mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
@@ -21,7 +21,7 @@ The abstract from the paper is:
|
||||
## Loading from the original format
|
||||
|
||||
By default the [`AutoencoderKL`] should be loaded with [`~ModelMixin.from_pretrained`], but it can also be loaded
|
||||
from the original format using [`FromOriginalVAEMixin.from_single_file`] as follows:
|
||||
from the original format using [`FromOriginalModelMixin.from_single_file`] as follows:
|
||||
|
||||
```py
|
||||
from diffusers import AutoencoderKL
|
||||
|
||||
@@ -21,7 +21,7 @@ The abstract from the paper is:
|
||||
## Loading from the original format
|
||||
|
||||
By default the [`ControlNetModel`] should be loaded with [`~ModelMixin.from_pretrained`], but it can also be loaded
|
||||
from the original format using [`FromOriginalControlnetMixin.from_single_file`] as follows:
|
||||
from the original format using [`FromOriginalModelMixin.from_single_file`] as follows:
|
||||
|
||||
```py
|
||||
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
|
||||
|
||||
@@ -1,146 +0,0 @@
|
||||
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from huggingface_hub.utils import validate_hf_hub_args
|
||||
|
||||
from .single_file_utils import (
|
||||
create_diffusers_vae_model_from_ldm,
|
||||
fetch_ldm_config_and_checkpoint,
|
||||
)
|
||||
|
||||
|
||||
class FromOriginalVAEMixin:
|
||||
"""
|
||||
Load pretrained AutoencoderKL weights saved in the `.ckpt` or `.safetensors` format into a [`AutoencoderKL`].
|
||||
"""
|
||||
|
||||
@classmethod
|
||||
@validate_hf_hub_args
|
||||
def from_single_file(cls, pretrained_model_link_or_path, **kwargs):
|
||||
r"""
|
||||
Instantiate a [`AutoencoderKL`] from pretrained ControlNet weights saved in the original `.ckpt` or
|
||||
`.safetensors` format. The pipeline is set in evaluation mode (`model.eval()`) by default.
|
||||
|
||||
Parameters:
|
||||
pretrained_model_link_or_path (`str` or `os.PathLike`, *optional*):
|
||||
Can be either:
|
||||
- A link to the `.ckpt` file (for example
|
||||
`"https://huggingface.co/<repo_id>/blob/main/<path_to_file>.ckpt"`) on the Hub.
|
||||
- A path to a *file* containing all pipeline weights.
|
||||
config_file (`str`, *optional*):
|
||||
Filepath to the configuration YAML file associated with the model. If not provided it will default to:
|
||||
https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml
|
||||
torch_dtype (`str` or `torch.dtype`, *optional*):
|
||||
Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the
|
||||
dtype is automatically derived from the model's weights.
|
||||
force_download (`bool`, *optional*, defaults to `False`):
|
||||
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
|
||||
cached versions if they exist.
|
||||
cache_dir (`Union[str, os.PathLike]`, *optional*):
|
||||
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
|
||||
is not used.
|
||||
resume_download:
|
||||
Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v1
|
||||
of Diffusers.
|
||||
proxies (`Dict[str, str]`, *optional*):
|
||||
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
|
||||
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
|
||||
local_files_only (`bool`, *optional*, defaults to `False`):
|
||||
Whether to only load local model weights and configuration files or not. If set to True, the model
|
||||
won't be downloaded from the Hub.
|
||||
token (`str` or *bool*, *optional*):
|
||||
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
|
||||
`diffusers-cli login` (stored in `~/.huggingface`) is used.
|
||||
revision (`str`, *optional*, defaults to `"main"`):
|
||||
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
|
||||
allowed by Git.
|
||||
image_size (`int`, *optional*, defaults to 512):
|
||||
The image size the model was trained on. Use 512 for all Stable Diffusion v1 models and the Stable
|
||||
Diffusion v2 base model. Use 768 for Stable Diffusion v2.
|
||||
scaling_factor (`float`, *optional*, defaults to 0.18215):
|
||||
The component-wise standard deviation of the trained latent space computed using the first batch of the
|
||||
training set. This is used to scale the latent space to have unit variance when training the diffusion
|
||||
model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
|
||||
diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z
|
||||
= 1 / scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution
|
||||
Image Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper.
|
||||
kwargs (remaining dictionary of keyword arguments, *optional*):
|
||||
Can be used to overwrite load and saveable variables (for example the pipeline components of the
|
||||
specific pipeline class). The overwritten components are directly passed to the pipelines `__init__`
|
||||
method. See example below for more information.
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
Make sure to pass both `image_size` and `scaling_factor` to `from_single_file()` if you're loading
|
||||
a VAE from SDXL or a Stable Diffusion v2 model or higher.
|
||||
|
||||
</Tip>
|
||||
|
||||
Examples:
|
||||
|
||||
```py
|
||||
from diffusers import AutoencoderKL
|
||||
|
||||
url = "https://huggingface.co/stabilityai/sd-vae-ft-mse-original/blob/main/vae-ft-mse-840000-ema-pruned.safetensors" # can also be local file
|
||||
model = AutoencoderKL.from_single_file(url)
|
||||
```
|
||||
"""
|
||||
|
||||
original_config_file = kwargs.pop("original_config_file", None)
|
||||
config_file = kwargs.pop("config_file", None)
|
||||
resume_download = kwargs.pop("resume_download", None)
|
||||
force_download = kwargs.pop("force_download", False)
|
||||
proxies = kwargs.pop("proxies", None)
|
||||
token = kwargs.pop("token", None)
|
||||
cache_dir = kwargs.pop("cache_dir", None)
|
||||
local_files_only = kwargs.pop("local_files_only", None)
|
||||
revision = kwargs.pop("revision", None)
|
||||
torch_dtype = kwargs.pop("torch_dtype", None)
|
||||
|
||||
class_name = cls.__name__
|
||||
|
||||
if (config_file is not None) and (original_config_file is not None):
|
||||
raise ValueError(
|
||||
"You cannot pass both `config_file` and `original_config_file` to `from_single_file`. Please use only one of these arguments."
|
||||
)
|
||||
|
||||
original_config_file = original_config_file or config_file
|
||||
original_config, checkpoint = fetch_ldm_config_and_checkpoint(
|
||||
pretrained_model_link_or_path=pretrained_model_link_or_path,
|
||||
class_name=class_name,
|
||||
original_config_file=original_config_file,
|
||||
resume_download=resume_download,
|
||||
force_download=force_download,
|
||||
proxies=proxies,
|
||||
token=token,
|
||||
revision=revision,
|
||||
local_files_only=local_files_only,
|
||||
cache_dir=cache_dir,
|
||||
)
|
||||
|
||||
image_size = kwargs.pop("image_size", None)
|
||||
scaling_factor = kwargs.pop("scaling_factor", None)
|
||||
component = create_diffusers_vae_model_from_ldm(
|
||||
class_name,
|
||||
original_config,
|
||||
checkpoint,
|
||||
image_size=image_size,
|
||||
scaling_factor=scaling_factor,
|
||||
torch_dtype=torch_dtype,
|
||||
)
|
||||
vae = component["vae"]
|
||||
if torch_dtype is not None:
|
||||
vae = vae.to(torch_dtype)
|
||||
|
||||
return vae
|
||||
@@ -1,136 +0,0 @@
|
||||
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from huggingface_hub.utils import validate_hf_hub_args
|
||||
|
||||
from .single_file_utils import (
|
||||
create_diffusers_controlnet_model_from_ldm,
|
||||
fetch_ldm_config_and_checkpoint,
|
||||
)
|
||||
|
||||
|
||||
class FromOriginalControlNetMixin:
|
||||
"""
|
||||
Load pretrained ControlNet weights saved in the `.ckpt` or `.safetensors` format into a [`ControlNetModel`].
|
||||
"""
|
||||
|
||||
@classmethod
|
||||
@validate_hf_hub_args
|
||||
def from_single_file(cls, pretrained_model_link_or_path, **kwargs):
|
||||
r"""
|
||||
Instantiate a [`ControlNetModel`] from pretrained ControlNet weights saved in the original `.ckpt` or
|
||||
`.safetensors` format. The pipeline is set in evaluation mode (`model.eval()`) by default.
|
||||
|
||||
Parameters:
|
||||
pretrained_model_link_or_path (`str` or `os.PathLike`, *optional*):
|
||||
Can be either:
|
||||
- A link to the `.ckpt` file (for example
|
||||
`"https://huggingface.co/<repo_id>/blob/main/<path_to_file>.ckpt"`) on the Hub.
|
||||
- A path to a *file* containing all pipeline weights.
|
||||
config_file (`str`, *optional*):
|
||||
Filepath to the configuration YAML file associated with the model. If not provided it will default to:
|
||||
https://raw.githubusercontent.com/lllyasviel/ControlNet/main/models/cldm_v15.yaml
|
||||
torch_dtype (`str` or `torch.dtype`, *optional*):
|
||||
Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the
|
||||
dtype is automatically derived from the model's weights.
|
||||
force_download (`bool`, *optional*, defaults to `False`):
|
||||
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
|
||||
cached versions if they exist.
|
||||
cache_dir (`Union[str, os.PathLike]`, *optional*):
|
||||
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
|
||||
is not used.
|
||||
resume_download:
|
||||
Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v1
|
||||
of Diffusers.
|
||||
proxies (`Dict[str, str]`, *optional*):
|
||||
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
|
||||
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
|
||||
local_files_only (`bool`, *optional*, defaults to `False`):
|
||||
Whether to only load local model weights and configuration files or not. If set to True, the model
|
||||
won't be downloaded from the Hub.
|
||||
token (`str` or *bool*, *optional*):
|
||||
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
|
||||
`diffusers-cli login` (stored in `~/.huggingface`) is used.
|
||||
revision (`str`, *optional*, defaults to `"main"`):
|
||||
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
|
||||
allowed by Git.
|
||||
image_size (`int`, *optional*, defaults to 512):
|
||||
The image size the model was trained on. Use 512 for all Stable Diffusion v1 models and the Stable
|
||||
Diffusion v2 base model. Use 768 for Stable Diffusion v2.
|
||||
upcast_attention (`bool`, *optional*, defaults to `None`):
|
||||
Whether the attention computation should always be upcasted.
|
||||
kwargs (remaining dictionary of keyword arguments, *optional*):
|
||||
Can be used to overwrite load and saveable variables (for example the pipeline components of the
|
||||
specific pipeline class). The overwritten components are directly passed to the pipelines `__init__`
|
||||
method. See example below for more information.
|
||||
|
||||
Examples:
|
||||
|
||||
```py
|
||||
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
|
||||
|
||||
url = "https://huggingface.co/lllyasviel/ControlNet-v1-1/blob/main/control_v11p_sd15_canny.pth" # can also be a local path
|
||||
model = ControlNetModel.from_single_file(url)
|
||||
|
||||
url = "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned.safetensors" # can also be a local path
|
||||
pipe = StableDiffusionControlNetPipeline.from_single_file(url, controlnet=controlnet)
|
||||
```
|
||||
"""
|
||||
original_config_file = kwargs.pop("original_config_file", None)
|
||||
config_file = kwargs.pop("config_file", None)
|
||||
resume_download = kwargs.pop("resume_download", None)
|
||||
force_download = kwargs.pop("force_download", False)
|
||||
proxies = kwargs.pop("proxies", None)
|
||||
token = kwargs.pop("token", None)
|
||||
cache_dir = kwargs.pop("cache_dir", None)
|
||||
local_files_only = kwargs.pop("local_files_only", None)
|
||||
revision = kwargs.pop("revision", None)
|
||||
torch_dtype = kwargs.pop("torch_dtype", None)
|
||||
|
||||
class_name = cls.__name__
|
||||
if (config_file is not None) and (original_config_file is not None):
|
||||
raise ValueError(
|
||||
"You cannot pass both `config_file` and `original_config_file` to `from_single_file`. Please use only one of these arguments."
|
||||
)
|
||||
|
||||
original_config_file = config_file or original_config_file
|
||||
original_config, checkpoint = fetch_ldm_config_and_checkpoint(
|
||||
pretrained_model_link_or_path=pretrained_model_link_or_path,
|
||||
class_name=class_name,
|
||||
original_config_file=original_config_file,
|
||||
resume_download=resume_download,
|
||||
force_download=force_download,
|
||||
proxies=proxies,
|
||||
token=token,
|
||||
revision=revision,
|
||||
local_files_only=local_files_only,
|
||||
cache_dir=cache_dir,
|
||||
)
|
||||
|
||||
upcast_attention = kwargs.pop("upcast_attention", False)
|
||||
image_size = kwargs.pop("image_size", None)
|
||||
|
||||
component = create_diffusers_controlnet_model_from_ldm(
|
||||
class_name,
|
||||
original_config,
|
||||
checkpoint,
|
||||
upcast_attention=upcast_attention,
|
||||
image_size=image_size,
|
||||
torch_dtype=torch_dtype,
|
||||
)
|
||||
controlnet = component["controlnet"]
|
||||
if torch_dtype is not None:
|
||||
controlnet = controlnet.to(torch_dtype)
|
||||
|
||||
return controlnet
|
||||
Reference in New Issue
Block a user