept
`height` and `width` arguments from [`image_processor.VaeImageProcessor.preprocess`] method.
vae_scale_factor (`int`, *optional*, defaults to `8`):
VAE scale factor. If `do_resize` is `True`, the image is automatically resized to multiples of this factor.
resample (`str`, *optional*, defaults to `lanczos`):
Resampling filter to use when resizing the image.
do_normalize (`bool`, *optional*, defaults to `True`):
Whether to normalize the image to [-1,1].
do_binarize (`bool`, *optional*, defaults to `False`):
Whether to binarize the image to 0/1.
do_convert_rgb (`bool`, *optional*, defaults to be `False`):
Whether to convert the images to RGB format.
do_convert_grayscale (`bool`, *optional*, defaults to be `False`):
Whether to convert the images to grayscale format.
"""
@register_to_config
def __init__(
self,
do_resize: bool = True,
vae_scale_factor: int = 8,
resample: str = "lanczos",
do_normalize: bool = True,
do_binarize: bool = False,
do_convert_grayscale: bool = False,
):
super().__init__(
do_resize=do_resize,
vae_scale_factor=vae_scale_factor,
resample=resample,
do_normalize=do_normalize,
do_binarize=do_binarize,
do_convert_grayscale=do_convert_grayscale,
)
@staticmethod
def classify_height_width_bin(height: int, width: int, ratios: dict) -> Tuple[int, int]:
"""Returns binned height and width."""
ar = float(height / width)
closest_ratio = min(ratios.keys(), key=lambda ratio: abs(float(ratio) - ar))
default_hw = ratios[closest_ratio]
return int(default_hw[0]), int(default_hw[1])
@staticmethod
def resize_and_crop_tensor(samples: torch.Tensor, new_width: int, new_height: int) -> torch.Tensor:
orig_height, orig_width = samples.shape[2], samples.shape[3]
# Check if resizing is needed
if orig_height != new_height or orig_width != new_width:
ratio = max(new_height / orig_height, new_width / orig_width)
resized_width = int(orig_width * ratio)
resized_height = int(orig_height * ratio)
# Resize
samples = F.interpolate(
samples, size=(resized_height, resized_width), mode="bilinear", align_corners=False
)
# Center Crop
start_x = (resized_width - new_width) // 2
end_x = start_x + new_width
start_y = (resized_height - new_height) // 2
end_y = start_y + new_height
samples = samples[:, :, start_y:end_y, start_x:end_x]
return samples

View File

@@ -100,6 +100,7 @@ class Transformer2DModel(ModelMixin, ConfigMixin):
attention_type: str = "default",
caption_channels: int = None,
interpolation_scale: float = None,
use_additional_conditions: Optional[bool] = None,
):
super().__init__()
@@ -124,6 +125,12 @@ class Transformer2DModel(ModelMixin, ConfigMixin):
self.in_channels = in_channels
self.out_channels = in_channels if out_channels is None else out_channels
self.gradient_checkpointing = False
if use_additional_conditions is None:
if norm_type == "ada_norm_single" and sample_size == 128:
use_additional_conditions = True
else:
use_additional_conditions = False
self.use_additional_conditions = use_additional_conditions
# 1. Transformer2DModel can process both standard continuous images of shape `(batch_size, num_channels, width, height)` as well as quantized image embeddings of shape `(batch_size, num_image_vectors)`
# Define whether input is continuous or discrete depending on configuration
@@ -305,9 +312,7 @@ class Transformer2DModel(ModelMixin, ConfigMixin):
# PixArt-Alpha blocks.
self.adaln_single = None
self.use_additional_conditions = False
if self.config.norm_type == "ada_norm_single":
self.use_additional_conditions = self.config.sample_size == 128
# TODO(Sayak, PVP) clean this, for now we use sample size to determine whether to use
# additional conditions until we find better name
self.adaln_single = AdaLayerNormSingle(

View File

@@ -187,7 +187,7 @@ else:
_import_structure["musicldm"] = ["MusicLDMPipeline"]
_import_structure["paint_by_example"] = ["PaintByExamplePipeline"]
_import_structure["pia"] = ["PIAPipeline"]
_import_structure["pixart_alpha"] = ["PixArtAlphaPipeline"]
_import_structure["pixart_alpha"] = ["PixArtAlphaPipeline", "PixArtSigmaPipeline"]
_import_structure["semantic_stable_diffusion"] = ["SemanticStableDiffusionPipeline"]
_import_structure["shap_e"] = ["ShapEImg2ImgPipeline", "ShapEPipeline"]
_import_structure["stable_cascade"] = [
@@ -450,7 +450,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
from .musicldm import MusicLDMPipeline
from .paint_by_example import PaintByExamplePipeline
from .pia import PIAPipeline
from .pixart_alpha import PixArtAlphaPipeline
from .pixart_alpha import PixArtAlphaPipeline, PixArtSigmaPipeline
from .semantic_stable_diffusion import SemanticStableDiffusionPipeline
from .shap_e import ShapEImg2ImgPipeline, ShapEPipeline
from .stable_cascade import (

View File

@@ -23,6 +23,7 @@ except OptionalDependencyNotAvailable:
_dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects))
else:
_import_structure["pipeline_pixart_alpha"] = ["PixArtAlphaPipeline"]
_import_structure["pipeline_pixart_sigma"] = ["PixArtSigmaPipeline"]
if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
try:
@@ -32,7 +33,13 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import *
else:
from .pipeline_pixart_alpha import PixArtAlphaPipeline
from .pipeline_pixart_alpha import (
ASPECT_RATIO_256_BIN,
ASPECT_RATIO_512_BIN,
ASPECT_RATIO_1024_BIN,
PixArtAlphaPipeline,
)
from .pipeline_pixart_sigma import ASPECT_RATIO_2048_BIN, PixArtSigmaPipeline
else:
import sys

View File

@@ -19,10 +19,9 @@ import urllib.parse as ul
from typing import Callable, List, Optional, Tuple, Union
import torch
import torch.nn.functional as F
from transformers import T5EncoderModel, T5Tokenizer
from ...image_processor import VaeImageProcessor
from ...image_processor import PixArtImageProcessor
from ...models import AutoencoderKL, Transformer2DModel
from ...schedulers import DPMSolverMultistepScheduler
from ...utils import (
@@ -272,7 +271,7 @@ class PixArtAlphaPipeline(DiffusionPipeline):
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
self.image_processor = PixArtImageProcessor(vae_scale_factor=self.vae_scale_factor)
# Adapted from https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/utils.py
def mask_text_embeddings(self, emb, mask):
@@ -674,38 +673,6 @@ class PixArtAlphaPipeline(DiffusionPipeline):
latents = latents * self.scheduler.init_noise_sigma
return latents
@staticmethod
def classify_height_width_bin(height: int, width: int, ratios: dict) -> Tuple[int, int]:
"""Returns binned height and width."""
ar = float(height / width)
closest_ratio = min(ratios.keys(), key=lambda ratio: abs(float(ratio) - ar))
default_hw = ratios[closest_ratio]
return int(default_hw[0]), int(default_hw[1])
@staticmethod
def resize_and_crop_tensor(samples: torch.Tensor, new_width: int, new_height: int) -> torch.Tensor:
orig_height, orig_width = samples.shape[2], samples.shape[3]
# Check if resizing is needed
if orig_height != new_height or orig_width != new_width:
ratio = max(new_height / orig_height, new_width / orig_width)
resized_width = int(orig_width * ratio)
resized_height = int(orig_height * ratio)
# Resize
samples = F.interpolate(
samples, size=(resized_height, resized_width), mode="bilinear", align_corners=False
)
# Center Crop
start_x = (resized_width - new_width) // 2
end_x = start_x + new_width
start_y = (resized_height - new_height) // 2
end_y = start_y + new_height
samples = samples[:, :, start_y:end_y, start_x:end_x]
return samples
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
@@ -826,7 +793,7 @@ class PixArtAlphaPipeline(DiffusionPipeline):
else:
raise ValueError("Invalid sample size")
orig_height, orig_width = height, width
height, width = self.classify_height_width_bin(height, width, ratios=aspect_ratio_bin)
height, width = self.image_processor.classify_height_width_bin(height, width, ratios=aspect_ratio_bin)
self.check_inputs(
prompt,
@@ -956,7 +923,11 @@ class PixArtAlphaPipeline(DiffusionPipeline):
noise_pred = noise_pred
# compute previous image: x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
if num_inference_steps == 1:
# For DMD one step sampling: https://arxiv.org/abs/2311.18828
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).pred_original_sample
else:
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
@@ -968,7 +939,7 @@ class PixArtAlphaPipeline(DiffusionPipeline):
if not output_type == "latent":
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
if use_resolution_binning:
image = self.resize_and_crop_tensor(image, orig_width, orig_height)
image = self.image_processor.resize_and_crop_tensor(image, orig_width, orig_height)
else:
image = latents

View File

@@ -0,0 +1,866 @@
# Copyright 2024 PixArt-Sigma Authors and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import html
import inspect
import re
import urllib.parse as ul
from typing import Callable, List, Optional, Tuple, Union
import torch
from transformers import T5EncoderModel, T5Tokenizer
from ...image_processor import PixArtImageProcessor
from ...models import AutoencoderKL, Transformer2DModel
from ...schedulers import DPMSolverMultistepScheduler
from ...utils import (
BACKENDS_MAPPING,
deprecate,
is_bs4_available,
is_ftfy_available,
logging,
replace_example_docstring,
)
from ...utils.torch_utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
from .pipeline_pixart_alpha import (
ASPECT_RATIO_256_BIN,
ASPECT_RATIO_512_BIN,
ASPECT_RATIO_1024_BIN,
)
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
if is_bs4_available():
from bs4 import BeautifulSoup
if is_ftfy_available():
import ftfy
ASPECT_RATIO_2048_BIN = {
"0.25": [1024.0, 4096.0],
"0.26": [1024.0, 3968.0],
"0.27": [1024.0, 3840.0],
"0.28": [1024.0, 3712.0],
"0.32": [1152.0, 3584.0],
"0.33": [1152.0, 3456.0],
"0.35": [1152.0, 3328.0],
"0.4": [1280.0, 3200.0],
"0.42": [1280.0, 3072.0],
"0.48": [1408.0, 2944.0],
"0.5": [1408.0, 2816.0],
"0.52": [1408.0, 2688.0],
"0.57": [1536.0, 2688.0],
"0.6": [1536.0, 2560.0],
"0.68": [1664.0, 2432.0],
"0.72": [1664.0, 2304.0],
"0.78": [1792.0, 2304.0],
"0.82": [1792.0, 2176.0],
"0.88": [1920.0, 2176.0],
"0.94": [1920.0, 2048.0],
"1.0": [2048.0, 2048.0],
"1.07": [2048.0, 1920.0],
"1.13": [2176.0, 1920.0],
"1.21": [2176.0, 1792.0],
"1.29": [2304.0, 1792.0],
"1.38": [2304.0, 1664.0],
"1.46": [2432.0, 1664.0],
"1.67": [2560.0, 1536.0],
"1.75": [2688.0, 1536.0],
"2.0": [2816.0, 1408.0],
"2.09": [2944.0, 1408.0],
"2.4": [3072.0, 1280.0],
"2.5": [3200.0, 1280.0],
"2.89": [3328.0, 1152.0],
"3.0": [3456.0, 1152.0],
"3.11": [3584.0, 1152.0],
"3.62": [3712.0, 1024.0],
"3.75": [3840.0, 1024.0],
"3.88": [3968.0, 1024.0],
"4.0": [4096.0, 1024.0],
}
EXAMPLE_DOC_STRING = """
Examples:
```py
>>> import torch
>>> from diffusers import PixArtSigmaPipeline
>>> # You can replace the checkpoint id with "PixArt-alpha/PixArt-Sigma-XL-2-512-MS" too.
>>> pipe = PixArtSigmaPipeline.from_pretrained(
... "PixArt-alpha/PixArt-Sigma-XL-2-1024-MS", torch_dtype=torch.float16
... )
>>> # Enable memory optimizations.
>>> # pipe.enable_model_cpu_offload()
>>> prompt = "A small cactus with a happy face in the Sahara desert."
>>> image = pipe(prompt).images[0]
```
"""
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
def retrieve_timesteps(
scheduler,
num_inference_steps: Optional[int] = None,
device: Optional[Union[str, torch.device]] = None,
timesteps: Optional[List[int]] = None,
**kwargs,
):
"""
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
Args:
scheduler (`SchedulerMixin`):
The scheduler to get timesteps from.
num_inference_steps (`int`):
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
must be `None`.
device (`str` or `torch.device`, *optional*):
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
timesteps (`List[int]`, *optional*):
Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps`
must be `None`.
Returns:
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
second element is the number of inference steps.
"""
if timesteps is not None:
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
if not accepts_timesteps:
raise ValueError(
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
f" timestep schedules. Please check whether you are using the correct scheduler."
)
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
else:
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
timesteps = scheduler.timesteps
return timesteps, num_inference_steps
class PixArtSigmaPipeline(DiffusionPipeline):
r"""
Pipeline for text-to-image generation using PixArt-Sigma.
"""
bad_punct_regex = re.compile(
r"["
+ "#®•©™&@·º½¾¿¡§~"
+ r"\)"
+ r"\("
+ r"\]"
+ r"\["
+ r"\}"
+ r"\{"
+ r"\|"
+ "\\"
+ r"\/"
+ r"\*"
+ r"]{1,}"
) # noqa
_optional_components = ["tokenizer", "text_encoder"]
model_cpu_offload_seq = "text_encoder->transformer->vae"
def __init__(
self,
tokenizer: T5Tokenizer,
text_encoder: T5EncoderModel,
vae: AutoencoderKL,
transformer: Transformer2DModel,
scheduler: DPMSolverMultistepScheduler,
):
super().__init__()
self.register_modules(
tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.image_processor = PixArtImageProcessor(vae_scale_factor=self.vae_scale_factor)
# copied from diffusers.pipelines.pixart_alpha.pipeline_pixart_alpha.py
def mask_text_embeddings(self, emb, mask):
if emb.shape[0] == 1:
keep_index = mask.sum().item()
return emb[:, :, :keep_index, :], keep_index
else:
masked_feature = emb * mask[:, None, :, None]
return masked_feature, emb.shape[2]
# Adapted from diffusers.pipelines.deepfloyd_if.pipeline_if.encode_prompt
def encode_prompt(
self,
prompt: Union[str, List[str]],
do_classifier_free_guidance: bool = True,
negative_prompt: str = "",
num_images_per_prompt: int = 1,
device: Optional[torch.device] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
prompt_attention_mask: Optional[torch.FloatTensor] = None,
negative_prompt_attention_mask: Optional[torch.FloatTensor] = None,
clean_caption: bool = False,
max_sequence_length: int = 120,
**kwargs,
):
r"""
Encodes the prompt into text encoder hidden states.
Args:
prompt (`str` or `List[str]`, *optional*):
prompt to be encoded
negative_prompt (`str` or `List[str]`, *optional*):
The prompt not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds`
instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). For
PixArt-Alpha, this should be "".
do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
whether to use classifier free guidance or not
num_images_per_prompt (`int`, *optional*, defaults to 1):
number of images that should be generated per prompt
device: (`torch.device`, *optional*):
torch device to place the resulting embeddings on
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. For PixArt-Alpha, it's should be the embeddings of the ""
string.
clean_caption (`bool`, defaults to `False`):
If `True`, the function will preprocess and clean the provided caption before encoding.
max_sequence_length (`int`, defaults to 120): Maximum sequence length to use for the prompt.
"""
if "mask_feature" in kwargs:
deprecation_message = "The use of `mask_feature` is deprecated. It is no longer used in any computation and that doesn't affect the end results. It will be removed in a future version."
deprecate("mask_feature", "1.0.0", deprecation_message, standard_warn=False)
if device is None:
device = self._execution_device
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
# See Section 3.1. of the paper.
max_length = max_sequence_length
if prompt_embeds is None:
prompt = self._text_preprocessing(prompt, clean_caption=clean_caption)
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=max_length,
truncation=True,
add_special_tokens=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
text_input_ids, untruncated_ids
):
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_length - 1 : -1])
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {max_length} tokens: {removed_text}"
)
prompt_attention_mask = text_inputs.attention_mask
prompt_attention_mask = prompt_attention_mask.to(device)
prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=prompt_attention_mask)
prompt_embeds = prompt_embeds[0]
if self.text_encoder is not None:
dtype = self.text_encoder.dtype
elif self.transformer is not None:
dtype = self.transformer.dtype
else:
dtype = None
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
bs_embed, seq_len, _ = prompt_embeds.shape
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
prompt_attention_mask = prompt_attention_mask.view(bs_embed, -1)
prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1)
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance and negative_prompt_embeds is None:
uncond_tokens = [negative_prompt] * batch_size
uncond_tokens = self._text_preprocessing(uncond_tokens, clean_caption=clean_caption)
max_length = prompt_embeds.shape[1]
uncond_input = self.tokenizer(
uncond_tokens,
padding="max_length",
max_length=max_length,
truncation=True,
return_attention_mask=True,
add_special_tokens=True,
return_tensors="pt",
)
negative_prompt_attention_mask = uncond_input.attention_mask
negative_prompt_attention_mask = negative_prompt_attention_mask.to(device)
negative_prompt_embeds = self.text_encoder(
uncond_input.input_ids.to(device), attention_mask=negative_prompt_attention_mask
)
negative_prompt_embeds = negative_prompt_embeds[0]
if do_classifier_free_guidance:
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = negative_prompt_embeds.shape[1]
negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device)
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
negative_prompt_attention_mask = negative_prompt_attention_mask.view(bs_embed, -1)
negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(num_images_per_prompt, 1)
else:
negative_prompt_embeds = None
negative_prompt_attention_mask = None
return prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
def prepare_extra_step_kwargs(self, generator, eta):
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
# check if the scheduler accepts generator
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
if accepts_generator:
extra_step_kwargs["generator"] = generator
return extra_step_kwargs
# copied from diffusers.pipelines.pixart_alpha.pipeline_pixart_alpha.py
def check_inputs(
self,
prompt,
height,
width,
negative_prompt,
callback_steps,
prompt_embeds=None,
negative_prompt_embeds=None,
prompt_attention_mask=None,
negative_prompt_attention_mask=None,
):
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
):
raise ValueError(
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
f" {type(callback_steps)}."
)
if prompt is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt is None and prompt_embeds is None:
raise ValueError(
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
)
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
if prompt is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:"
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
)
if negative_prompt is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
)
if prompt_embeds is not None and prompt_attention_mask is None:
raise ValueError("Must provide `prompt_attention_mask` when specifying `prompt_embeds`.")
if negative_prompt_embeds is not None and negative_prompt_attention_mask is None:
raise ValueError("Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.")
if prompt_embeds is not None and negative_prompt_embeds is not None:
if prompt_embeds.shape != negative_prompt_embeds.shape:
raise ValueError(
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
f" {negative_prompt_embeds.shape}."
)
if prompt_attention_mask.shape != negative_prompt_attention_mask.shape:
raise ValueError(
"`prompt_attention_mask` and `negative_prompt_attention_mask` must have the same shape when passed directly, but"
f" got: `prompt_attention_mask` {prompt_attention_mask.shape} != `negative_prompt_attention_mask`"
f" {negative_prompt_attention_mask.shape}."
)
# Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._text_preprocessing
def _text_preprocessing(self, text, clean_caption=False):
if clean_caption and not is_bs4_available():
logger.warning(BACKENDS_MAPPING["bs4"][-1].format("Setting `clean_caption=True`"))
logger.warning("Setting `clean_caption` to False...")
clean_caption = False
if clean_caption and not is_ftfy_available():
logger.warning(BACKENDS_MAPPING["ftfy"][-1].format("Setting `clean_caption=True`"))
logger.warning("Setting `clean_caption` to False...")
clean_caption = False
if not isinstance(text, (tuple, list)):
text = [text]
def process(text: str):
if clean_caption:
text = self._clean_caption(text)
text = self._clean_caption(text)
else:
text = text.lower().strip()
return text
return [process(t) for t in text]
# Copied from diffusers.pipelines.pixart_alpha.pipeline_pixart_alpha.PixArtAlphaPipeline._clean_caption
def _clean_caption(self, caption):
caption = str(caption)
caption = ul.unquote_plus(caption)
caption = caption.strip().lower()
caption = re.sub("<person>", "person", caption)
# urls:
caption = re.sub(
r"\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa
"",
caption,
) # regex for urls
caption = re.sub(
r"\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa
"",
caption,
) # regex for urls
# html:
caption = BeautifulSoup(caption, features="html.parser").text
# @<nickname>
caption = re.sub(r"@[\w\d]+\b", "", caption)
# 31C0—31EF CJK Strokes
# 31F0—31FF Katakana Phonetic Extensions
# 3200—32FF Enclosed CJK Letters and Months
# 3300—33FF CJK Compatibility
# 3400—4DBF CJK Unified Ideographs Extension A
# 4DC0—4DFF Yijing Hexagram Symbols
# 4E00—9FFF CJK Unified Ideographs
caption = re.sub(r"[\u31c0-\u31ef]+", "", caption)
caption = re.sub(r"[\u31f0-\u31ff]+", "", caption)
caption = re.sub(r"[\u3200-\u32ff]+", "", caption)
caption = re.sub(r"[\u3300-\u33ff]+", "", caption)
caption = re.sub(r"[\u3400-\u4dbf]+", "", caption)
caption = re.sub(r"[\u4dc0-\u4dff]+", "", caption)
caption = re.sub(r"[\u4e00-\u9fff]+", "", caption)
#######################################################
# все виды тире / all types of dash --> "-"
caption = re.sub(
r"[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+", # noqa
"-",
caption,
)
# кавычки к одному стандарту
caption = re.sub(r"[`´«»“”¨]", '"', caption)
caption = re.sub(r"[]", "'", caption)
# &quot;
caption = re.sub(r"&quot;?", "", caption)
# &amp
caption = re.sub(r"&amp", "", caption)
# ip adresses:
caption = re.sub(r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}", " ", caption)
# article ids:
caption = re.sub(r"\d:\d\d\s+$", "", caption)
# \n
caption = re.sub(r"\\n", " ", caption)
# "#123"
caption = re.sub(r"#\d{1,3}\b", "", caption)
# "#12345.."
caption = re.sub(r"#\d{5,}\b", "", caption)
# "123456.."
caption = re.sub(r"\b\d{6,}\b", "", caption)
# filenames:
caption = re.sub(r"[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)", "", caption)
#
caption = re.sub(r"[\"\']{2,}", r'"', caption) # """AUSVERKAUFT"""
caption = re.sub(r"[\.]{2,}", r" ", caption) # """AUSVERKAUFT"""
caption = re.sub(self.bad_punct_regex, r" ", caption) # ***AUSVERKAUFT***, #AUSVERKAUFT
caption = re.sub(r"\s+\.\s+", r" ", caption) # " . "
# this-is-my-cute-cat / this_is_my_cute_cat
regex2 = re.compile(r"(?:\-|\_)")
if len(re.findall(regex2, caption)) > 3:
caption = re.sub(regex2, " ", caption)
caption = ftfy.fix_text(caption)
caption = html.unescape(html.unescape(caption))
caption = re.sub(r"\b[a-zA-Z]{1,3}\d{3,15}\b", "", caption) # jc6640
caption = re.sub(r"\b[a-zA-Z]+\d+[a-zA-Z]+\b", "", caption) # jc6640vc
caption = re.sub(r"\b\d+[a-zA-Z]+\d+\b", "", caption) # 6640vc231
caption = re.sub(r"(worldwide\s+)?(free\s+)?shipping", "", caption)
caption = re.sub(r"(free\s)?download(\sfree)?", "", caption)
caption = re.sub(r"\bclick\b\s(?:for|on)\s\w+", "", caption)
caption = re.sub(r"\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?", "", caption)
caption = re.sub(r"\bpage\s+\d+\b", "", caption)
caption = re.sub(r"\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b", r" ", caption) # j2d1a2a...
caption = re.sub(r"\b\d+\.?\d*[xх×]\d+\.?\d*\b", "", caption)
caption = re.sub(r"\b\s+\:\s+", r": ", caption)
caption = re.sub(r"(\D[,\./])\b", r"\1 ", caption)
caption = re.sub(r"\s+", " ", caption)
caption.strip()
caption = re.sub(r"^[\"\']([\w\W]+)[\"\']$", r"\1", caption)
caption = re.sub(r"^[\'\_,\-\:;]", r"", caption)
caption = re.sub(r"[\'\_,\-\:\-\+]$", r"", caption)
caption = re.sub(r"^\.\S+$", "", caption)
return caption.strip()
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
shape = (
batch_size,
num_channels_latents,
int(height) // self.vae_scale_factor,
int(width) // self.vae_scale_factor,
)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
if latents is None:
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
else:
latents = latents.to(device)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * self.scheduler.init_noise_sigma
return latents
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
prompt: Union[str, List[str]] = None,
negative_prompt: str = "",
num_inference_steps: int = 20,
timesteps: List[int] = None,
guidance_scale: float = 4.5,
num_images_per_prompt: Optional[int] = 1,
height: Optional[int] = None,
width: Optional[int] = None,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
prompt_attention_mask: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_attention_mask: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
clean_caption: bool = True,
use_resolution_binning: bool = True,
max_sequence_length: int = 300,
**kwargs,
) -> Union[ImagePipelineOutput, Tuple]:
"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
instead.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
less than `1`).
num_inference_steps (`int`, *optional*, defaults to 100):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
timesteps (`List[int]`, *optional*):
Custom timesteps to use for the denoising process. If not defined, equal spaced `num_inference_steps`
timesteps are used. Must be in descending order.
guidance_scale (`float`, *optional*, defaults to 4.5):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
height (`int`, *optional*, defaults to self.unet.config.sample_size):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to self.unet.config.sample_size):
The width in pixels of the generated image.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
[`schedulers.DDIMScheduler`], will be ignored for others.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
prompt_attention_mask (`torch.FloatTensor`, *optional*): Pre-generated attention mask for text embeddings.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. For PixArt-Sigma this negative prompt should be "". If not
provided, negative_prompt_embeds will be generated from `negative_prompt` input argument.
negative_prompt_attention_mask (`torch.FloatTensor`, *optional*):
Pre-generated attention mask for negative text embeddings.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple.
callback (`Callable`, *optional*):
A function that will be called every `callback_steps` steps during inference. The function will be
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function will be called. If not specified, the callback will be
called at every step.
clean_caption (`bool`, *optional*, defaults to `True`):
Whether or not to clean the caption before creating embeddings. Requires `beautifulsoup4` and `ftfy` to
be installed. If the dependencies are not installed, the embeddings will be created from the raw
prompt.
use_resolution_binning (`bool` defaults to `True`):
If set to `True`, the requested height and width are first mapped to the closest resolutions using
`ASPECT_RATIO_1024_BIN`. After the produced latents are decoded into images, they are resized back to
the requested resolution. Useful for generating non-square images.
max_sequence_length (`int` defaults to 120): Maximum sequence length to use with the `prompt`.
Examples:
Returns:
[`~pipelines.ImagePipelineOutput`] or `tuple`:
If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is
returned where the first element is a list with the generated images
"""
# 1. Check inputs. Raise error if not correct
height = height or self.transformer.config.sample_size * self.vae_scale_factor
width = width or self.transformer.config.sample_size * self.vae_scale_factor
if use_resolution_binning:
if self.transformer.config.sample_size == 256:
aspect_ratio_bin = ASPECT_RATIO_2048_BIN
elif self.transformer.config.sample_size == 128:
aspect_ratio_bin = ASPECT_RATIO_1024_BIN
elif self.transformer.config.sample_size == 64:
aspect_ratio_bin = ASPECT_RATIO_512_BIN
elif self.transformer.config.sample_size == 32:
aspect_ratio_bin = ASPECT_RATIO_256_BIN
else:
raise ValueError("Invalid sample size")
orig_height, orig_width = height, width
height, width = self.image_processor.classify_height_width_bin(height, width, ratios=aspect_ratio_bin)
self.check_inputs(
prompt,
height,
width,
negative_prompt,
callback_steps,
prompt_embeds,
negative_prompt_embeds,
prompt_attention_mask,
negative_prompt_attention_mask,
)
# 2. Default height and width to transformer
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# 3. Encode input prompt
(
prompt_embeds,
prompt_attention_mask,
negative_prompt_embeds,
negative_prompt_attention_mask,
) = self.encode_prompt(
prompt,
do_classifier_free_guidance,
negative_prompt=negative_prompt,
num_images_per_prompt=num_images_per_prompt,
device=device,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
prompt_attention_mask=prompt_attention_mask,
negative_prompt_attention_mask=negative_prompt_attention_mask,
clean_caption=clean_caption,
max_sequence_length=max_sequence_length,
)
if do_classifier_free_guidance:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask], dim=0)
# 4. Prepare timesteps
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
# 5. Prepare latents.
latent_channels = self.transformer.config.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
latent_channels,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# 6.1 Prepare micro-conditions.
added_cond_kwargs = {"resolution": None, "aspect_ratio": None}
# 7. Denoising loop
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
current_timestep = t
if not torch.is_tensor(current_timestep):
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
# This would be a good case for the `match` statement (Python 3.10+)
is_mps = latent_model_input.device.type == "mps"
if isinstance(current_timestep, float):
dtype = torch.float32 if is_mps else torch.float64
else:
dtype = torch.int32 if is_mps else torch.int64
current_timestep = torch.tensor([current_timestep], dtype=dtype, device=latent_model_input.device)
elif len(current_timestep.shape) == 0:
current_timestep = current_timestep[None].to(latent_model_input.device)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
current_timestep = current_timestep.expand(latent_model_input.shape[0])
# predict noise model_output
noise_pred = self.transformer(
latent_model_input,
encoder_hidden_states=prompt_embeds,
encoder_attention_mask=prompt_attention_mask,
timestep=current_timestep,
added_cond_kwargs=added_cond_kwargs,
return_dict=False,
)[0]
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# learned sigma
if self.transformer.config.out_channels // 2 == latent_channels:
noise_pred = noise_pred.chunk(2, dim=1)[0]
else:
noise_pred = noise_pred
# compute previous image: x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
step_idx = i // getattr(self.scheduler, "order", 1)
callback(step_idx, t, latents)
if not output_type == "latent":
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
if use_resolution_binning:
image = self.image_processor.resize_and_crop_tensor(image, orig_width, orig_height)
else:
image = latents
if not output_type == "latent":
image = self.image_processor.postprocess(image, output_type=output_type)
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (image,)
return ImagePipelineOutput(images=image)

View File

@@ -737,6 +737,21 @@ class PixArtAlphaPipeline(metaclass=DummyObject):
requires_backends(cls, ["torch", "transformers"])
class PixArtSigmaPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
class SemanticStableDiffusionPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]

View File

@@ -324,6 +324,10 @@ class PixArtAlphaPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
def test_inference_batch_single_identical(self):
self._test_inference_batch_single_identical(expected_max_diff=1e-3)
# PixArt transformer model does not work with sequential offload so skip it for now
def test_sequential_offload_forward_pass_twice(self):
pass
@slow
@require_torch_gpu

View File

View File

@@ -0,0 +1,430 @@
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import tempfile
import unittest
import numpy as np
import torch
from transformers import AutoTokenizer, T5EncoderModel
from diffusers import (
AutoencoderKL,
DDIMScheduler,
PixArtSigmaPipeline,
Transformer2DModel,
)
from diffusers.utils.testing_utils import (
enable_full_determinism,
numpy_cosine_similarity_distance,
require_torch_gpu,
slow,
torch_device,
)
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin, to_np
enable_full_determinism()
class PixArtSigmaPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = PixArtSigmaPipeline
params = TEXT_TO_IMAGE_PARAMS - {"cross_attention_kwargs"}
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
required_optional_params = PipelineTesterMixin.required_optional_params
def get_dummy_components(self):
torch.manual_seed(0)
transformer = Transformer2DModel(
sample_size=8,
num_layers=2,
patch_size=2,
attention_head_dim=8,
num_attention_heads=3,
caption_channels=32,
in_channels=4,
cross_attention_dim=24,
out_channels=8,
attention_bias=True,
activation_fn="gelu-approximate",
num_embeds_ada_norm=1000,
norm_type="ada_norm_single",
norm_elementwise_affine=False,
norm_eps=1e-6,
)
torch.manual_seed(0)
vae = AutoencoderKL()
scheduler = DDIMScheduler()
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
components = {
"transformer": transformer.eval(),
"vae": vae.eval(),
"scheduler": scheduler,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
}
return components
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 5.0,
"use_resolution_binning": False,
"output_type": "np",
}
return inputs
def test_sequential_cpu_offload_forward_pass(self):
# TODO(PVP, Sayak) need to fix later
return
def test_save_load_optional_components(self):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
prompt = inputs["prompt"]
generator = inputs["generator"]
num_inference_steps = inputs["num_inference_steps"]
output_type = inputs["output_type"]
(
prompt_embeds,
prompt_attention_mask,
negative_prompt_embeds,
negative_prompt_attention_mask,
) = pipe.encode_prompt(prompt)
# inputs with prompt converted to embeddings
inputs = {
"prompt_embeds": prompt_embeds,
"prompt_attention_mask": prompt_attention_mask,
"negative_prompt": None,
"negative_prompt_embeds": negative_prompt_embeds,
"negative_prompt_attention_mask": negative_prompt_attention_mask,
"generator": generator,
"num_inference_steps": num_inference_steps,
"output_type": output_type,
"use_resolution_binning": False,
}
# set all optional components to None
for optional_component in pipe._optional_components:
setattr(pipe, optional_component, None)
output = pipe(**inputs)[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(tmpdir)
pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)
pipe_loaded.to(torch_device)
pipe_loaded.set_progress_bar_config(disable=None)
for optional_component in pipe._optional_components:
self.assertTrue(
getattr(pipe_loaded, optional_component) is None,
f"`{optional_component}` did not stay set to None after loading.",
)
inputs = self.get_dummy_inputs(torch_device)
generator = inputs["generator"]
num_inference_steps = inputs["num_inference_steps"]
output_type = inputs["output_type"]
# inputs with prompt converted to embeddings
inputs = {
"prompt_embeds": prompt_embeds,
"prompt_attention_mask": prompt_attention_mask,
"negative_prompt": None,
"negative_prompt_embeds": negative_prompt_embeds,
"negative_prompt_attention_mask": negative_prompt_attention_mask,
"generator": generator,
"num_inference_steps": num_inference_steps,
"output_type": output_type,
"use_resolution_binning": False,
}
output_loaded = pipe_loaded(**inputs)[0]
max_diff = np.abs(to_np(output) - to_np(output_loaded)).max()
self.assertLess(max_diff, 1e-4)
def test_inference(self):
device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
self.assertEqual(image.shape, (1, 8, 8, 3))
expected_slice = np.array([0.6319, 0.3526, 0.3806, 0.6327, 0.4639, 0.4830, 0.2583, 0.5331, 0.4852])
max_diff = np.abs(image_slice.flatten() - expected_slice).max()
self.assertLessEqual(max_diff, 1e-3)
def test_inference_non_square_images(self):
device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = pipe(**inputs, height=32, width=48).images
image_slice = image[0, -3:, -3:, -1]
self.assertEqual(image.shape, (1, 32, 48, 3))
expected_slice = np.array([0.6493, 0.5370, 0.4081, 0.4762, 0.3695, 0.4711, 0.3026, 0.5218, 0.5263])
max_diff = np.abs(image_slice.flatten() - expected_slice).max()
self.assertLessEqual(max_diff, 1e-3)
def test_inference_with_embeddings_and_multiple_images(self):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
prompt = inputs["prompt"]
generator = inputs["generator"]
num_inference_steps = inputs["num_inference_steps"]
output_type = inputs["output_type"]
prompt_embeds, prompt_attn_mask, negative_prompt_embeds, neg_prompt_attn_mask = pipe.encode_prompt(prompt)
# inputs with prompt converted to embeddings
inputs = {
"prompt_embeds": prompt_embeds,
"prompt_attention_mask": prompt_attn_mask,
"negative_prompt": None,
"negative_prompt_embeds": negative_prompt_embeds,
"negative_prompt_attention_mask": neg_prompt_attn_mask,
"generator": generator,
"num_inference_steps": num_inference_steps,
"output_type": output_type,
"num_images_per_prompt": 2,
"use_resolution_binning": False,
}
# set all optional components to None
for optional_component in pipe._optional_components:
setattr(pipe, optional_component, None)
output = pipe(**inputs)[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(tmpdir)
pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)
pipe_loaded.to(torch_device)
pipe_loaded.set_progress_bar_config(disable=None)
for optional_component in pipe._optional_components:
self.assertTrue(
getattr(pipe_loaded, optional_component) is None,
f"`{optional_component}` did not stay set to None after loading.",
)
inputs = self.get_dummy_inputs(torch_device)
generator = inputs["generator"]
num_inference_steps = inputs["num_inference_steps"]
output_type = inputs["output_type"]
# inputs with prompt converted to embeddings
inputs = {
"prompt_embeds": prompt_embeds,
"prompt_attention_mask": prompt_attn_mask,
"negative_prompt": None,
"negative_prompt_embeds": negative_prompt_embeds,
"negative_prompt_attention_mask": neg_prompt_attn_mask,
"generator": generator,
"num_inference_steps": num_inference_steps,
"output_type": output_type,
"num_images_per_prompt": 2,
"use_resolution_binning": False,
}
output_loaded = pipe_loaded(**inputs)[0]
max_diff = np.abs(to_np(output) - to_np(output_loaded)).max()
self.assertLess(max_diff, 1e-4)
def test_inference_with_multiple_images_per_prompt(self):
device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
inputs["num_images_per_prompt"] = 2
image = pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
self.assertEqual(image.shape, (2, 8, 8, 3))
expected_slice = np.array([0.6319, 0.3526, 0.3806, 0.6327, 0.4639, 0.4830, 0.2583, 0.5331, 0.4852])
max_diff = np.abs(image_slice.flatten() - expected_slice).max()
self.assertLessEqual(max_diff, 1e-3)
def test_inference_batch_single_identical(self):
self._test_inference_batch_single_identical(expected_max_diff=1e-3)
# PixArt transformer model does not work with sequential offload so skip it for now
def test_sequential_offload_forward_pass_twice(self):
pass
@slow
@require_torch_gpu
class PixArtSigmaPipelineIntegrationTests(unittest.TestCase):
ckpt_id_1024 = "PixArt-alpha/PixArt-Sigma-XL-2-1024-MS"
ckpt_id_512 = "PixArt-alpha/PixArt-Sigma-XL-2-512-MS"
prompt = "A small cactus with a happy face in the Sahara desert."
def setUp(self):
super().setUp()
gc.collect()
torch.cuda.empty_cache()
def tearDown(self):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_pixart_1024(self):
generator = torch.Generator("cpu").manual_seed(0)
pipe = PixArtSigmaPipeline.from_pretrained(self.ckpt_id_1024, torch_dtype=torch.float16)
pipe.enable_model_cpu_offload()
prompt = self.prompt
image = pipe(prompt, generator=generator, num_inference_steps=2, output_type="np").images
image_slice = image[0, -3:, -3:, -1]
expected_slice = np.array([0.0742, 0.0835, 0.2114, 0.0295, 0.0784, 0.2361, 0.1738, 0.2251, 0.3589])
max_diff = numpy_cosine_similarity_distance(image_slice.flatten(), expected_slice)
self.assertLessEqual(max_diff, 1e-4)
def test_pixart_512(self):
generator = torch.Generator("cpu").manual_seed(0)
pipe = PixArtSigmaPipeline.from_pretrained(self.ckpt_id_512, torch_dtype=torch.float16)
pipe.enable_model_cpu_offload()
prompt = self.prompt
image = pipe(prompt, generator=generator, num_inference_steps=2, output_type="np").images
image_slice = image[0, -3:, -3:, -1]
expected_slice = np.array([0.3477, 0.3882, 0.4541, 0.3413, 0.3821, 0.4463, 0.4001, 0.4409, 0.4958])
max_diff = numpy_cosine_similarity_distance(image_slice.flatten(), expected_slice)
self.assertLessEqual(max_diff, 1e-4)
def test_pixart_1024_without_resolution_binning(self):
generator = torch.manual_seed(0)
pipe = PixArtSigmaPipeline.from_pretrained(self.ckpt_id_1024, torch_dtype=torch.float16)
pipe.enable_model_cpu_offload()
prompt = self.prompt
height, width = 1024, 768
num_inference_steps = 2
image = pipe(
prompt,
height=height,
width=width,
generator=generator,
num_inference_steps=num_inference_steps,
output_type="np",
).images
image_slice = image[0, -3:, -3:, -1]
generator = torch.manual_seed(0)
no_res_bin_image = pipe(
prompt,
height=height,
width=width,
generator=generator,
num_inference_steps=num_inference_steps,
output_type="np",
use_resolution_binning=False,
).images
no_res_bin_image_slice = no_res_bin_image[0, -3:, -3:, -1]
assert not np.allclose(image_slice, no_res_bin_image_slice, atol=1e-4, rtol=1e-4)
def test_pixart_512_without_resolution_binning(self):
generator = torch.manual_seed(0)
pipe = PixArtSigmaPipeline.from_pretrained(self.ckpt_id_512, torch_dtype=torch.float16)
pipe.enable_model_cpu_offload()
prompt = self.prompt
height, width = 512, 768
num_inference_steps = 2
image = pipe(
prompt,
height=height,
width=width,
generator=generator,
num_inference_steps=num_inference_steps,
output_type="np",
).images
image_slice = image[0, -3:, -3:, -1]
generator = torch.manual_seed(0)
no_res_bin_image = pipe(
prompt,
height=height,
width=width,
generator=generator,
num_inference_steps=num_inference_steps,
output_type="np",
use_resolution_binning=False,
).images
no_res_bin_image_slice = no_res_bin_image[0, -3:, -3:, -1]
assert not np.allclose(image_slice, no_res_bin_image_slice, atol=1e-4, rtol=1e-4)