diff --git a/scripts/convert_pixart_sigma_to_diffusers.py b/scripts/convert_pixart_sigma_to_diffusers.py new file mode 100644 index 0000000000..9572a83c06 --- /dev/null +++ b/scripts/convert_pixart_sigma_to_diffusers.py @@ -0,0 +1,223 @@ +import argparse +import os + +import torch +from transformers import T5EncoderModel, T5Tokenizer + +from diffusers import AutoencoderKL, DPMSolverMultistepScheduler, PixArtSigmaPipeline, Transformer2DModel + + +ckpt_id = "PixArt-alpha" +# https://github.com/PixArt-alpha/PixArt-sigma/blob/dd087141864e30ec44f12cb7448dd654be065e88/scripts/inference.py#L158 +interpolation_scale = {256: 0.5, 512: 1, 1024: 2, 2048: 4} + + +def main(args): + all_state_dict = torch.load(args.orig_ckpt_path) + state_dict = all_state_dict.pop("state_dict") + converted_state_dict = {} + + # Patch embeddings. + converted_state_dict["pos_embed.proj.weight"] = state_dict.pop("x_embedder.proj.weight") + converted_state_dict["pos_embed.proj.bias"] = state_dict.pop("x_embedder.proj.bias") + + # Caption projection. + converted_state_dict["caption_projection.linear_1.weight"] = state_dict.pop("y_embedder.y_proj.fc1.weight") + converted_state_dict["caption_projection.linear_1.bias"] = state_dict.pop("y_embedder.y_proj.fc1.bias") + converted_state_dict["caption_projection.linear_2.weight"] = state_dict.pop("y_embedder.y_proj.fc2.weight") + converted_state_dict["caption_projection.linear_2.bias"] = state_dict.pop("y_embedder.y_proj.fc2.bias") + + # AdaLN-single LN + converted_state_dict["adaln_single.emb.timestep_embedder.linear_1.weight"] = state_dict.pop( + "t_embedder.mlp.0.weight" + ) + converted_state_dict["adaln_single.emb.timestep_embedder.linear_1.bias"] = state_dict.pop("t_embedder.mlp.0.bias") + converted_state_dict["adaln_single.emb.timestep_embedder.linear_2.weight"] = state_dict.pop( + "t_embedder.mlp.2.weight" + ) + converted_state_dict["adaln_single.emb.timestep_embedder.linear_2.bias"] = state_dict.pop("t_embedder.mlp.2.bias") + + if args.micro_condition: + # Resolution. + converted_state_dict["adaln_single.emb.resolution_embedder.linear_1.weight"] = state_dict.pop( + "csize_embedder.mlp.0.weight" + ) + converted_state_dict["adaln_single.emb.resolution_embedder.linear_1.bias"] = state_dict.pop( + "csize_embedder.mlp.0.bias" + ) + converted_state_dict["adaln_single.emb.resolution_embedder.linear_2.weight"] = state_dict.pop( + "csize_embedder.mlp.2.weight" + ) + converted_state_dict["adaln_single.emb.resolution_embedder.linear_2.bias"] = state_dict.pop( + "csize_embedder.mlp.2.bias" + ) + # Aspect ratio. + converted_state_dict["adaln_single.emb.aspect_ratio_embedder.linear_1.weight"] = state_dict.pop( + "ar_embedder.mlp.0.weight" + ) + converted_state_dict["adaln_single.emb.aspect_ratio_embedder.linear_1.bias"] = state_dict.pop( + "ar_embedder.mlp.0.bias" + ) + converted_state_dict["adaln_single.emb.aspect_ratio_embedder.linear_2.weight"] = state_dict.pop( + "ar_embedder.mlp.2.weight" + ) + converted_state_dict["adaln_single.emb.aspect_ratio_embedder.linear_2.bias"] = state_dict.pop( + "ar_embedder.mlp.2.bias" + ) + # Shared norm. + converted_state_dict["adaln_single.linear.weight"] = state_dict.pop("t_block.1.weight") + converted_state_dict["adaln_single.linear.bias"] = state_dict.pop("t_block.1.bias") + + for depth in range(28): + # Transformer blocks. + converted_state_dict[f"transformer_blocks.{depth}.scale_shift_table"] = state_dict.pop( + f"blocks.{depth}.scale_shift_table" + ) + # Attention is all you need 🤘 + + # Self attention. + q, k, v = torch.chunk(state_dict.pop(f"blocks.{depth}.attn.qkv.weight"), 3, dim=0) + q_bias, k_bias, v_bias = torch.chunk(state_dict.pop(f"blocks.{depth}.attn.qkv.bias"), 3, dim=0) + converted_state_dict[f"transformer_blocks.{depth}.attn1.to_q.weight"] = q + converted_state_dict[f"transformer_blocks.{depth}.attn1.to_q.bias"] = q_bias + converted_state_dict[f"transformer_blocks.{depth}.attn1.to_k.weight"] = k + converted_state_dict[f"transformer_blocks.{depth}.attn1.to_k.bias"] = k_bias + converted_state_dict[f"transformer_blocks.{depth}.attn1.to_v.weight"] = v + converted_state_dict[f"transformer_blocks.{depth}.attn1.to_v.bias"] = v_bias + # Projection. + converted_state_dict[f"transformer_blocks.{depth}.attn1.to_out.0.weight"] = state_dict.pop( + f"blocks.{depth}.attn.proj.weight" + ) + converted_state_dict[f"transformer_blocks.{depth}.attn1.to_out.0.bias"] = state_dict.pop( + f"blocks.{depth}.attn.proj.bias" + ) + if args.qk_norm: + converted_state_dict[f"transformer_blocks.{depth}.attn1.q_norm.weight"] = state_dict.pop( + f"blocks.{depth}.attn.q_norm.weight" + ) + converted_state_dict[f"transformer_blocks.{depth}.attn1.q_norm.bias"] = state_dict.pop( + f"blocks.{depth}.attn.q_norm.bias" + ) + converted_state_dict[f"transformer_blocks.{depth}.attn1.k_norm.weight"] = state_dict.pop( + f"blocks.{depth}.attn.k_norm.weight" + ) + converted_state_dict[f"transformer_blocks.{depth}.attn1.k_norm.bias"] = state_dict.pop( + f"blocks.{depth}.attn.k_norm.bias" + ) + + # Feed-forward. + converted_state_dict[f"transformer_blocks.{depth}.ff.net.0.proj.weight"] = state_dict.pop( + f"blocks.{depth}.mlp.fc1.weight" + ) + converted_state_dict[f"transformer_blocks.{depth}.ff.net.0.proj.bias"] = state_dict.pop( + f"blocks.{depth}.mlp.fc1.bias" + ) + converted_state_dict[f"transformer_blocks.{depth}.ff.net.2.weight"] = state_dict.pop( + f"blocks.{depth}.mlp.fc2.weight" + ) + converted_state_dict[f"transformer_blocks.{depth}.ff.net.2.bias"] = state_dict.pop( + f"blocks.{depth}.mlp.fc2.bias" + ) + + # Cross-attention. + q = state_dict.pop(f"blocks.{depth}.cross_attn.q_linear.weight") + q_bias = state_dict.pop(f"blocks.{depth}.cross_attn.q_linear.bias") + k, v = torch.chunk(state_dict.pop(f"blocks.{depth}.cross_attn.kv_linear.weight"), 2, dim=0) + k_bias, v_bias = torch.chunk(state_dict.pop(f"blocks.{depth}.cross_attn.kv_linear.bias"), 2, dim=0) + + converted_state_dict[f"transformer_blocks.{depth}.attn2.to_q.weight"] = q + converted_state_dict[f"transformer_blocks.{depth}.attn2.to_q.bias"] = q_bias + converted_state_dict[f"transformer_blocks.{depth}.attn2.to_k.weight"] = k + converted_state_dict[f"transformer_blocks.{depth}.attn2.to_k.bias"] = k_bias + converted_state_dict[f"transformer_blocks.{depth}.attn2.to_v.weight"] = v + converted_state_dict[f"transformer_blocks.{depth}.attn2.to_v.bias"] = v_bias + + converted_state_dict[f"transformer_blocks.{depth}.attn2.to_out.0.weight"] = state_dict.pop( + f"blocks.{depth}.cross_attn.proj.weight" + ) + converted_state_dict[f"transformer_blocks.{depth}.attn2.to_out.0.bias"] = state_dict.pop( + f"blocks.{depth}.cross_attn.proj.bias" + ) + + # Final block. + converted_state_dict["proj_out.weight"] = state_dict.pop("final_layer.linear.weight") + converted_state_dict["proj_out.bias"] = state_dict.pop("final_layer.linear.bias") + converted_state_dict["scale_shift_table"] = state_dict.pop("final_layer.scale_shift_table") + + # PixArt XL/2 + transformer = Transformer2DModel( + sample_size=args.image_size // 8, + num_layers=28, + attention_head_dim=72, + in_channels=4, + out_channels=8, + patch_size=2, + attention_bias=True, + num_attention_heads=16, + cross_attention_dim=1152, + activation_fn="gelu-approximate", + num_embeds_ada_norm=1000, + norm_type="ada_norm_single", + norm_elementwise_affine=False, + norm_eps=1e-6, + caption_channels=4096, + interpolation_scale=interpolation_scale[args.image_size], + use_additional_conditions=args.micro_condition, + ) + transformer.load_state_dict(converted_state_dict, strict=True) + + assert transformer.pos_embed.pos_embed is not None + try: + state_dict.pop("y_embedder.y_embedding") + state_dict.pop("pos_embed") + except Exception as e: + print(f"Skipping {str(e)}") + pass + assert len(state_dict) == 0, f"State dict is not empty, {state_dict.keys()}" + + num_model_params = sum(p.numel() for p in transformer.parameters()) + print(f"Total number of transformer parameters: {num_model_params}") + + if args.only_transformer: + transformer.save_pretrained(os.path.join(args.dump_path, "transformer")) + else: + # pixart-Sigma vae link: https://huggingface.co/PixArt-alpha/pixart_sigma_sdxlvae_T5_diffusers/tree/main/vae + vae = AutoencoderKL.from_pretrained(f"{ckpt_id}/pixart_sigma_sdxlvae_T5_diffusers", subfolder="vae") + + scheduler = DPMSolverMultistepScheduler() + + tokenizer = T5Tokenizer.from_pretrained(f"{ckpt_id}/pixart_sigma_sdxlvae_T5_diffusers", subfolder="tokenizer") + text_encoder = T5EncoderModel.from_pretrained( + f"{ckpt_id}/pixart_sigma_sdxlvae_T5_diffusers", subfolder="text_encoder" + ) + + pipeline = PixArtSigmaPipeline( + tokenizer=tokenizer, text_encoder=text_encoder, transformer=transformer, vae=vae, scheduler=scheduler + ) + + pipeline.save_pretrained(args.dump_path) + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + + parser.add_argument( + "--micro_condition", action="store_true", help="If use Micro-condition in PixArtMS structure during training." + ) + parser.add_argument("--qk_norm", action="store_true", help="If use qk norm during training.") + parser.add_argument( + "--orig_ckpt_path", default=None, type=str, required=False, help="Path to the checkpoint to convert." + ) + parser.add_argument( + "--image_size", + default=1024, + type=int, + choices=[256, 512, 1024, 2048], + required=False, + help="Image size of pretrained model, 256, 512, 1024, or 2048.", + ) + parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output pipeline.") + parser.add_argument("--only_transformer", default=True, type=bool, required=True) + + args = parser.parse_args() + main(args) diff --git a/src/diffusers/__init__.py b/src/diffusers/__init__.py index 5d67616639..d6aa1e11b6 100644 --- a/src/diffusers/__init__.py +++ b/src/diffusers/__init__.py @@ -261,6 +261,7 @@ else: "PaintByExamplePipeline", "PIAPipeline", "PixArtAlphaPipeline", + "PixArtSigmaPipeline", "SemanticStableDiffusionPipeline", "ShapEImg2ImgPipeline", "ShapEPipeline", @@ -637,6 +638,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: PaintByExamplePipeline, PIAPipeline, PixArtAlphaPipeline, + PixArtSigmaPipeline, SemanticStableDiffusionPipeline, ShapEImg2ImgPipeline, ShapEPipeline, diff --git a/src/diffusers/image_processor.py b/src/diffusers/image_processor.py index eac3f9b7d5..4ccb9d77d6 100644 --- a/src/diffusers/image_processor.py +++ b/src/diffusers/image_processor.py @@ -994,3 +994,77 @@ class IPAdapterMaskProcessor(VaeImageProcessor): ) return mask_downsample + + +class PixArtImageProcessor(VaeImageProcessor): + """ + Image processor for PixArt image resize and crop. + + Args: + do_resize (`bool`, *optional*, defaults to `True`): + Whether to downscale the image's (height, width) dimensions to multiples of `vae_scale_factor`. Can accept + `height` and `width` arguments from [`image_processor.VaeImageProcessor.preprocess`] method. + vae_scale_factor (`int`, *optional*, defaults to `8`): + VAE scale factor. If `do_resize` is `True`, the image is automatically resized to multiples of this factor. + resample (`str`, *optional*, defaults to `lanczos`): + Resampling filter to use when resizing the image. + do_normalize (`bool`, *optional*, defaults to `True`): + Whether to normalize the image to [-1,1]. + do_binarize (`bool`, *optional*, defaults to `False`): + Whether to binarize the image to 0/1. + do_convert_rgb (`bool`, *optional*, defaults to be `False`): + Whether to convert the images to RGB format. + do_convert_grayscale (`bool`, *optional*, defaults to be `False`): + Whether to convert the images to grayscale format. + """ + + @register_to_config + def __init__( + self, + do_resize: bool = True, + vae_scale_factor: int = 8, + resample: str = "lanczos", + do_normalize: bool = True, + do_binarize: bool = False, + do_convert_grayscale: bool = False, + ): + super().__init__( + do_resize=do_resize, + vae_scale_factor=vae_scale_factor, + resample=resample, + do_normalize=do_normalize, + do_binarize=do_binarize, + do_convert_grayscale=do_convert_grayscale, + ) + + @staticmethod + def classify_height_width_bin(height: int, width: int, ratios: dict) -> Tuple[int, int]: + """Returns binned height and width.""" + ar = float(height / width) + closest_ratio = min(ratios.keys(), key=lambda ratio: abs(float(ratio) - ar)) + default_hw = ratios[closest_ratio] + return int(default_hw[0]), int(default_hw[1]) + + @staticmethod + def resize_and_crop_tensor(samples: torch.Tensor, new_width: int, new_height: int) -> torch.Tensor: + orig_height, orig_width = samples.shape[2], samples.shape[3] + + # Check if resizing is needed + if orig_height != new_height or orig_width != new_width: + ratio = max(new_height / orig_height, new_width / orig_width) + resized_width = int(orig_width * ratio) + resized_height = int(orig_height * ratio) + + # Resize + samples = F.interpolate( + samples, size=(resized_height, resized_width), mode="bilinear", align_corners=False + ) + + # Center Crop + start_x = (resized_width - new_width) // 2 + end_x = start_x + new_width + start_y = (resized_height - new_height) // 2 + end_y = start_y + new_height + samples = samples[:, :, start_y:end_y, start_x:end_x] + + return samples diff --git a/src/diffusers/models/transformers/transformer_2d.py b/src/diffusers/models/transformers/transformer_2d.py index 296449889e..768fceb71a 100644 --- a/src/diffusers/models/transformers/transformer_2d.py +++ b/src/diffusers/models/transformers/transformer_2d.py @@ -100,6 +100,7 @@ class Transformer2DModel(ModelMixin, ConfigMixin): attention_type: str = "default", caption_channels: int = None, interpolation_scale: float = None, + use_additional_conditions: Optional[bool] = None, ): super().__init__() @@ -124,6 +125,12 @@ class Transformer2DModel(ModelMixin, ConfigMixin): self.in_channels = in_channels self.out_channels = in_channels if out_channels is None else out_channels self.gradient_checkpointing = False + if use_additional_conditions is None: + if norm_type == "ada_norm_single" and sample_size == 128: + use_additional_conditions = True + else: + use_additional_conditions = False + self.use_additional_conditions = use_additional_conditions # 1. Transformer2DModel can process both standard continuous images of shape `(batch_size, num_channels, width, height)` as well as quantized image embeddings of shape `(batch_size, num_image_vectors)` # Define whether input is continuous or discrete depending on configuration @@ -305,9 +312,7 @@ class Transformer2DModel(ModelMixin, ConfigMixin): # PixArt-Alpha blocks. self.adaln_single = None - self.use_additional_conditions = False if self.config.norm_type == "ada_norm_single": - self.use_additional_conditions = self.config.sample_size == 128 # TODO(Sayak, PVP) clean this, for now we use sample size to determine whether to use # additional conditions until we find better name self.adaln_single = AdaLayerNormSingle( diff --git a/src/diffusers/pipelines/__init__.py b/src/diffusers/pipelines/__init__.py index ab7c13b56e..169e44c9e3 100644 --- a/src/diffusers/pipelines/__init__.py +++ b/src/diffusers/pipelines/__init__.py @@ -187,7 +187,7 @@ else: _import_structure["musicldm"] = ["MusicLDMPipeline"] _import_structure["paint_by_example"] = ["PaintByExamplePipeline"] _import_structure["pia"] = ["PIAPipeline"] - _import_structure["pixart_alpha"] = ["PixArtAlphaPipeline"] + _import_structure["pixart_alpha"] = ["PixArtAlphaPipeline", "PixArtSigmaPipeline"] _import_structure["semantic_stable_diffusion"] = ["SemanticStableDiffusionPipeline"] _import_structure["shap_e"] = ["ShapEImg2ImgPipeline", "ShapEPipeline"] _import_structure["stable_cascade"] = [ @@ -450,7 +450,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: from .musicldm import MusicLDMPipeline from .paint_by_example import PaintByExamplePipeline from .pia import PIAPipeline - from .pixart_alpha import PixArtAlphaPipeline + from .pixart_alpha import PixArtAlphaPipeline, PixArtSigmaPipeline from .semantic_stable_diffusion import SemanticStableDiffusionPipeline from .shap_e import ShapEImg2ImgPipeline, ShapEPipeline from .stable_cascade import ( diff --git a/src/diffusers/pipelines/pixart_alpha/__init__.py b/src/diffusers/pipelines/pixart_alpha/__init__.py index 0bfa28fcde..7cb870fc85 100644 --- a/src/diffusers/pipelines/pixart_alpha/__init__.py +++ b/src/diffusers/pipelines/pixart_alpha/__init__.py @@ -23,6 +23,7 @@ except OptionalDependencyNotAvailable: _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects)) else: _import_structure["pipeline_pixart_alpha"] = ["PixArtAlphaPipeline"] + _import_structure["pipeline_pixart_sigma"] = ["PixArtSigmaPipeline"] if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: try: @@ -32,7 +33,13 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * else: - from .pipeline_pixart_alpha import PixArtAlphaPipeline + from .pipeline_pixart_alpha import ( + ASPECT_RATIO_256_BIN, + ASPECT_RATIO_512_BIN, + ASPECT_RATIO_1024_BIN, + PixArtAlphaPipeline, + ) + from .pipeline_pixart_sigma import ASPECT_RATIO_2048_BIN, PixArtSigmaPipeline else: import sys diff --git a/src/diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py b/src/diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py index 11f7516fac..c9efe594e3 100644 --- a/src/diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +++ b/src/diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py @@ -19,10 +19,9 @@ import urllib.parse as ul from typing import Callable, List, Optional, Tuple, Union import torch -import torch.nn.functional as F from transformers import T5EncoderModel, T5Tokenizer -from ...image_processor import VaeImageProcessor +from ...image_processor import PixArtImageProcessor from ...models import AutoencoderKL, Transformer2DModel from ...schedulers import DPMSolverMultistepScheduler from ...utils import ( @@ -272,7 +271,7 @@ class PixArtAlphaPipeline(DiffusionPipeline): ) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) - self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) + self.image_processor = PixArtImageProcessor(vae_scale_factor=self.vae_scale_factor) # Adapted from https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/utils.py def mask_text_embeddings(self, emb, mask): @@ -674,38 +673,6 @@ class PixArtAlphaPipeline(DiffusionPipeline): latents = latents * self.scheduler.init_noise_sigma return latents - @staticmethod - def classify_height_width_bin(height: int, width: int, ratios: dict) -> Tuple[int, int]: - """Returns binned height and width.""" - ar = float(height / width) - closest_ratio = min(ratios.keys(), key=lambda ratio: abs(float(ratio) - ar)) - default_hw = ratios[closest_ratio] - return int(default_hw[0]), int(default_hw[1]) - - @staticmethod - def resize_and_crop_tensor(samples: torch.Tensor, new_width: int, new_height: int) -> torch.Tensor: - orig_height, orig_width = samples.shape[2], samples.shape[3] - - # Check if resizing is needed - if orig_height != new_height or orig_width != new_width: - ratio = max(new_height / orig_height, new_width / orig_width) - resized_width = int(orig_width * ratio) - resized_height = int(orig_height * ratio) - - # Resize - samples = F.interpolate( - samples, size=(resized_height, resized_width), mode="bilinear", align_corners=False - ) - - # Center Crop - start_x = (resized_width - new_width) // 2 - end_x = start_x + new_width - start_y = (resized_height - new_height) // 2 - end_y = start_y + new_height - samples = samples[:, :, start_y:end_y, start_x:end_x] - - return samples - @torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( @@ -826,7 +793,7 @@ class PixArtAlphaPipeline(DiffusionPipeline): else: raise ValueError("Invalid sample size") orig_height, orig_width = height, width - height, width = self.classify_height_width_bin(height, width, ratios=aspect_ratio_bin) + height, width = self.image_processor.classify_height_width_bin(height, width, ratios=aspect_ratio_bin) self.check_inputs( prompt, @@ -956,7 +923,11 @@ class PixArtAlphaPipeline(DiffusionPipeline): noise_pred = noise_pred # compute previous image: x_t -> x_t-1 - latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] + if num_inference_steps == 1: + # For DMD one step sampling: https://arxiv.org/abs/2311.18828 + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).pred_original_sample + else: + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] # call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): @@ -968,7 +939,7 @@ class PixArtAlphaPipeline(DiffusionPipeline): if not output_type == "latent": image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] if use_resolution_binning: - image = self.resize_and_crop_tensor(image, orig_width, orig_height) + image = self.image_processor.resize_and_crop_tensor(image, orig_width, orig_height) else: image = latents diff --git a/src/diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py b/src/diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py new file mode 100644 index 0000000000..dadf41c176 --- /dev/null +++ b/src/diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py @@ -0,0 +1,866 @@ +# Copyright 2024 PixArt-Sigma Authors and The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import html +import inspect +import re +import urllib.parse as ul +from typing import Callable, List, Optional, Tuple, Union + +import torch +from transformers import T5EncoderModel, T5Tokenizer + +from ...image_processor import PixArtImageProcessor +from ...models import AutoencoderKL, Transformer2DModel +from ...schedulers import DPMSolverMultistepScheduler +from ...utils import ( + BACKENDS_MAPPING, + deprecate, + is_bs4_available, + is_ftfy_available, + logging, + replace_example_docstring, +) +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput +from .pipeline_pixart_alpha import ( + ASPECT_RATIO_256_BIN, + ASPECT_RATIO_512_BIN, + ASPECT_RATIO_1024_BIN, +) + + +logger = logging.get_logger(__name__) # pylint: disable=invalid-name + +if is_bs4_available(): + from bs4 import BeautifulSoup + +if is_ftfy_available(): + import ftfy + + +ASPECT_RATIO_2048_BIN = { + "0.25": [1024.0, 4096.0], + "0.26": [1024.0, 3968.0], + "0.27": [1024.0, 3840.0], + "0.28": [1024.0, 3712.0], + "0.32": [1152.0, 3584.0], + "0.33": [1152.0, 3456.0], + "0.35": [1152.0, 3328.0], + "0.4": [1280.0, 3200.0], + "0.42": [1280.0, 3072.0], + "0.48": [1408.0, 2944.0], + "0.5": [1408.0, 2816.0], + "0.52": [1408.0, 2688.0], + "0.57": [1536.0, 2688.0], + "0.6": [1536.0, 2560.0], + "0.68": [1664.0, 2432.0], + "0.72": [1664.0, 2304.0], + "0.78": [1792.0, 2304.0], + "0.82": [1792.0, 2176.0], + "0.88": [1920.0, 2176.0], + "0.94": [1920.0, 2048.0], + "1.0": [2048.0, 2048.0], + "1.07": [2048.0, 1920.0], + "1.13": [2176.0, 1920.0], + "1.21": [2176.0, 1792.0], + "1.29": [2304.0, 1792.0], + "1.38": [2304.0, 1664.0], + "1.46": [2432.0, 1664.0], + "1.67": [2560.0, 1536.0], + "1.75": [2688.0, 1536.0], + "2.0": [2816.0, 1408.0], + "2.09": [2944.0, 1408.0], + "2.4": [3072.0, 1280.0], + "2.5": [3200.0, 1280.0], + "2.89": [3328.0, 1152.0], + "3.0": [3456.0, 1152.0], + "3.11": [3584.0, 1152.0], + "3.62": [3712.0, 1024.0], + "3.75": [3840.0, 1024.0], + "3.88": [3968.0, 1024.0], + "4.0": [4096.0, 1024.0], +} + + +EXAMPLE_DOC_STRING = """ + Examples: + ```py + >>> import torch + >>> from diffusers import PixArtSigmaPipeline + + >>> # You can replace the checkpoint id with "PixArt-alpha/PixArt-Sigma-XL-2-512-MS" too. + >>> pipe = PixArtSigmaPipeline.from_pretrained( + ... "PixArt-alpha/PixArt-Sigma-XL-2-1024-MS", torch_dtype=torch.float16 + ... ) + >>> # Enable memory optimizations. + >>> # pipe.enable_model_cpu_offload() + + >>> prompt = "A small cactus with a happy face in the Sahara desert." + >>> image = pipe(prompt).images[0] + ``` +""" + + +# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps +def retrieve_timesteps( + scheduler, + num_inference_steps: Optional[int] = None, + device: Optional[Union[str, torch.device]] = None, + timesteps: Optional[List[int]] = None, + **kwargs, +): + """ + Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles + custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. + + Args: + scheduler (`SchedulerMixin`): + The scheduler to get timesteps from. + num_inference_steps (`int`): + The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` + must be `None`. + device (`str` or `torch.device`, *optional*): + The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. + timesteps (`List[int]`, *optional*): + Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default + timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps` + must be `None`. + + Returns: + `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the + second element is the number of inference steps. + """ + if timesteps is not None: + accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accepts_timesteps: + raise ValueError( + f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" + f" timestep schedules. Please check whether you are using the correct scheduler." + ) + scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + else: + scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) + timesteps = scheduler.timesteps + return timesteps, num_inference_steps + + +class PixArtSigmaPipeline(DiffusionPipeline): + r""" + Pipeline for text-to-image generation using PixArt-Sigma. + """ + + bad_punct_regex = re.compile( + r"[" + + "#®•©™&@·º½¾¿¡§~" + + r"\)" + + r"\(" + + r"\]" + + r"\[" + + r"\}" + + r"\{" + + r"\|" + + "\\" + + r"\/" + + r"\*" + + r"]{1,}" + ) # noqa + + _optional_components = ["tokenizer", "text_encoder"] + model_cpu_offload_seq = "text_encoder->transformer->vae" + + def __init__( + self, + tokenizer: T5Tokenizer, + text_encoder: T5EncoderModel, + vae: AutoencoderKL, + transformer: Transformer2DModel, + scheduler: DPMSolverMultistepScheduler, + ): + super().__init__() + + self.register_modules( + tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler + ) + + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.image_processor = PixArtImageProcessor(vae_scale_factor=self.vae_scale_factor) + + # copied from diffusers.pipelines.pixart_alpha.pipeline_pixart_alpha.py + def mask_text_embeddings(self, emb, mask): + if emb.shape[0] == 1: + keep_index = mask.sum().item() + return emb[:, :, :keep_index, :], keep_index + else: + masked_feature = emb * mask[:, None, :, None] + return masked_feature, emb.shape[2] + + # Adapted from diffusers.pipelines.deepfloyd_if.pipeline_if.encode_prompt + def encode_prompt( + self, + prompt: Union[str, List[str]], + do_classifier_free_guidance: bool = True, + negative_prompt: str = "", + num_images_per_prompt: int = 1, + device: Optional[torch.device] = None, + prompt_embeds: Optional[torch.FloatTensor] = None, + negative_prompt_embeds: Optional[torch.FloatTensor] = None, + prompt_attention_mask: Optional[torch.FloatTensor] = None, + negative_prompt_attention_mask: Optional[torch.FloatTensor] = None, + clean_caption: bool = False, + max_sequence_length: int = 120, + **kwargs, + ): + r""" + Encodes the prompt into text encoder hidden states. + + Args: + prompt (`str` or `List[str]`, *optional*): + prompt to be encoded + negative_prompt (`str` or `List[str]`, *optional*): + The prompt not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` + instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). For + PixArt-Alpha, this should be "". + do_classifier_free_guidance (`bool`, *optional*, defaults to `True`): + whether to use classifier free guidance or not + num_images_per_prompt (`int`, *optional*, defaults to 1): + number of images that should be generated per prompt + device: (`torch.device`, *optional*): + torch device to place the resulting embeddings on + prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not + provided, text embeddings will be generated from `prompt` input argument. + negative_prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated negative text embeddings. For PixArt-Alpha, it's should be the embeddings of the "" + string. + clean_caption (`bool`, defaults to `False`): + If `True`, the function will preprocess and clean the provided caption before encoding. + max_sequence_length (`int`, defaults to 120): Maximum sequence length to use for the prompt. + """ + + if "mask_feature" in kwargs: + deprecation_message = "The use of `mask_feature` is deprecated. It is no longer used in any computation and that doesn't affect the end results. It will be removed in a future version." + deprecate("mask_feature", "1.0.0", deprecation_message, standard_warn=False) + + if device is None: + device = self._execution_device + + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + + # See Section 3.1. of the paper. + max_length = max_sequence_length + + if prompt_embeds is None: + prompt = self._text_preprocessing(prompt, clean_caption=clean_caption) + text_inputs = self.tokenizer( + prompt, + padding="max_length", + max_length=max_length, + truncation=True, + add_special_tokens=True, + return_tensors="pt", + ) + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids + + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( + text_input_ids, untruncated_ids + ): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_length - 1 : -1]) + logger.warning( + "The following part of your input was truncated because CLIP can only handle sequences up to" + f" {max_length} tokens: {removed_text}" + ) + + prompt_attention_mask = text_inputs.attention_mask + prompt_attention_mask = prompt_attention_mask.to(device) + + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=prompt_attention_mask) + prompt_embeds = prompt_embeds[0] + + if self.text_encoder is not None: + dtype = self.text_encoder.dtype + elif self.transformer is not None: + dtype = self.transformer.dtype + else: + dtype = None + + prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) + + bs_embed, seq_len, _ = prompt_embeds.shape + # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + prompt_attention_mask = prompt_attention_mask.view(bs_embed, -1) + prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1) + + # get unconditional embeddings for classifier free guidance + if do_classifier_free_guidance and negative_prompt_embeds is None: + uncond_tokens = [negative_prompt] * batch_size + uncond_tokens = self._text_preprocessing(uncond_tokens, clean_caption=clean_caption) + max_length = prompt_embeds.shape[1] + uncond_input = self.tokenizer( + uncond_tokens, + padding="max_length", + max_length=max_length, + truncation=True, + return_attention_mask=True, + add_special_tokens=True, + return_tensors="pt", + ) + negative_prompt_attention_mask = uncond_input.attention_mask + negative_prompt_attention_mask = negative_prompt_attention_mask.to(device) + + negative_prompt_embeds = self.text_encoder( + uncond_input.input_ids.to(device), attention_mask=negative_prompt_attention_mask + ) + negative_prompt_embeds = negative_prompt_embeds[0] + + if do_classifier_free_guidance: + # duplicate unconditional embeddings for each generation per prompt, using mps friendly method + seq_len = negative_prompt_embeds.shape[1] + + negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device) + + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + + negative_prompt_attention_mask = negative_prompt_attention_mask.view(bs_embed, -1) + negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(num_images_per_prompt, 1) + else: + negative_prompt_embeds = None + negative_prompt_attention_mask = None + + return prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs + def prepare_extra_step_kwargs(self, generator, eta): + # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature + # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. + # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 + # and should be between [0, 1] + + accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs["eta"] = eta + + # check if the scheduler accepts generator + accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs["generator"] = generator + return extra_step_kwargs + + # copied from diffusers.pipelines.pixart_alpha.pipeline_pixart_alpha.py + def check_inputs( + self, + prompt, + height, + width, + negative_prompt, + callback_steps, + prompt_embeds=None, + negative_prompt_embeds=None, + prompt_attention_mask=None, + negative_prompt_attention_mask=None, + ): + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") + + if (callback_steps is None) or ( + callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) + ): + raise ValueError( + f"`callback_steps` has to be a positive integer but is {callback_steps} of type" + f" {type(callback_steps)}." + ) + + if prompt is not None and prompt_embeds is not None: + raise ValueError( + f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" + " only forward one of the two." + ) + elif prompt is None and prompt_embeds is None: + raise ValueError( + "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." + ) + elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): + raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") + + if prompt is not None and negative_prompt_embeds is not None: + raise ValueError( + f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:" + f" {negative_prompt_embeds}. Please make sure to only forward one of the two." + ) + + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError( + f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" + f" {negative_prompt_embeds}. Please make sure to only forward one of the two." + ) + + if prompt_embeds is not None and prompt_attention_mask is None: + raise ValueError("Must provide `prompt_attention_mask` when specifying `prompt_embeds`.") + + if negative_prompt_embeds is not None and negative_prompt_attention_mask is None: + raise ValueError("Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.") + + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError( + "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" + f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" + f" {negative_prompt_embeds.shape}." + ) + if prompt_attention_mask.shape != negative_prompt_attention_mask.shape: + raise ValueError( + "`prompt_attention_mask` and `negative_prompt_attention_mask` must have the same shape when passed directly, but" + f" got: `prompt_attention_mask` {prompt_attention_mask.shape} != `negative_prompt_attention_mask`" + f" {negative_prompt_attention_mask.shape}." + ) + + # Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._text_preprocessing + def _text_preprocessing(self, text, clean_caption=False): + if clean_caption and not is_bs4_available(): + logger.warning(BACKENDS_MAPPING["bs4"][-1].format("Setting `clean_caption=True`")) + logger.warning("Setting `clean_caption` to False...") + clean_caption = False + + if clean_caption and not is_ftfy_available(): + logger.warning(BACKENDS_MAPPING["ftfy"][-1].format("Setting `clean_caption=True`")) + logger.warning("Setting `clean_caption` to False...") + clean_caption = False + + if not isinstance(text, (tuple, list)): + text = [text] + + def process(text: str): + if clean_caption: + text = self._clean_caption(text) + text = self._clean_caption(text) + else: + text = text.lower().strip() + return text + + return [process(t) for t in text] + + # Copied from diffusers.pipelines.pixart_alpha.pipeline_pixart_alpha.PixArtAlphaPipeline._clean_caption + def _clean_caption(self, caption): + caption = str(caption) + caption = ul.unquote_plus(caption) + caption = caption.strip().lower() + caption = re.sub("", "person", caption) + # urls: + caption = re.sub( + r"\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa + "", + caption, + ) # regex for urls + caption = re.sub( + r"\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa + "", + caption, + ) # regex for urls + # html: + caption = BeautifulSoup(caption, features="html.parser").text + + # @ + caption = re.sub(r"@[\w\d]+\b", "", caption) + + # 31C0—31EF CJK Strokes + # 31F0—31FF Katakana Phonetic Extensions + # 3200—32FF Enclosed CJK Letters and Months + # 3300—33FF CJK Compatibility + # 3400—4DBF CJK Unified Ideographs Extension A + # 4DC0—4DFF Yijing Hexagram Symbols + # 4E00—9FFF CJK Unified Ideographs + caption = re.sub(r"[\u31c0-\u31ef]+", "", caption) + caption = re.sub(r"[\u31f0-\u31ff]+", "", caption) + caption = re.sub(r"[\u3200-\u32ff]+", "", caption) + caption = re.sub(r"[\u3300-\u33ff]+", "", caption) + caption = re.sub(r"[\u3400-\u4dbf]+", "", caption) + caption = re.sub(r"[\u4dc0-\u4dff]+", "", caption) + caption = re.sub(r"[\u4e00-\u9fff]+", "", caption) + ####################################################### + + # все виды тире / all types of dash --> "-" + caption = re.sub( + r"[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+", # noqa + "-", + caption, + ) + + # кавычки к одному стандарту + caption = re.sub(r"[`´«»“”¨]", '"', caption) + caption = re.sub(r"[‘’]", "'", caption) + + # " + caption = re.sub(r""?", "", caption) + # & + caption = re.sub(r"&", "", caption) + + # ip adresses: + caption = re.sub(r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}", " ", caption) + + # article ids: + caption = re.sub(r"\d:\d\d\s+$", "", caption) + + # \n + caption = re.sub(r"\\n", " ", caption) + + # "#123" + caption = re.sub(r"#\d{1,3}\b", "", caption) + # "#12345.." + caption = re.sub(r"#\d{5,}\b", "", caption) + # "123456.." + caption = re.sub(r"\b\d{6,}\b", "", caption) + # filenames: + caption = re.sub(r"[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)", "", caption) + + # + caption = re.sub(r"[\"\']{2,}", r'"', caption) # """AUSVERKAUFT""" + caption = re.sub(r"[\.]{2,}", r" ", caption) # """AUSVERKAUFT""" + + caption = re.sub(self.bad_punct_regex, r" ", caption) # ***AUSVERKAUFT***, #AUSVERKAUFT + caption = re.sub(r"\s+\.\s+", r" ", caption) # " . " + + # this-is-my-cute-cat / this_is_my_cute_cat + regex2 = re.compile(r"(?:\-|\_)") + if len(re.findall(regex2, caption)) > 3: + caption = re.sub(regex2, " ", caption) + + caption = ftfy.fix_text(caption) + caption = html.unescape(html.unescape(caption)) + + caption = re.sub(r"\b[a-zA-Z]{1,3}\d{3,15}\b", "", caption) # jc6640 + caption = re.sub(r"\b[a-zA-Z]+\d+[a-zA-Z]+\b", "", caption) # jc6640vc + caption = re.sub(r"\b\d+[a-zA-Z]+\d+\b", "", caption) # 6640vc231 + + caption = re.sub(r"(worldwide\s+)?(free\s+)?shipping", "", caption) + caption = re.sub(r"(free\s)?download(\sfree)?", "", caption) + caption = re.sub(r"\bclick\b\s(?:for|on)\s\w+", "", caption) + caption = re.sub(r"\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?", "", caption) + caption = re.sub(r"\bpage\s+\d+\b", "", caption) + + caption = re.sub(r"\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b", r" ", caption) # j2d1a2a... + + caption = re.sub(r"\b\d+\.?\d*[xх×]\d+\.?\d*\b", "", caption) + + caption = re.sub(r"\b\s+\:\s+", r": ", caption) + caption = re.sub(r"(\D[,\./])\b", r"\1 ", caption) + caption = re.sub(r"\s+", " ", caption) + + caption.strip() + + caption = re.sub(r"^[\"\']([\w\W]+)[\"\']$", r"\1", caption) + caption = re.sub(r"^[\'\_,\-\:;]", r"", caption) + caption = re.sub(r"[\'\_,\-\:\-\+]$", r"", caption) + caption = re.sub(r"^\.\S+$", "", caption) + + return caption.strip() + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents + def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): + shape = ( + batch_size, + num_channels_latents, + int(height) // self.vae_scale_factor, + int(width) // self.vae_scale_factor, + ) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError( + f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" + f" size of {batch_size}. Make sure the batch size matches the length of the generators." + ) + + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + latents = latents.to(device) + + # scale the initial noise by the standard deviation required by the scheduler + latents = latents * self.scheduler.init_noise_sigma + return latents + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__( + self, + prompt: Union[str, List[str]] = None, + negative_prompt: str = "", + num_inference_steps: int = 20, + timesteps: List[int] = None, + guidance_scale: float = 4.5, + num_images_per_prompt: Optional[int] = 1, + height: Optional[int] = None, + width: Optional[int] = None, + eta: float = 0.0, + generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, + latents: Optional[torch.FloatTensor] = None, + prompt_embeds: Optional[torch.FloatTensor] = None, + prompt_attention_mask: Optional[torch.FloatTensor] = None, + negative_prompt_embeds: Optional[torch.FloatTensor] = None, + negative_prompt_attention_mask: Optional[torch.FloatTensor] = None, + output_type: Optional[str] = "pil", + return_dict: bool = True, + callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, + callback_steps: int = 1, + clean_caption: bool = True, + use_resolution_binning: bool = True, + max_sequence_length: int = 300, + **kwargs, + ) -> Union[ImagePipelineOutput, Tuple]: + """ + Function invoked when calling the pipeline for generation. + + Args: + prompt (`str` or `List[str]`, *optional*): + The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. + instead. + negative_prompt (`str` or `List[str]`, *optional*): + The prompt or prompts not to guide the image generation. If not defined, one has to pass + `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is + less than `1`). + num_inference_steps (`int`, *optional*, defaults to 100): + The number of denoising steps. More denoising steps usually lead to a higher quality image at the + expense of slower inference. + timesteps (`List[int]`, *optional*): + Custom timesteps to use for the denoising process. If not defined, equal spaced `num_inference_steps` + timesteps are used. Must be in descending order. + guidance_scale (`float`, *optional*, defaults to 4.5): + Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). + `guidance_scale` is defined as `w` of equation 2. of [Imagen + Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > + 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, + usually at the expense of lower image quality. + num_images_per_prompt (`int`, *optional*, defaults to 1): + The number of images to generate per prompt. + height (`int`, *optional*, defaults to self.unet.config.sample_size): + The height in pixels of the generated image. + width (`int`, *optional*, defaults to self.unet.config.sample_size): + The width in pixels of the generated image. + eta (`float`, *optional*, defaults to 0.0): + Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to + [`schedulers.DDIMScheduler`], will be ignored for others. + generator (`torch.Generator` or `List[torch.Generator]`, *optional*): + One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) + to make generation deterministic. + latents (`torch.FloatTensor`, *optional*): + Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image + generation. Can be used to tweak the same generation with different prompts. If not provided, a latents + tensor will ge generated by sampling using the supplied random `generator`. + prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not + provided, text embeddings will be generated from `prompt` input argument. + prompt_attention_mask (`torch.FloatTensor`, *optional*): Pre-generated attention mask for text embeddings. + negative_prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated negative text embeddings. For PixArt-Sigma this negative prompt should be "". If not + provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. + negative_prompt_attention_mask (`torch.FloatTensor`, *optional*): + Pre-generated attention mask for negative text embeddings. + output_type (`str`, *optional*, defaults to `"pil"`): + The output format of the generate image. Choose between + [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. + return_dict (`bool`, *optional*, defaults to `True`): + Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple. + callback (`Callable`, *optional*): + A function that will be called every `callback_steps` steps during inference. The function will be + called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. + callback_steps (`int`, *optional*, defaults to 1): + The frequency at which the `callback` function will be called. If not specified, the callback will be + called at every step. + clean_caption (`bool`, *optional*, defaults to `True`): + Whether or not to clean the caption before creating embeddings. Requires `beautifulsoup4` and `ftfy` to + be installed. If the dependencies are not installed, the embeddings will be created from the raw + prompt. + use_resolution_binning (`bool` defaults to `True`): + If set to `True`, the requested height and width are first mapped to the closest resolutions using + `ASPECT_RATIO_1024_BIN`. After the produced latents are decoded into images, they are resized back to + the requested resolution. Useful for generating non-square images. + max_sequence_length (`int` defaults to 120): Maximum sequence length to use with the `prompt`. + + Examples: + + Returns: + [`~pipelines.ImagePipelineOutput`] or `tuple`: + If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is + returned where the first element is a list with the generated images + """ + # 1. Check inputs. Raise error if not correct + height = height or self.transformer.config.sample_size * self.vae_scale_factor + width = width or self.transformer.config.sample_size * self.vae_scale_factor + if use_resolution_binning: + if self.transformer.config.sample_size == 256: + aspect_ratio_bin = ASPECT_RATIO_2048_BIN + elif self.transformer.config.sample_size == 128: + aspect_ratio_bin = ASPECT_RATIO_1024_BIN + elif self.transformer.config.sample_size == 64: + aspect_ratio_bin = ASPECT_RATIO_512_BIN + elif self.transformer.config.sample_size == 32: + aspect_ratio_bin = ASPECT_RATIO_256_BIN + else: + raise ValueError("Invalid sample size") + orig_height, orig_width = height, width + height, width = self.image_processor.classify_height_width_bin(height, width, ratios=aspect_ratio_bin) + + self.check_inputs( + prompt, + height, + width, + negative_prompt, + callback_steps, + prompt_embeds, + negative_prompt_embeds, + prompt_attention_mask, + negative_prompt_attention_mask, + ) + + # 2. Default height and width to transformer + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + + device = self._execution_device + + # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) + # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` + # corresponds to doing no classifier free guidance. + do_classifier_free_guidance = guidance_scale > 1.0 + + # 3. Encode input prompt + ( + prompt_embeds, + prompt_attention_mask, + negative_prompt_embeds, + negative_prompt_attention_mask, + ) = self.encode_prompt( + prompt, + do_classifier_free_guidance, + negative_prompt=negative_prompt, + num_images_per_prompt=num_images_per_prompt, + device=device, + prompt_embeds=prompt_embeds, + negative_prompt_embeds=negative_prompt_embeds, + prompt_attention_mask=prompt_attention_mask, + negative_prompt_attention_mask=negative_prompt_attention_mask, + clean_caption=clean_caption, + max_sequence_length=max_sequence_length, + ) + if do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) + prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask], dim=0) + + # 4. Prepare timesteps + timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps) + + # 5. Prepare latents. + latent_channels = self.transformer.config.in_channels + latents = self.prepare_latents( + batch_size * num_images_per_prompt, + latent_channels, + height, + width, + prompt_embeds.dtype, + device, + generator, + latents, + ) + + # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + + # 6.1 Prepare micro-conditions. + added_cond_kwargs = {"resolution": None, "aspect_ratio": None} + + # 7. Denoising loop + num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) + + with self.progress_bar(total=num_inference_steps) as progress_bar: + for i, t in enumerate(timesteps): + latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + + current_timestep = t + if not torch.is_tensor(current_timestep): + # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can + # This would be a good case for the `match` statement (Python 3.10+) + is_mps = latent_model_input.device.type == "mps" + if isinstance(current_timestep, float): + dtype = torch.float32 if is_mps else torch.float64 + else: + dtype = torch.int32 if is_mps else torch.int64 + current_timestep = torch.tensor([current_timestep], dtype=dtype, device=latent_model_input.device) + elif len(current_timestep.shape) == 0: + current_timestep = current_timestep[None].to(latent_model_input.device) + # broadcast to batch dimension in a way that's compatible with ONNX/Core ML + current_timestep = current_timestep.expand(latent_model_input.shape[0]) + + # predict noise model_output + noise_pred = self.transformer( + latent_model_input, + encoder_hidden_states=prompt_embeds, + encoder_attention_mask=prompt_attention_mask, + timestep=current_timestep, + added_cond_kwargs=added_cond_kwargs, + return_dict=False, + )[0] + + # perform guidance + if do_classifier_free_guidance: + noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + + # learned sigma + if self.transformer.config.out_channels // 2 == latent_channels: + noise_pred = noise_pred.chunk(2, dim=1)[0] + else: + noise_pred = noise_pred + + # compute previous image: x_t -> x_t-1 + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] + + # call the callback, if provided + if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if callback is not None and i % callback_steps == 0: + step_idx = i // getattr(self.scheduler, "order", 1) + callback(step_idx, t, latents) + + if not output_type == "latent": + image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] + if use_resolution_binning: + image = self.image_processor.resize_and_crop_tensor(image, orig_width, orig_height) + else: + image = latents + + if not output_type == "latent": + image = self.image_processor.postprocess(image, output_type=output_type) + + # Offload all models + self.maybe_free_model_hooks() + + if not return_dict: + return (image,) + + return ImagePipelineOutput(images=image) diff --git a/src/diffusers/utils/dummy_torch_and_transformers_objects.py b/src/diffusers/utils/dummy_torch_and_transformers_objects.py index 8ad2f4b487..b750b60491 100644 --- a/src/diffusers/utils/dummy_torch_and_transformers_objects.py +++ b/src/diffusers/utils/dummy_torch_and_transformers_objects.py @@ -737,6 +737,21 @@ class PixArtAlphaPipeline(metaclass=DummyObject): requires_backends(cls, ["torch", "transformers"]) +class PixArtSigmaPipeline(metaclass=DummyObject): + _backends = ["torch", "transformers"] + + def __init__(self, *args, **kwargs): + requires_backends(self, ["torch", "transformers"]) + + @classmethod + def from_config(cls, *args, **kwargs): + requires_backends(cls, ["torch", "transformers"]) + + @classmethod + def from_pretrained(cls, *args, **kwargs): + requires_backends(cls, ["torch", "transformers"]) + + class SemanticStableDiffusionPipeline(metaclass=DummyObject): _backends = ["torch", "transformers"] diff --git a/tests/pipelines/pixart_alpha/test_pixart.py b/tests/pipelines/pixart_alpha/test_pixart.py index dd358af083..d981b55260 100644 --- a/tests/pipelines/pixart_alpha/test_pixart.py +++ b/tests/pipelines/pixart_alpha/test_pixart.py @@ -324,6 +324,10 @@ class PixArtAlphaPipelineFastTests(PipelineTesterMixin, unittest.TestCase): def test_inference_batch_single_identical(self): self._test_inference_batch_single_identical(expected_max_diff=1e-3) + # PixArt transformer model does not work with sequential offload so skip it for now + def test_sequential_offload_forward_pass_twice(self): + pass + @slow @require_torch_gpu diff --git a/tests/pipelines/pixart_sigma/__init__.py b/tests/pipelines/pixart_sigma/__init__.py new file mode 100644 index 0000000000..e69de29bb2 diff --git a/tests/pipelines/pixart_sigma/test_pixart.py b/tests/pipelines/pixart_sigma/test_pixart.py new file mode 100644 index 0000000000..7b1d5e389f --- /dev/null +++ b/tests/pipelines/pixart_sigma/test_pixart.py @@ -0,0 +1,430 @@ +# coding=utf-8 +# Copyright 2024 HuggingFace Inc. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import gc +import tempfile +import unittest + +import numpy as np +import torch +from transformers import AutoTokenizer, T5EncoderModel + +from diffusers import ( + AutoencoderKL, + DDIMScheduler, + PixArtSigmaPipeline, + Transformer2DModel, +) +from diffusers.utils.testing_utils import ( + enable_full_determinism, + numpy_cosine_similarity_distance, + require_torch_gpu, + slow, + torch_device, +) + +from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS +from ..test_pipelines_common import PipelineTesterMixin, to_np + + +enable_full_determinism() + + +class PixArtSigmaPipelineFastTests(PipelineTesterMixin, unittest.TestCase): + pipeline_class = PixArtSigmaPipeline + params = TEXT_TO_IMAGE_PARAMS - {"cross_attention_kwargs"} + batch_params = TEXT_TO_IMAGE_BATCH_PARAMS + image_params = TEXT_TO_IMAGE_IMAGE_PARAMS + image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS + + required_optional_params = PipelineTesterMixin.required_optional_params + + def get_dummy_components(self): + torch.manual_seed(0) + transformer = Transformer2DModel( + sample_size=8, + num_layers=2, + patch_size=2, + attention_head_dim=8, + num_attention_heads=3, + caption_channels=32, + in_channels=4, + cross_attention_dim=24, + out_channels=8, + attention_bias=True, + activation_fn="gelu-approximate", + num_embeds_ada_norm=1000, + norm_type="ada_norm_single", + norm_elementwise_affine=False, + norm_eps=1e-6, + ) + torch.manual_seed(0) + vae = AutoencoderKL() + + scheduler = DDIMScheduler() + text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5") + + tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5") + + components = { + "transformer": transformer.eval(), + "vae": vae.eval(), + "scheduler": scheduler, + "text_encoder": text_encoder, + "tokenizer": tokenizer, + } + return components + + def get_dummy_inputs(self, device, seed=0): + if str(device).startswith("mps"): + generator = torch.manual_seed(seed) + else: + generator = torch.Generator(device=device).manual_seed(seed) + inputs = { + "prompt": "A painting of a squirrel eating a burger", + "generator": generator, + "num_inference_steps": 2, + "guidance_scale": 5.0, + "use_resolution_binning": False, + "output_type": "np", + } + return inputs + + def test_sequential_cpu_offload_forward_pass(self): + # TODO(PVP, Sayak) need to fix later + return + + def test_save_load_optional_components(self): + components = self.get_dummy_components() + pipe = self.pipeline_class(**components) + pipe.to(torch_device) + pipe.set_progress_bar_config(disable=None) + + inputs = self.get_dummy_inputs(torch_device) + + prompt = inputs["prompt"] + generator = inputs["generator"] + num_inference_steps = inputs["num_inference_steps"] + output_type = inputs["output_type"] + + ( + prompt_embeds, + prompt_attention_mask, + negative_prompt_embeds, + negative_prompt_attention_mask, + ) = pipe.encode_prompt(prompt) + + # inputs with prompt converted to embeddings + inputs = { + "prompt_embeds": prompt_embeds, + "prompt_attention_mask": prompt_attention_mask, + "negative_prompt": None, + "negative_prompt_embeds": negative_prompt_embeds, + "negative_prompt_attention_mask": negative_prompt_attention_mask, + "generator": generator, + "num_inference_steps": num_inference_steps, + "output_type": output_type, + "use_resolution_binning": False, + } + + # set all optional components to None + for optional_component in pipe._optional_components: + setattr(pipe, optional_component, None) + + output = pipe(**inputs)[0] + + with tempfile.TemporaryDirectory() as tmpdir: + pipe.save_pretrained(tmpdir) + pipe_loaded = self.pipeline_class.from_pretrained(tmpdir) + pipe_loaded.to(torch_device) + pipe_loaded.set_progress_bar_config(disable=None) + + for optional_component in pipe._optional_components: + self.assertTrue( + getattr(pipe_loaded, optional_component) is None, + f"`{optional_component}` did not stay set to None after loading.", + ) + + inputs = self.get_dummy_inputs(torch_device) + + generator = inputs["generator"] + num_inference_steps = inputs["num_inference_steps"] + output_type = inputs["output_type"] + + # inputs with prompt converted to embeddings + inputs = { + "prompt_embeds": prompt_embeds, + "prompt_attention_mask": prompt_attention_mask, + "negative_prompt": None, + "negative_prompt_embeds": negative_prompt_embeds, + "negative_prompt_attention_mask": negative_prompt_attention_mask, + "generator": generator, + "num_inference_steps": num_inference_steps, + "output_type": output_type, + "use_resolution_binning": False, + } + + output_loaded = pipe_loaded(**inputs)[0] + + max_diff = np.abs(to_np(output) - to_np(output_loaded)).max() + self.assertLess(max_diff, 1e-4) + + def test_inference(self): + device = "cpu" + + components = self.get_dummy_components() + pipe = self.pipeline_class(**components) + pipe.to(device) + pipe.set_progress_bar_config(disable=None) + + inputs = self.get_dummy_inputs(device) + image = pipe(**inputs).images + image_slice = image[0, -3:, -3:, -1] + + self.assertEqual(image.shape, (1, 8, 8, 3)) + expected_slice = np.array([0.6319, 0.3526, 0.3806, 0.6327, 0.4639, 0.4830, 0.2583, 0.5331, 0.4852]) + max_diff = np.abs(image_slice.flatten() - expected_slice).max() + self.assertLessEqual(max_diff, 1e-3) + + def test_inference_non_square_images(self): + device = "cpu" + + components = self.get_dummy_components() + pipe = self.pipeline_class(**components) + pipe.to(device) + pipe.set_progress_bar_config(disable=None) + + inputs = self.get_dummy_inputs(device) + image = pipe(**inputs, height=32, width=48).images + image_slice = image[0, -3:, -3:, -1] + self.assertEqual(image.shape, (1, 32, 48, 3)) + + expected_slice = np.array([0.6493, 0.5370, 0.4081, 0.4762, 0.3695, 0.4711, 0.3026, 0.5218, 0.5263]) + max_diff = np.abs(image_slice.flatten() - expected_slice).max() + self.assertLessEqual(max_diff, 1e-3) + + def test_inference_with_embeddings_and_multiple_images(self): + components = self.get_dummy_components() + pipe = self.pipeline_class(**components) + pipe.to(torch_device) + pipe.set_progress_bar_config(disable=None) + + inputs = self.get_dummy_inputs(torch_device) + + prompt = inputs["prompt"] + generator = inputs["generator"] + num_inference_steps = inputs["num_inference_steps"] + output_type = inputs["output_type"] + + prompt_embeds, prompt_attn_mask, negative_prompt_embeds, neg_prompt_attn_mask = pipe.encode_prompt(prompt) + + # inputs with prompt converted to embeddings + inputs = { + "prompt_embeds": prompt_embeds, + "prompt_attention_mask": prompt_attn_mask, + "negative_prompt": None, + "negative_prompt_embeds": negative_prompt_embeds, + "negative_prompt_attention_mask": neg_prompt_attn_mask, + "generator": generator, + "num_inference_steps": num_inference_steps, + "output_type": output_type, + "num_images_per_prompt": 2, + "use_resolution_binning": False, + } + + # set all optional components to None + for optional_component in pipe._optional_components: + setattr(pipe, optional_component, None) + + output = pipe(**inputs)[0] + + with tempfile.TemporaryDirectory() as tmpdir: + pipe.save_pretrained(tmpdir) + pipe_loaded = self.pipeline_class.from_pretrained(tmpdir) + pipe_loaded.to(torch_device) + pipe_loaded.set_progress_bar_config(disable=None) + + for optional_component in pipe._optional_components: + self.assertTrue( + getattr(pipe_loaded, optional_component) is None, + f"`{optional_component}` did not stay set to None after loading.", + ) + + inputs = self.get_dummy_inputs(torch_device) + + generator = inputs["generator"] + num_inference_steps = inputs["num_inference_steps"] + output_type = inputs["output_type"] + + # inputs with prompt converted to embeddings + inputs = { + "prompt_embeds": prompt_embeds, + "prompt_attention_mask": prompt_attn_mask, + "negative_prompt": None, + "negative_prompt_embeds": negative_prompt_embeds, + "negative_prompt_attention_mask": neg_prompt_attn_mask, + "generator": generator, + "num_inference_steps": num_inference_steps, + "output_type": output_type, + "num_images_per_prompt": 2, + "use_resolution_binning": False, + } + + output_loaded = pipe_loaded(**inputs)[0] + + max_diff = np.abs(to_np(output) - to_np(output_loaded)).max() + self.assertLess(max_diff, 1e-4) + + def test_inference_with_multiple_images_per_prompt(self): + device = "cpu" + + components = self.get_dummy_components() + pipe = self.pipeline_class(**components) + pipe.to(device) + pipe.set_progress_bar_config(disable=None) + + inputs = self.get_dummy_inputs(device) + inputs["num_images_per_prompt"] = 2 + image = pipe(**inputs).images + image_slice = image[0, -3:, -3:, -1] + + self.assertEqual(image.shape, (2, 8, 8, 3)) + expected_slice = np.array([0.6319, 0.3526, 0.3806, 0.6327, 0.4639, 0.4830, 0.2583, 0.5331, 0.4852]) + max_diff = np.abs(image_slice.flatten() - expected_slice).max() + self.assertLessEqual(max_diff, 1e-3) + + def test_inference_batch_single_identical(self): + self._test_inference_batch_single_identical(expected_max_diff=1e-3) + + # PixArt transformer model does not work with sequential offload so skip it for now + def test_sequential_offload_forward_pass_twice(self): + pass + + +@slow +@require_torch_gpu +class PixArtSigmaPipelineIntegrationTests(unittest.TestCase): + ckpt_id_1024 = "PixArt-alpha/PixArt-Sigma-XL-2-1024-MS" + ckpt_id_512 = "PixArt-alpha/PixArt-Sigma-XL-2-512-MS" + prompt = "A small cactus with a happy face in the Sahara desert." + + def setUp(self): + super().setUp() + gc.collect() + torch.cuda.empty_cache() + + def tearDown(self): + super().tearDown() + gc.collect() + torch.cuda.empty_cache() + + def test_pixart_1024(self): + generator = torch.Generator("cpu").manual_seed(0) + + pipe = PixArtSigmaPipeline.from_pretrained(self.ckpt_id_1024, torch_dtype=torch.float16) + pipe.enable_model_cpu_offload() + prompt = self.prompt + + image = pipe(prompt, generator=generator, num_inference_steps=2, output_type="np").images + + image_slice = image[0, -3:, -3:, -1] + expected_slice = np.array([0.0742, 0.0835, 0.2114, 0.0295, 0.0784, 0.2361, 0.1738, 0.2251, 0.3589]) + + max_diff = numpy_cosine_similarity_distance(image_slice.flatten(), expected_slice) + self.assertLessEqual(max_diff, 1e-4) + + def test_pixart_512(self): + generator = torch.Generator("cpu").manual_seed(0) + + pipe = PixArtSigmaPipeline.from_pretrained(self.ckpt_id_512, torch_dtype=torch.float16) + pipe.enable_model_cpu_offload() + + prompt = self.prompt + + image = pipe(prompt, generator=generator, num_inference_steps=2, output_type="np").images + + image_slice = image[0, -3:, -3:, -1] + expected_slice = np.array([0.3477, 0.3882, 0.4541, 0.3413, 0.3821, 0.4463, 0.4001, 0.4409, 0.4958]) + + max_diff = numpy_cosine_similarity_distance(image_slice.flatten(), expected_slice) + self.assertLessEqual(max_diff, 1e-4) + + def test_pixart_1024_without_resolution_binning(self): + generator = torch.manual_seed(0) + + pipe = PixArtSigmaPipeline.from_pretrained(self.ckpt_id_1024, torch_dtype=torch.float16) + pipe.enable_model_cpu_offload() + + prompt = self.prompt + height, width = 1024, 768 + num_inference_steps = 2 + + image = pipe( + prompt, + height=height, + width=width, + generator=generator, + num_inference_steps=num_inference_steps, + output_type="np", + ).images + image_slice = image[0, -3:, -3:, -1] + + generator = torch.manual_seed(0) + no_res_bin_image = pipe( + prompt, + height=height, + width=width, + generator=generator, + num_inference_steps=num_inference_steps, + output_type="np", + use_resolution_binning=False, + ).images + no_res_bin_image_slice = no_res_bin_image[0, -3:, -3:, -1] + + assert not np.allclose(image_slice, no_res_bin_image_slice, atol=1e-4, rtol=1e-4) + + def test_pixart_512_without_resolution_binning(self): + generator = torch.manual_seed(0) + + pipe = PixArtSigmaPipeline.from_pretrained(self.ckpt_id_512, torch_dtype=torch.float16) + pipe.enable_model_cpu_offload() + + prompt = self.prompt + height, width = 512, 768 + num_inference_steps = 2 + + image = pipe( + prompt, + height=height, + width=width, + generator=generator, + num_inference_steps=num_inference_steps, + output_type="np", + ).images + image_slice = image[0, -3:, -3:, -1] + + generator = torch.manual_seed(0) + no_res_bin_image = pipe( + prompt, + height=height, + width=width, + generator=generator, + num_inference_steps=num_inference_steps, + output_type="np", + use_resolution_binning=False, + ).images + no_res_bin_image_slice = no_res_bin_image[0, -3:, -3:, -1] + + assert not np.allclose(image_slice, no_res_bin_image_slice, atol=1e-4, rtol=1e-4)