1
0
mirror of https://github.com/facebookincubator/mvfst.git synced 2025-11-09 10:00:57 +03:00
Files
mvfst/quic/api/QuicPacketScheduler.cpp
Yang Chi b8fef40c6d Clone Quic handshake packets
Summary:
On loss timer, currently we knock all handshake packets out of the OP
list and resend everything. This means miss RTT sampling opportunities during
handshake if loss timer fires, and given our initial loss timer is likely not a
good fit for many networks, it probably fires a lot.

This diff keeps handshake packets in the OP list, and add packet cloning
support to handshake packets so we can clone them and send as probes.

With this, the handshake alarm is finally removed. PTO will take care of all
packet number space.

The diff also fixes a bug in the CloningScheduler where we missed cipher
overhead setting. That broke a few unit tests once we started to clone
handshake packets.

The writeProbingDataToSocket API is also changed to support passing a token to
it so when we clone Initial, token is added correctly. This is because during
packet cloning, we only clone frames. Headers are fresh built.

The diff also changed the cloning behavior when there is only one outstanding
packet. Currently we clone it twice and send two packets. There is no point of
doing that. Now when loss timer fires and when there is only one outstanding
packet, we only clone once.

The PacketEvent, which was an alias of PacketNumber, is now a real type that
has both PacketNumber and PacketNumberSpace to support cloning of handshake
packets. I think in the long term we should refactor PacketNumber itself into a
real type.

Reviewed By: mjoras

Differential Revision: D19863693

fbshipit-source-id: e427bb392021445a9388c15e7ea807852ddcbd08
2020-06-18 15:30:44 -07:00

622 lines
22 KiB
C++

/*
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*
*/
#include <quic/api/QuicPacketScheduler.h>
namespace quic {
bool hasAcksToSchedule(const AckState& ackState) {
folly::Optional<PacketNum> largestAckSend = largestAckToSend(ackState);
if (!largestAckSend) {
return false;
}
if (!ackState.largestAckScheduled) {
// Never scheduled an ack, we need to send
return true;
}
return *largestAckSend > *(ackState.largestAckScheduled);
}
folly::Optional<PacketNum> largestAckToSend(const AckState& ackState) {
if (ackState.acks.empty()) {
return folly::none;
}
return ackState.acks.back().end;
}
// Schedulers
FrameScheduler::Builder::Builder(
QuicConnectionStateBase& conn,
EncryptionLevel encryptionLevel,
PacketNumberSpace packetNumberSpace,
std::string name)
: conn_(conn),
encryptionLevel_(encryptionLevel),
packetNumberSpace_(packetNumberSpace),
name_(std::move(name)) {}
FrameScheduler::Builder& FrameScheduler::Builder::streamRetransmissions() {
retransmissionScheduler_ = true;
return *this;
}
FrameScheduler::Builder& FrameScheduler::Builder::streamFrames() {
streamFrameScheduler_ = true;
return *this;
}
FrameScheduler::Builder& FrameScheduler::Builder::ackFrames() {
ackScheduler_ = true;
return *this;
}
FrameScheduler::Builder& FrameScheduler::Builder::resetFrames() {
rstScheduler_ = true;
return *this;
}
FrameScheduler::Builder& FrameScheduler::Builder::windowUpdateFrames() {
windowUpdateScheduler_ = true;
return *this;
}
FrameScheduler::Builder& FrameScheduler::Builder::blockedFrames() {
blockedScheduler_ = true;
return *this;
}
FrameScheduler::Builder& FrameScheduler::Builder::cryptoFrames() {
cryptoStreamScheduler_ = true;
return *this;
}
FrameScheduler::Builder& FrameScheduler::Builder::simpleFrames() {
simpleFrameScheduler_ = true;
return *this;
}
FrameScheduler FrameScheduler::Builder::build() && {
FrameScheduler scheduler(std::move(name_));
if (retransmissionScheduler_) {
scheduler.retransmissionScheduler_.emplace(RetransmissionScheduler(conn_));
}
if (streamFrameScheduler_) {
scheduler.streamFrameScheduler_.emplace(StreamFrameScheduler(conn_));
}
if (ackScheduler_) {
scheduler.ackScheduler_.emplace(
AckScheduler(conn_, getAckState(conn_, packetNumberSpace_)));
}
if (rstScheduler_) {
scheduler.rstScheduler_.emplace(RstStreamScheduler(conn_));
}
if (windowUpdateScheduler_) {
scheduler.windowUpdateScheduler_.emplace(WindowUpdateScheduler(conn_));
}
if (blockedScheduler_) {
scheduler.blockedScheduler_.emplace(BlockedScheduler(conn_));
}
if (cryptoStreamScheduler_) {
scheduler.cryptoStreamScheduler_.emplace(CryptoStreamScheduler(
conn_, *getCryptoStream(*conn_.cryptoState, encryptionLevel_)));
}
if (simpleFrameScheduler_) {
scheduler.simpleFrameScheduler_.emplace(SimpleFrameScheduler(conn_));
}
return scheduler;
}
FrameScheduler::FrameScheduler(std::string name) : name_(std::move(name)) {}
SchedulingResult FrameScheduler::scheduleFramesForPacket(
PacketBuilderInterface&& builder,
uint32_t writableBytes) {
builder.encodePacketHeader();
// We need to keep track of writable bytes after writing header.
writableBytes = writableBytes > builder.getHeaderBytes()
? writableBytes - builder.getHeaderBytes()
: 0;
// We cannot return early if the writablyBytes dropps to 0 here, since pure
// acks can skip writableBytes entirely.
PacketBuilderWrapper wrapper(builder, writableBytes);
bool cryptoDataWritten = false;
bool rstWritten = false;
if (cryptoStreamScheduler_ && cryptoStreamScheduler_->hasData()) {
cryptoDataWritten = cryptoStreamScheduler_->writeCryptoData(wrapper);
}
if (rstScheduler_ && rstScheduler_->hasPendingRsts()) {
rstWritten = rstScheduler_->writeRsts(wrapper);
}
// TODO: Long time ago we decided RST has higher priority than Acks. Why tho?
if (ackScheduler_ && ackScheduler_->hasPendingAcks()) {
if (cryptoDataWritten || rstWritten) {
// If packet has non ack data, it is subject to congestion control. We
// need to use the wrapper/
ackScheduler_->writeNextAcks(wrapper);
} else {
// If we start with writing acks, we will let the ack scheduler write
// up to the full packet space. If the ack bytes exceeds the writable
// bytes, this will be a pure ack packet and it will skip congestion
// controller. Otherwise, we will give other schedulers an opportunity to
// write up to writable bytes.
ackScheduler_->writeNextAcks(builder);
}
}
if (windowUpdateScheduler_ &&
windowUpdateScheduler_->hasPendingWindowUpdates()) {
windowUpdateScheduler_->writeWindowUpdates(wrapper);
}
if (blockedScheduler_ && blockedScheduler_->hasPendingBlockedFrames()) {
blockedScheduler_->writeBlockedFrames(wrapper);
}
// Simple frames should be scheduled before stream frames and retx frames
// because those frames might fill up all available bytes for writing.
// If we are trying to send a PathChallenge frame it may be blocked by those,
// causing a connection to proceed slowly because of path validation rate
// limiting.
if (simpleFrameScheduler_ &&
simpleFrameScheduler_->hasPendingSimpleFrames()) {
simpleFrameScheduler_->writeSimpleFrames(wrapper);
}
if (retransmissionScheduler_ && retransmissionScheduler_->hasPendingData()) {
retransmissionScheduler_->writeRetransmissionStreams(wrapper);
}
if (streamFrameScheduler_ && streamFrameScheduler_->hasPendingData()) {
streamFrameScheduler_->writeStreams(wrapper);
}
if (builder.hasFramesPending()) {
const LongHeader* longHeader = builder.getPacketHeader().asLong();
bool initialPacket =
longHeader && longHeader->getHeaderType() == LongHeader::Types::Initial;
if (initialPacket) {
// This is the initial packet, we need to fill er up.
while (wrapper.remainingSpaceInPkt() > 0) {
writeFrame(PaddingFrame(), builder);
}
}
}
return SchedulingResult(folly::none, std::move(builder).buildPacket());
}
bool FrameScheduler::hasData() const {
return (ackScheduler_ && ackScheduler_->hasPendingAcks()) ||
hasImmediateData();
}
bool FrameScheduler::hasImmediateData() const {
return (cryptoStreamScheduler_ && cryptoStreamScheduler_->hasData()) ||
(retransmissionScheduler_ &&
retransmissionScheduler_->hasPendingData()) ||
(streamFrameScheduler_ && streamFrameScheduler_->hasPendingData()) ||
(rstScheduler_ && rstScheduler_->hasPendingRsts()) ||
(windowUpdateScheduler_ &&
windowUpdateScheduler_->hasPendingWindowUpdates()) ||
(blockedScheduler_ && blockedScheduler_->hasPendingBlockedFrames()) ||
(simpleFrameScheduler_ &&
simpleFrameScheduler_->hasPendingSimpleFrames());
}
std::string FrameScheduler::name() const {
return name_;
}
RetransmissionScheduler::RetransmissionScheduler(
const QuicConnectionStateBase& conn)
: conn_(conn) {}
void RetransmissionScheduler::writeRetransmissionStreams(
PacketBuilderInterface& builder) {
for (auto streamId : conn_.streamManager->lossStreams()) {
auto stream = conn_.streamManager->findStream(streamId);
CHECK(stream);
for (auto buffer = stream->lossBuffer.cbegin();
buffer != stream->lossBuffer.cend();
++buffer) {
auto bufferLen = buffer->data.chainLength();
auto dataLen = writeStreamFrameHeader(
builder,
stream->id,
buffer->offset,
bufferLen, // writeBufferLen -- only the len of the single buffer.
bufferLen, // flowControlLen -- not relevant, already flow controlled.
buffer->eof,
folly::none /* skipLenHint */);
if (dataLen) {
writeStreamFrameData(builder, buffer->data, *dataLen);
VLOG(4) << "Wrote retransmitted stream=" << stream->id
<< " offset=" << buffer->offset << " bytes=" << *dataLen
<< " fin=" << (buffer->eof && *dataLen == bufferLen) << " "
<< conn_;
} else {
return;
}
}
}
}
bool RetransmissionScheduler::hasPendingData() const {
return !conn_.streamManager->lossStreams().empty();
}
StreamFrameScheduler::StreamFrameScheduler(QuicConnectionStateBase& conn)
: conn_(conn) {}
StreamId StreamFrameScheduler::writeStreamsHelper(
PacketBuilderInterface& builder,
const std::set<StreamId>& writableStreams,
StreamId nextScheduledStream,
uint64_t& connWritableBytes,
bool streamPerPacket) {
MiddleStartingIterationWrapper wrapper(writableStreams, nextScheduledStream);
auto writableStreamItr = wrapper.cbegin();
// This will write the stream frames in a round robin fashion ordered by
// stream id. The iterator will wrap around the collection at the end, and we
// keep track of the value at the next iteration. This allows us to start
// writing at the next stream when building the next packet.
// TODO experiment with writing streams with an actual prioritization scheme.
while (writableStreamItr != wrapper.cend() && connWritableBytes > 0) {
if (writeNextStreamFrame(builder, *writableStreamItr, connWritableBytes)) {
writableStreamItr++;
if (streamPerPacket) {
break;
}
} else {
break;
}
}
return *writableStreamItr;
}
void StreamFrameScheduler::writeStreams(PacketBuilderInterface& builder) {
DCHECK(conn_.streamManager->hasWritable());
uint64_t connWritableBytes = getSendConnFlowControlBytesWire(conn_);
if (connWritableBytes == 0) {
return;
}
// Write the control streams first as a naive binary priority mechanism.
const auto& writableControlStreams =
conn_.streamManager->writableControlStreams();
if (!writableControlStreams.empty()) {
conn_.schedulingState.nextScheduledControlStream = writeStreamsHelper(
builder,
writableControlStreams,
conn_.schedulingState.nextScheduledControlStream,
connWritableBytes,
conn_.transportSettings.streamFramePerPacket);
}
if (connWritableBytes == 0) {
return;
}
const auto& writableStreams = conn_.streamManager->writableStreams();
if (!writableStreams.empty()) {
conn_.schedulingState.nextScheduledStream = writeStreamsHelper(
builder,
writableStreams,
conn_.schedulingState.nextScheduledStream,
connWritableBytes,
conn_.transportSettings.streamFramePerPacket);
}
} // namespace quic
bool StreamFrameScheduler::hasPendingData() const {
return conn_.streamManager->hasWritable() &&
getSendConnFlowControlBytesWire(conn_) > 0;
}
bool StreamFrameScheduler::writeNextStreamFrame(
PacketBuilderInterface& builder,
StreamId streamId,
uint64_t& connWritableBytes) {
if (builder.remainingSpaceInPkt() == 0) {
return false;
}
auto stream = conn_.streamManager->findStream(streamId);
CHECK(stream);
// hasWritableData is the condition which has to be satisfied for the
// stream to be in writableList
DCHECK(stream->hasWritableData());
uint64_t flowControlLen =
std::min(getSendStreamFlowControlBytesWire(*stream), connWritableBytes);
uint64_t bufferLen = stream->writeBuffer.chainLength();
bool canWriteFin =
stream->finalWriteOffset.has_value() && bufferLen <= flowControlLen;
auto dataLen = writeStreamFrameHeader(
builder,
stream->id,
stream->currentWriteOffset,
bufferLen,
flowControlLen,
canWriteFin,
folly::none /* skipLenHint */);
if (!dataLen) {
return false;
}
writeStreamFrameData(builder, stream->writeBuffer, *dataLen);
VLOG(4) << "Wrote stream frame stream=" << stream->id
<< " offset=" << stream->currentWriteOffset
<< " bytesWritten=" << *dataLen
<< " finWritten=" << (canWriteFin && *dataLen == bufferLen) << " "
<< conn_;
connWritableBytes -= dataLen.value();
return true;
}
AckScheduler::AckScheduler(
const QuicConnectionStateBase& conn,
const AckState& ackState)
: conn_(conn), ackState_(ackState) {}
bool AckScheduler::hasPendingAcks() const {
return hasAcksToSchedule(ackState_);
}
RstStreamScheduler::RstStreamScheduler(const QuicConnectionStateBase& conn)
: conn_(conn) {}
bool RstStreamScheduler::hasPendingRsts() const {
return !conn_.pendingEvents.resets.empty();
}
bool RstStreamScheduler::writeRsts(PacketBuilderInterface& builder) {
bool rstWritten = false;
for (const auto& resetStream : conn_.pendingEvents.resets) {
// TODO: here, maybe coordinate scheduling of RST_STREAMS and streams.
auto bytesWritten = writeFrame(resetStream.second, builder);
if (!bytesWritten) {
break;
}
rstWritten = true;
}
return rstWritten;
}
SimpleFrameScheduler::SimpleFrameScheduler(const QuicConnectionStateBase& conn)
: conn_(conn) {}
bool SimpleFrameScheduler::hasPendingSimpleFrames() const {
return conn_.pendingEvents.pathChallenge ||
!conn_.pendingEvents.frames.empty();
}
bool SimpleFrameScheduler::writeSimpleFrames(PacketBuilderInterface& builder) {
auto& pathChallenge = conn_.pendingEvents.pathChallenge;
if (pathChallenge &&
!writeSimpleFrame(QuicSimpleFrame(*pathChallenge), builder)) {
return false;
}
bool framesWritten = false;
for (auto& frame : conn_.pendingEvents.frames) {
auto bytesWritten = writeSimpleFrame(QuicSimpleFrame(frame), builder);
if (!bytesWritten) {
break;
}
framesWritten = true;
}
return framesWritten;
}
WindowUpdateScheduler::WindowUpdateScheduler(
const QuicConnectionStateBase& conn)
: conn_(conn) {}
bool WindowUpdateScheduler::hasPendingWindowUpdates() const {
return conn_.streamManager->hasWindowUpdates() ||
conn_.pendingEvents.connWindowUpdate;
}
void WindowUpdateScheduler::writeWindowUpdates(
PacketBuilderInterface& builder) {
if (conn_.pendingEvents.connWindowUpdate) {
auto maxDataFrame = generateMaxDataFrame(conn_);
auto maximumData = maxDataFrame.maximumData;
auto bytes = writeFrame(std::move(maxDataFrame), builder);
if (bytes) {
VLOG(4) << "Wrote max_data=" << maximumData << " " << conn_;
}
}
for (const auto& windowUpdateStream : conn_.streamManager->windowUpdates()) {
auto stream = conn_.streamManager->findStream(windowUpdateStream);
if (!stream) {
continue;
}
auto maxStreamDataFrame = generateMaxStreamDataFrame(*stream);
auto maximumData = maxStreamDataFrame.maximumData;
auto bytes = writeFrame(std::move(maxStreamDataFrame), builder);
if (!bytes) {
break;
}
VLOG(4) << "Wrote max_stream_data stream=" << stream->id
<< " maximumData=" << maximumData << " " << conn_;
}
}
BlockedScheduler::BlockedScheduler(const QuicConnectionStateBase& conn)
: conn_(conn) {}
bool BlockedScheduler::hasPendingBlockedFrames() const {
return !conn_.streamManager->blockedStreams().empty();
}
void BlockedScheduler::writeBlockedFrames(PacketBuilderInterface& builder) {
for (const auto& blockedStream : conn_.streamManager->blockedStreams()) {
auto bytesWritten = writeFrame(blockedStream.second, builder);
if (!bytesWritten) {
break;
}
}
}
CryptoStreamScheduler::CryptoStreamScheduler(
const QuicConnectionStateBase& conn,
const QuicCryptoStream& cryptoStream)
: conn_(conn), cryptoStream_(cryptoStream) {}
bool CryptoStreamScheduler::writeCryptoData(PacketBuilderInterface& builder) {
bool cryptoDataWritten = false;
uint64_t writableData =
folly::to<uint64_t>(cryptoStream_.writeBuffer.chainLength());
// We use the crypto scheduler to reschedule the retransmissions of the
// crypto streams so that we know that retransmissions of the crypto data
// will always take precedence over the crypto data.
for (const auto& buffer : cryptoStream_.lossBuffer) {
auto res = writeCryptoFrame(buffer.offset, buffer.data, builder);
if (!res) {
return cryptoDataWritten;
}
VLOG(4) << "Wrote retransmitted crypto"
<< " offset=" << buffer.offset << " bytes=" << res->len << " "
<< conn_;
cryptoDataWritten = true;
}
if (writableData != 0) {
auto res = writeCryptoFrame(
cryptoStream_.currentWriteOffset, cryptoStream_.writeBuffer, builder);
if (res) {
VLOG(4) << "Wrote crypto frame"
<< " offset=" << cryptoStream_.currentWriteOffset
<< " bytesWritten=" << res->len << " " << conn_;
cryptoDataWritten = true;
}
}
return cryptoDataWritten;
}
bool CryptoStreamScheduler::hasData() const {
return !cryptoStream_.writeBuffer.empty() ||
!cryptoStream_.lossBuffer.empty();
}
CloningScheduler::CloningScheduler(
FrameScheduler& scheduler,
QuicConnectionStateBase& conn,
const std::string& name,
uint64_t cipherOverhead)
: frameScheduler_(scheduler),
conn_(conn),
name_(std::move(name)),
cipherOverhead_(cipherOverhead) {}
bool CloningScheduler::hasData() const {
return frameScheduler_.hasData() || (!conn_.outstandings.packets.empty());
}
SchedulingResult CloningScheduler::scheduleFramesForPacket(
PacketBuilderInterface&& builder,
uint32_t writableBytes) {
// The writableBytes in this function shouldn't be limited by cwnd, since
// we only use CloningScheduler for the cases that we want to bypass cwnd for
// now.
if (frameScheduler_.hasData()) {
// Note that there is a possibility that we end up writing nothing here. But
// if frameScheduler_ hasData() to write, we shouldn't invoke the cloning
// path if the write fails.
return frameScheduler_.scheduleFramesForPacket(
std::move(builder), writableBytes);
}
// TODO: We can avoid the copy & rebuild of the header by creating an
// independent header builder.
auto header = builder.getPacketHeader();
std::move(builder).releaseOutputBuffer();
// Look for an outstanding packet that's no larger than the writableBytes
for (auto& outstandingPacket : conn_.outstandings.packets) {
auto opPnSpace = outstandingPacket.packet.header.getPacketNumberSpace();
// Reusing the RegularQuicPacketBuilder throughout loop bodies will lead to
// frames belong to different original packets being written into the same
// clone packet. So re-create a RegularQuicPacketBuilder every time.
// TODO: We can avoid the copy & rebuild of the header by creating an
// independent header builder.
auto builderPnSpace = builder.getPacketHeader().getPacketNumberSpace();
if (opPnSpace != builderPnSpace) {
continue;
}
size_t prevSize = 0;
if (conn_.transportSettings.dataPathType ==
DataPathType::ContinuousMemory) {
ScopedBufAccessor scopedBufAccessor(conn_.bufAccessor);
prevSize = scopedBufAccessor.buf()->length();
}
// Reusing the same builder throughout loop bodies will lead to frames
// belong to different original packets being written into the same clone
// packet. So re-create a builder every time.
std::unique_ptr<PacketBuilderInterface> internalBuilder;
if (conn_.transportSettings.dataPathType == DataPathType::ChainedMemory) {
internalBuilder = std::make_unique<RegularQuicPacketBuilder>(
conn_.udpSendPacketLen - cipherOverhead_,
header,
getAckState(conn_, builderPnSpace).largestAckedByPeer.value_or(0));
} else {
CHECK(conn_.bufAccessor && conn_.bufAccessor->ownsBuffer());
internalBuilder = std::make_unique<InplaceQuicPacketBuilder>(
*conn_.bufAccessor,
conn_.udpSendPacketLen - cipherOverhead_,
header,
getAckState(conn_, builderPnSpace).largestAckedByPeer.value_or(0));
}
// If the packet is already a clone that has been processed, we don't clone
// it again.
if (outstandingPacket.associatedEvent &&
conn_.outstandings.packetEvents.count(
*outstandingPacket.associatedEvent) == 0) {
continue;
}
// I think this only fail if udpSendPacketLen somehow shrinks in the middle
// of a connection.
if (outstandingPacket.encodedSize > writableBytes + cipherOverhead_) {
continue;
}
internalBuilder->setCipherOverhead(cipherOverhead_);
internalBuilder->encodePacketHeader();
PacketRebuilder rebuilder(*internalBuilder, conn_);
// TODO: It's possible we write out a packet that's larger than the packet
// size limit. For example, when the packet sequence number has advanced to
// a point where we need more bytes to encoded it than that of the original
// packet. In that case, if the original packet is already at the packet
// size limit, we will generate a packet larger than the limit. We can
// either ignore the problem, hoping the packet will be able to travel the
// network just fine; Or we can throw away the built packet and send a ping.
// Rebuilder will write the rest of frames
auto rebuildResult = rebuilder.rebuildFromPacket(outstandingPacket);
if (rebuildResult) {
return SchedulingResult(
std::move(rebuildResult), std::move(*internalBuilder).buildPacket());
} else if (
conn_.transportSettings.dataPathType ==
DataPathType::ContinuousMemory) {
// When we use Inplace packet building and reuse the write buffer, even if
// the packet rebuild has failed, there might be some bytes already
// written into the buffer and the buffer tail pointer has already moved.
// We need to roll back the tail pointer to the position before the packet
// building to exclude those bytes. Otherwise these bytes will be sitting
// in between legit packets inside the buffer and will either cause errors
// further down the write path, or be sent out and then dropped at peer
// when peer fail to parse them.
internalBuilder.reset();
CHECK(conn_.bufAccessor && conn_.bufAccessor->ownsBuffer());
ScopedBufAccessor scopedBufAccessor(conn_.bufAccessor);
auto& buf = scopedBufAccessor.buf();
buf->trimEnd(buf->length() - prevSize);
}
}
return SchedulingResult(folly::none, folly::none);
}
std::string CloningScheduler::name() const {
return name_;
}
} // namespace quic