1
0
mirror of https://github.com/facebookincubator/mvfst.git synced 2025-11-27 03:41:14 +03:00
Files
mvfst/quic/common/QuicAsyncUDPSocketWrapper.cpp
Brandon Schlinker e55f8cbf7a Cleanup and modularize receive path, improve timestamp support [9/x]
Summary:
This diff adds `recvmmsg` to the `QuicAsyncUDPSocketWrapper` interface and adds a concrete implementation to `QuicAsyncUDPSocketWrapperImpl`
- The concrete implementation is largely a copy/paste of what we have in `QuicClientTransport::recvmmsg` today.
- A new transport setting is added — `shouldUseWrapperRecvmmsgForBatchRecv` — to determine if `QuicAsyncUDPSocketWrapperImpl::recvmmsg` should be used. It is currently disabled for all use cases.

--

This diff is part of a larger stack focused on the following:

- **Cleaning up client and server UDP packet receive paths while improving testability.** We currently have multiple receive paths for client and server. Capabilities vary significantly and there are few tests. For instance:
  - The server receive path supports socket RX timestamps, abet incorrectly in that it does not store timestamp per packet. In comparison, the client receive path does not currently support socket RX timestamps, although the code in `QuicClientTransport::recvmsg` and `QuicClientTransport::recvmmsg` makes reference to socket RX timestamps, making it confusing to understand the capabilities available when tracing through the code. This complicates the tests in `QuicTypedTransportTests`, as we have to disable test logic that depends on socket RX timestamps for client tests.
  - The client currently has three receive paths, and none of them are well tested.

- **Modularize and abstract components in the receive path.** This will make it easier to mock/fake the UDP socket and network layers.
  - `QuicClientTransport` and `QuicServerTransport` currently contain UDP socket handling logic that operates over lower layer primitives such `cmsg` and `io_vec` (see `QuicClientTransport::recvmmsg` and `...::recvmsg` as examples).
  - Because this UDP socket handling logic is inside of the mvfst transport implementations, it is difficult to test this logic in isolation and mock/fake the underlying socket and network layers. For instance, injecting a user space network emulator that operates at the socket layer would require faking `folly::AsyncUDPSocket`, which is non-trivial given that `AsyncUDPSocket` does not abstract away intricacies arising from the aforementioned lower layer primitives.
  - By shifting this logic into an intermediate layer between the transport and the underlying UDP socket, it will be easier to mock out the UDP socket layer when testing functionality at higher layers, and inject fake components when we want to emulate the network between a mvfst client and server. It will also be easier for us to have unit tests focused on testing interactions between the UDP socket implementation and this intermediate layer.

- **Improving receive path timestamping.** We only record a single timestamp per `NetworkData` at the moment, but (1) it is possible for a `NetworkData` to have multiple packets, each with their own timestamps, and (2) we should be able to record both userspace and socket timestamps.

Reviewed By: silver23arrow

Differential Revision: D48719751

fbshipit-source-id: d08f95823b917fa01dff04757b0ceabbf691a0ca
2023-09-21 07:57:58 -07:00

186 lines
5.6 KiB
C++

/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
#include <folly/portability/Sockets.h>
#include <quic/common/QuicAsyncUDPSocketWrapper.h>
namespace {
constexpr socklen_t kAddrLen = sizeof(sockaddr_storage);
} // namespace
namespace quic {
#ifdef MVFST_USE_LIBEV
int getSocketFd(const QuicAsyncUDPSocketWrapper& /* s */) {
return -1;
}
NetworkFdType toNetworkFdType(int fd) {
return fd;
}
#else
int getSocketFd(const QuicAsyncUDPSocketWrapper& s) {
return s.getNetworkSocket().toFd();
}
NetworkFdType toNetworkFdType(int fd) {
return folly::NetworkSocket(fd);
}
#endif
QuicAsyncUDPSocketWrapperImpl::RecvResult
QuicAsyncUDPSocketWrapperImpl::recvMmsg(
uint64_t readBufferSize,
uint16_t numPackets,
NetworkData& networkData,
folly::Optional<folly::SocketAddress>& peerAddress,
size_t& totalData) {
/**
* This is largely a copy / paste of QuicClientTransport::recvmmsg.
*
* TODO(bschlinker): Refactor and add dedicated testing.
*/
recvmmsgStorage_.resize(numPackets);
auto& msgs = recvmmsgStorage_.msgs;
int flags = 0;
#ifdef FOLLY_HAVE_MSG_ERRQUEUE
bool useGRO = getGRO() > 0;
bool useTS = getTimestamping() > 0;
std::vector<std::array<
char,
QuicAsyncUDPSocketWrapper::ReadCallback::OnDataAvailableParams::
kCmsgSpace>>
controlVec((useGRO | useTS) ? numPackets : 0);
// we need to consider MSG_TRUNC too
if (useGRO) {
flags |= MSG_TRUNC;
}
#endif
for (uint16_t i = 0; i < numPackets; ++i) {
auto& addr = recvmmsgStorage_.impl_[i].addr;
auto& readBuffer = recvmmsgStorage_.impl_[i].readBuffer;
auto& iovec = recvmmsgStorage_.impl_[i].iovec;
struct msghdr* msg = &msgs[i].msg_hdr;
if (!readBuffer) {
readBuffer = folly::IOBuf::createCombined(readBufferSize);
iovec.iov_base = readBuffer->writableData();
iovec.iov_len = readBufferSize;
msg->msg_iov = &iovec;
msg->msg_iovlen = 1;
}
CHECK(readBuffer != nullptr);
auto* rawAddr = reinterpret_cast<sockaddr*>(&addr);
rawAddr->sa_family = address().getFamily();
msg->msg_name = rawAddr;
msg->msg_namelen = kAddrLen;
#ifdef FOLLY_HAVE_MSG_ERRQUEUE
if (useGRO || useTS) {
::memset(controlVec[i].data(), 0, controlVec[i].size());
msg->msg_control = controlVec[i].data();
msg->msg_controllen = controlVec[i].size();
}
#endif
}
int numMsgsRecvd = recvmmsg(msgs.data(), numPackets, flags, nullptr);
if (numMsgsRecvd < 0) {
if (errno == EAGAIN || errno == EWOULDBLOCK) {
// Exit, socket will notify us again when socket is readable.
return RecvResult(NoReadReason::RETRIABLE_ERROR);
}
// If we got a non-retriable error, we might have received
// a packet that we could process, however let's just quit early.
// pauseRead();
return RecvResult(NoReadReason::NONRETRIABLE_ERROR);
}
CHECK_LE(numMsgsRecvd, numPackets);
// Need to save our position so we can recycle the unused buffers.
uint16_t i;
for (i = 0; i < static_cast<uint16_t>(numMsgsRecvd); ++i) {
auto& addr = recvmmsgStorage_.impl_[i].addr;
auto& readBuffer = recvmmsgStorage_.impl_[i].readBuffer;
auto& msg = msgs[i];
size_t bytesRead = msg.msg_len;
if (bytesRead == 0) {
// Empty datagram, this is probably garbage matching our tuple, we
// should ignore such datagrams.
continue;
}
QuicAsyncUDPSocketWrapper::ReadCallback::OnDataAvailableParams params;
#ifdef FOLLY_HAVE_MSG_ERRQUEUE
if (useGRO || useTS) {
QuicAsyncUDPSocketWrapper::fromMsg(params, msg.msg_hdr);
// truncated
if (bytesRead > readBufferSize) {
bytesRead = readBufferSize;
if (params.gro > 0) {
bytesRead = bytesRead - bytesRead % params.gro;
}
}
}
#endif
totalData += bytesRead;
if (!peerAddress) {
peerAddress.emplace(folly::SocketAddress());
auto* rawAddr = reinterpret_cast<sockaddr*>(&addr);
peerAddress->setFromSockaddr(rawAddr, kAddrLen);
}
VLOG(10) << "Got data from socket peer=" << *peerAddress
<< " len=" << bytesRead;
readBuffer->append(bytesRead);
if (params.gro > 0) {
size_t len = bytesRead;
size_t remaining = len;
size_t offset = 0;
size_t totalNumPackets =
networkData.packets.size() + ((len + params.gro - 1) / params.gro);
networkData.packets.reserve(totalNumPackets);
while (remaining) {
if (static_cast<int>(remaining) > params.gro) {
auto tmp = readBuffer->cloneOne();
// start at offset
tmp->trimStart(offset);
// the actual len is len - offset now
// leave gro bytes
tmp->trimEnd(len - offset - params.gro);
DCHECK_EQ(tmp->length(), params.gro);
offset += params.gro;
remaining -= params.gro;
networkData.packets.emplace_back(std::move(tmp));
} else {
// do not clone the last packet
// start at offset, use all the remaining data
readBuffer->trimStart(offset);
DCHECK_EQ(readBuffer->length(), remaining);
remaining = 0;
networkData.packets.emplace_back(std::move(readBuffer));
}
}
} else {
networkData.packets.emplace_back(std::move(readBuffer));
}
}
return RecvResult();
}
void QuicAsyncUDPSocketWrapperImpl::RecvmmsgStorage::resize(size_t numPackets) {
if (msgs.size() != numPackets) {
msgs.resize(numPackets);
impl_.resize(numPackets);
}
}
} // namespace quic