1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00

[tests] device_map tests for all models. (#11708)

* device_map tests for all models.

* updates

* Update tests/models/test_modeling_common.py

Co-authored-by: Aryan <aryan@huggingface.co>

* fix device_map in test

---------

Co-authored-by: Aryan <aryan@huggingface.co>
This commit is contained in:
Sayak Paul
2025-06-18 10:52:06 +05:30
committed by GitHub
parent d72184eba3
commit 05e867784d
2 changed files with 39 additions and 37 deletions

View File

@@ -1736,6 +1736,45 @@ class ModelTesterMixin:
f"AutoModel forward pass diff: {max_diff} exceeds threshold {expected_max_diff}",
)
@parameterized.expand(
[
(-1, "You can't pass device_map as a negative int"),
("foo", "When passing device_map as a string, the value needs to be a device name"),
]
)
def test_wrong_device_map_raises_error(self, device_map, msg_substring):
init_dict, _ = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**init_dict)
with tempfile.TemporaryDirectory() as tmpdir:
model.save_pretrained(tmpdir)
with self.assertRaises(ValueError) as err_ctx:
_ = self.model_class.from_pretrained(tmpdir, device_map=device_map)
assert msg_substring in str(err_ctx.exception)
@parameterized.expand([0, "cuda", torch.device("cuda")])
@require_torch_gpu
def test_passing_non_dict_device_map_works(self, device_map):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**init_dict).eval()
with tempfile.TemporaryDirectory() as tmpdir:
model.save_pretrained(tmpdir)
loaded_model = self.model_class.from_pretrained(tmpdir, device_map=device_map)
_ = loaded_model(**inputs_dict)
@parameterized.expand([("", "cuda"), ("", torch.device("cuda"))])
@require_torch_gpu
def test_passing_dict_device_map_works(self, name, device):
# There are other valid dict-based `device_map` values too. It's best to refer to
# the docs for those: https://huggingface.co/docs/accelerate/en/concept_guides/big_model_inference#the-devicemap.
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**init_dict).eval()
device_map = {name: device}
with tempfile.TemporaryDirectory() as tmpdir:
model.save_pretrained(tmpdir)
loaded_model = self.model_class.from_pretrained(tmpdir, device_map=device_map)
_ = loaded_model(**inputs_dict)
@is_staging_test
class ModelPushToHubTester(unittest.TestCase):

View File

@@ -46,7 +46,6 @@ from diffusers.utils.testing_utils import (
require_peft_backend,
require_torch_accelerator,
require_torch_accelerator_with_fp16,
require_torch_gpu,
skip_mps,
slow,
torch_all_close,
@@ -1084,42 +1083,6 @@ class UNet2DConditionModelTests(ModelTesterMixin, UNetTesterMixin, unittest.Test
assert loaded_model
assert new_output.sample.shape == (4, 4, 16, 16)
@parameterized.expand(
[
(-1, "You can't pass device_map as a negative int"),
("foo", "When passing device_map as a string, the value needs to be a device name"),
]
)
def test_wrong_device_map_raises_error(self, device_map, msg_substring):
with self.assertRaises(ValueError) as err_ctx:
_ = self.model_class.from_pretrained(
"hf-internal-testing/unet2d-sharded-dummy-subfolder", subfolder="unet", device_map=device_map
)
assert msg_substring in str(err_ctx.exception)
@parameterized.expand([0, "cuda", torch.device("cuda"), torch.device("cuda:0")])
@require_torch_gpu
def test_passing_non_dict_device_map_works(self, device_map):
_, inputs_dict = self.prepare_init_args_and_inputs_for_common()
loaded_model = self.model_class.from_pretrained(
"hf-internal-testing/unet2d-sharded-dummy-subfolder", subfolder="unet", device_map=device_map
)
output = loaded_model(**inputs_dict)
assert output.sample.shape == (4, 4, 16, 16)
@parameterized.expand([("", "cuda"), ("", torch.device("cuda"))])
@require_torch_gpu
def test_passing_dict_device_map_works(self, name, device_map):
# There are other valid dict-based `device_map` values too. It's best to refer to
# the docs for those: https://huggingface.co/docs/accelerate/en/concept_guides/big_model_inference#the-devicemap.
_, inputs_dict = self.prepare_init_args_and_inputs_for_common()
loaded_model = self.model_class.from_pretrained(
"hf-internal-testing/unet2d-sharded-dummy-subfolder", subfolder="unet", device_map={name: device_map}
)
output = loaded_model(**inputs_dict)
assert output.sample.shape == (4, 4, 16, 16)
@require_peft_backend
def test_load_attn_procs_raise_warning(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()