mirror of
https://github.com/facebookincubator/mvfst.git
synced 2025-11-09 10:00:57 +03:00
Summary: This implements the handshake done signal and also cipher dropping. Reviewed By: yangchi Differential Revision: D19584922 fbshipit-source-id: a98bec8f1076393b051ff65a2d8aae7d572b42f5
223 lines
6.5 KiB
C++
223 lines
6.5 KiB
C++
/*
|
|
* Copyright (c) Facebook, Inc. and its affiliates.
|
|
*
|
|
* This source code is licensed under the MIT license found in the
|
|
* LICENSE file in the root directory of this source tree.
|
|
*
|
|
*/
|
|
|
|
#include <quic/client/handshake/ClientHandshake.h>
|
|
|
|
#include <quic/client/state/ClientStateMachine.h>
|
|
#include <quic/state/QuicStreamFunctions.h>
|
|
|
|
namespace quic {
|
|
|
|
ClientHandshake::ClientHandshake(QuicClientConnectionState* conn)
|
|
: conn_(conn) {}
|
|
|
|
void ClientHandshake::doHandshake(
|
|
std::unique_ptr<folly::IOBuf> data,
|
|
EncryptionLevel encryptionLevel) {
|
|
if (!data) {
|
|
return;
|
|
}
|
|
// TODO: deal with clear text alert messages. It's possible that a MITM who
|
|
// mucks with the finished messages could cause the decryption to be invalid
|
|
// on the server, which would result in a cleartext close or a cleartext
|
|
// alert. We currently switch to 1-rtt ciphers immediately for reads and
|
|
// throw away the cleartext cipher for reads, this would result in us
|
|
// dropping the alert and timing out instead.
|
|
if (phase_ == Phase::Initial) {
|
|
// This could be an HRR or a cleartext alert.
|
|
phase_ = Phase::Handshake;
|
|
}
|
|
|
|
// First add it to the right read buffer.
|
|
switch (encryptionLevel) {
|
|
case EncryptionLevel::Initial:
|
|
initialReadBuf_.append(std::move(data));
|
|
break;
|
|
case EncryptionLevel::Handshake:
|
|
handshakeReadBuf_.append(std::move(data));
|
|
break;
|
|
case EncryptionLevel::EarlyData:
|
|
case EncryptionLevel::AppData:
|
|
appDataReadBuf_.append(std::move(data));
|
|
break;
|
|
}
|
|
// Get the current buffer type the transport is accepting.
|
|
waitForData_ = false;
|
|
while (!waitForData_) {
|
|
switch (getReadRecordLayerEncryptionLevel()) {
|
|
case EncryptionLevel::Initial:
|
|
processSocketData(initialReadBuf_);
|
|
break;
|
|
case EncryptionLevel::Handshake:
|
|
processSocketData(handshakeReadBuf_);
|
|
break;
|
|
case EncryptionLevel::EarlyData:
|
|
case EncryptionLevel::AppData:
|
|
processSocketData(appDataReadBuf_);
|
|
break;
|
|
}
|
|
throwOnError();
|
|
}
|
|
}
|
|
|
|
std::unique_ptr<Aead> ClientHandshake::getOneRttWriteCipher() {
|
|
throwOnError();
|
|
return std::move(oneRttWriteCipher_);
|
|
}
|
|
|
|
std::unique_ptr<Aead> ClientHandshake::getOneRttReadCipher() {
|
|
throwOnError();
|
|
return std::move(oneRttReadCipher_);
|
|
}
|
|
|
|
std::unique_ptr<Aead> ClientHandshake::getZeroRttWriteCipher() {
|
|
throwOnError();
|
|
return std::move(zeroRttWriteCipher_);
|
|
}
|
|
|
|
std::unique_ptr<Aead> ClientHandshake::getHandshakeReadCipher() {
|
|
throwOnError();
|
|
return std::move(handshakeReadCipher_);
|
|
}
|
|
|
|
std::unique_ptr<Aead> ClientHandshake::getHandshakeWriteCipher() {
|
|
throwOnError();
|
|
return std::move(handshakeWriteCipher_);
|
|
}
|
|
|
|
std::unique_ptr<PacketNumberCipher>
|
|
ClientHandshake::getOneRttReadHeaderCipher() {
|
|
throwOnError();
|
|
return std::move(oneRttReadHeaderCipher_);
|
|
}
|
|
|
|
std::unique_ptr<PacketNumberCipher>
|
|
ClientHandshake::getOneRttWriteHeaderCipher() {
|
|
throwOnError();
|
|
return std::move(oneRttWriteHeaderCipher_);
|
|
}
|
|
|
|
std::unique_ptr<PacketNumberCipher>
|
|
ClientHandshake::getHandshakeReadHeaderCipher() {
|
|
throwOnError();
|
|
return std::move(handshakeReadHeaderCipher_);
|
|
}
|
|
|
|
std::unique_ptr<PacketNumberCipher>
|
|
ClientHandshake::getHandshakeWriteHeaderCipher() {
|
|
throwOnError();
|
|
return std::move(handshakeWriteHeaderCipher_);
|
|
}
|
|
|
|
std::unique_ptr<PacketNumberCipher>
|
|
ClientHandshake::getZeroRttWriteHeaderCipher() {
|
|
throwOnError();
|
|
return std::move(zeroRttWriteHeaderCipher_);
|
|
}
|
|
|
|
void ClientHandshake::handshakeConfirmed() {
|
|
phase_ = Phase::Established;
|
|
}
|
|
|
|
ClientHandshake::Phase ClientHandshake::getPhase() const {
|
|
return phase_;
|
|
}
|
|
|
|
folly::Optional<ServerTransportParameters>
|
|
ClientHandshake::getServerTransportParams() {
|
|
return transportParams_->getServerTransportParams();
|
|
}
|
|
|
|
folly::Optional<bool> ClientHandshake::getZeroRttRejected() {
|
|
return std::move(zeroRttRejected_);
|
|
}
|
|
|
|
void ClientHandshake::computeCiphers(CipherKind kind, folly::ByteRange secret) {
|
|
std::unique_ptr<Aead> aead;
|
|
std::unique_ptr<PacketNumberCipher> packetNumberCipher;
|
|
std::tie(aead, packetNumberCipher) = buildCiphers(kind, secret);
|
|
switch (kind) {
|
|
case CipherKind::HandshakeWrite:
|
|
handshakeWriteCipher_ = std::move(aead);
|
|
handshakeWriteHeaderCipher_ = std::move(packetNumberCipher);
|
|
break;
|
|
case CipherKind::HandshakeRead:
|
|
handshakeReadCipher_ = std::move(aead);
|
|
handshakeReadHeaderCipher_ = std::move(packetNumberCipher);
|
|
break;
|
|
case CipherKind::OneRttWrite:
|
|
oneRttWriteCipher_ = std::move(aead);
|
|
oneRttWriteHeaderCipher_ = std::move(packetNumberCipher);
|
|
break;
|
|
case CipherKind::OneRttRead:
|
|
oneRttReadCipher_ = std::move(aead);
|
|
oneRttReadHeaderCipher_ = std::move(packetNumberCipher);
|
|
break;
|
|
case CipherKind::ZeroRttWrite:
|
|
zeroRttWriteCipher_ = std::move(aead);
|
|
zeroRttWriteHeaderCipher_ = std::move(packetNumberCipher);
|
|
break;
|
|
default:
|
|
// Report error?
|
|
break;
|
|
}
|
|
}
|
|
|
|
void ClientHandshake::raiseError(folly::exception_wrapper error) {
|
|
error_ = std::move(error);
|
|
}
|
|
|
|
void ClientHandshake::throwOnError() {
|
|
if (error_) {
|
|
error_.throw_exception();
|
|
}
|
|
}
|
|
|
|
void ClientHandshake::waitForData() {
|
|
waitForData_ = true;
|
|
}
|
|
|
|
void ClientHandshake::writeDataToStream(
|
|
EncryptionLevel encryptionLevel,
|
|
Buf data) {
|
|
if (encryptionLevel == EncryptionLevel::AppData) {
|
|
// Don't write 1-rtt handshake data on the client.
|
|
return;
|
|
}
|
|
auto cryptoStream = getCryptoStream(*conn_->cryptoState, encryptionLevel);
|
|
writeDataToQuicStream(*cryptoStream, std::move(data));
|
|
}
|
|
|
|
void ClientHandshake::computeZeroRttCipher() {
|
|
VLOG(10) << "Computing Client zero rtt keys";
|
|
earlyDataAttempted_ = true;
|
|
}
|
|
|
|
void ClientHandshake::computeOneRttCipher(bool earlyDataAccepted) {
|
|
// The 1-rtt handshake should have succeeded if we know that the early
|
|
// write failed. We currently treat the data as lost.
|
|
// TODO: we need to deal with HRR based rejection as well, however we don't
|
|
// have an API right now.
|
|
if (earlyDataAttempted_ && !earlyDataAccepted) {
|
|
if (matchEarlyParameters()) {
|
|
zeroRttRejected_ = true;
|
|
} else {
|
|
// TODO: support app retry of zero rtt data.
|
|
error_ = folly::make_exception_wrapper<QuicInternalException>(
|
|
"Changing parameters when early data attempted not supported",
|
|
LocalErrorCode::EARLY_DATA_REJECTED);
|
|
return;
|
|
}
|
|
}
|
|
// After a successful handshake we should send packets with the type of
|
|
// ClientCleartext. We assume that by the time we get the data for the QUIC
|
|
// stream, the server would have also acked all the client initial packets.
|
|
phase_ = Phase::OneRttKeysDerived;
|
|
}
|
|
} // namespace quic
|