1
0
mirror of https://github.com/facebookincubator/mvfst.git synced 2025-11-09 10:00:57 +03:00
Files
mvfst/quic/state/test/QuicStateFunctionsTest.cpp
Sharad Jaiswal (Eng) 328c78d0e2 Add received packets timestamps to AckState
Summary:
Store timestamps/packet numbers of recently received packets in AckState.

 - The maximum number of packets stored is controlled by kMaxReceivedPktsTimestampsStored.
- The packet number of entries in the deque is guarenteed to increase
   monotonically because an entry is only added for a received packet
  if the packet number is greater than the packet number of the last
  element in the deque (e.g., entries are not added for packets that
  arrive out of order relative to previously received packets).

Reviewed By: bschlinker

Differential Revision: D37799023

fbshipit-source-id: 3b6bf2ba8ea15219a87bbdc2724fe23eebe66b70
2022-11-15 20:14:57 -08:00

1245 lines
48 KiB
C++

/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include <quic/state/OutstandingPacket.h>
#include <quic/codec/Types.h>
#include <quic/common/test/TestUtils.h>
#include <quic/fizz/server/handshake/FizzServerQuicHandshakeContext.h>
#include <quic/server/state/ServerStateMachine.h>
#include <quic/state/QuicStateFunctions.h>
#include <quic/state/stream/StreamReceiveHandlers.h>
#include <quic/state/stream/StreamSendHandlers.h>
#include <quic/state/test/Mocks.h>
#include <chrono>
#include <cstdint>
#include <deque>
using namespace testing;
namespace quic::test {
bool verifyToAckImmediatelyAndZeroPacketsReceived(
const QuicConnectionStateBase& conn,
const AckState& ackState) {
return !conn.pendingEvents.scheduleAckTimeout &&
ackState.needsToSendAckImmediately && ackState.numRxPacketsRecvd == 0 &&
ackState.numNonRxPacketsRecvd == 0;
}
bool verifyToScheduleAckTimeout(const QuicConnectionStateBase& conn) {
return conn.pendingEvents.scheduleAckTimeout;
}
RegularQuicWritePacket makeTestShortPacket() {
ShortHeader header(
ProtectionType::KeyPhaseZero, getTestConnectionId(), 2 /* packetNum */);
RegularQuicWritePacket packet(std::move(header));
return packet;
}
RegularQuicWritePacket makeTestLongPacket(LongHeader::Types type) {
LongHeader header(
type,
getTestConnectionId(0),
getTestConnectionId(1),
2 /* packetNum */,
QuicVersion::QUIC_DRAFT);
RegularQuicWritePacket packet(std::move(header));
return packet;
}
class UpdateLargestReceivedPacketNumTest
: public TestWithParam<PacketNumberSpace> {};
TEST_P(UpdateLargestReceivedPacketNumTest, FirstPacketNotOutOfOrder) {
QuicServerConnectionState conn(
FizzServerQuicHandshakeContext::Builder().build());
/**
* We skip setting the getAckState(conn, GetParam()).largestReceivedPacketNum
* to simulate that we haven't received any packets yet.
* `updateLargestReceivedPacketNum()` should return false for the first packet
* received.
*/
PacketNum firstPacket = folly::Random::rand32(1, 100);
EXPECT_FALSE(updateLargestReceivedPacketNum(
getAckState(conn, GetParam()), firstPacket, Clock::now()));
}
TEST_P(UpdateLargestReceivedPacketNumTest, ReceiveNew) {
QuicServerConnectionState conn(
FizzServerQuicHandshakeContext::Builder().build());
getAckState(conn, GetParam()).largestRecvdPacketNum = 100;
auto currentLargestReceived =
*getAckState(conn, GetParam()).largestRecvdPacketNum;
PacketNum newReceived = currentLargestReceived + 1;
auto distance = updateLargestReceivedPacketNum(
getAckState(conn, GetParam()), newReceived, Clock::now());
EXPECT_EQ(distance, 0);
EXPECT_GT(
*getAckState(conn, GetParam()).largestRecvdPacketNum,
currentLargestReceived);
}
TEST_P(UpdateLargestReceivedPacketNumTest, ReceiveNewWithGap) {
QuicServerConnectionState conn(
FizzServerQuicHandshakeContext::Builder().build());
getAckState(conn, GetParam()).largestRecvdPacketNum = 100;
auto currentLargestReceived =
*getAckState(conn, GetParam()).largestRecvdPacketNum;
PacketNum newReceived = currentLargestReceived + 3;
auto distance = updateLargestReceivedPacketNum(
getAckState(conn, GetParam()), newReceived, Clock::now());
EXPECT_EQ(distance, 2); // newReceived is 2 after the expected pkt num
EXPECT_GT(
*getAckState(conn, GetParam()).largestRecvdPacketNum,
currentLargestReceived);
}
TEST_P(UpdateLargestReceivedPacketNumTest, ReceiveOld) {
QuicServerConnectionState conn(
FizzServerQuicHandshakeContext::Builder().build());
getAckState(conn, GetParam()).largestRecvdPacketNum = 100;
auto currentLargestReceived =
*getAckState(conn, GetParam()).largestRecvdPacketNum;
PacketNum newReceived = currentLargestReceived - 1;
auto distance = updateLargestReceivedPacketNum(
getAckState(conn, GetParam()), newReceived, Clock::now());
EXPECT_EQ(distance, 2); // newReceived is 2 before the expected pkt num
EXPECT_EQ(
*getAckState(conn, GetParam()).largestRecvdPacketNum,
currentLargestReceived);
}
TEST_P(UpdateLargestReceivedPacketNumTest, ReceiveOldWithGap) {
QuicServerConnectionState conn(
FizzServerQuicHandshakeContext::Builder().build());
getAckState(conn, GetParam()).largestRecvdPacketNum = 100;
auto currentLargestReceived =
*getAckState(conn, GetParam()).largestRecvdPacketNum;
PacketNum newReceived = currentLargestReceived - 5;
auto distance = updateLargestReceivedPacketNum(
getAckState(conn, GetParam()), newReceived, Clock::now());
EXPECT_EQ(distance, 6); // newReceived is 6 before the expected pkt num
EXPECT_EQ(
*getAckState(conn, GetParam()).largestRecvdPacketNum,
currentLargestReceived);
}
INSTANTIATE_TEST_SUITE_P(
UpdateLargestReceivedPacketNumTests,
UpdateLargestReceivedPacketNumTest,
Values(
PacketNumberSpace::Initial,
PacketNumberSpace::Handshake,
PacketNumberSpace::AppData));
class UpdateReceivedPacketTimestampsTest
: public TestWithParam<PacketNumberSpace> {};
TEST_P(UpdateReceivedPacketTimestampsTest, TestUpdatePktReceiveTimestamps) {
QuicServerConnectionState conn(
FizzServerQuicHandshakeContext::Builder().build());
PacketNum nextPacketNum = 0;
TimePoint latestTimeStamp = Clock::now();
conn.ackStates = AckStates(nextPacketNum);
for (int i = 0; i < kMaxReceivedPktsTimestampsStored + 2; i++) {
updateAckState(
conn,
PacketNumberSpace::AppData,
nextPacketNum++,
true /* pktHasRetransmattableData */,
false /* pktHasCryptoData */,
latestTimeStamp);
latestTimeStamp += 1ms;
}
auto& ackState = getAckState(conn, PacketNumberSpace::AppData);
EXPECT_EQ(ackState.recvdPacketInfos.size(), kMaxReceivedPktsTimestampsStored);
// First 2 packets (0, 1) should be popped.
EXPECT_EQ(ackState.recvdPacketInfos.front().pktNum, 2);
EXPECT_TRUE(ackState.largestRecvdPacketNum.has_value());
EXPECT_TRUE(ackState.lastRecvdPacketInfo.has_value());
EXPECT_EQ(
ackState.largestRecvdPacketNum.value(),
kMaxReceivedPktsTimestampsStored + 1);
EXPECT_EQ(
ackState.lastRecvdPacketInfo.value().pktNum,
kMaxReceivedPktsTimestampsStored + 1);
}
TEST_P(
UpdateReceivedPacketTimestampsTest,
TestUpdateOutOfOrderPktReceiveTimestamps) {
QuicServerConnectionState conn(
FizzServerQuicHandshakeContext::Builder().build());
std::vector<PacketNum> receivedPkts = {0, 2, 3, 1, 4, 6, 5};
conn.ackStates = AckStates(receivedPkts.front());
auto recvdTs = Clock::now();
for (auto pktNum : receivedPkts) {
updateAckState(
conn,
PacketNumberSpace::AppData,
pktNum,
true /* pktHasRetransmattableData */,
false /* pktHasCryptoData */,
recvdTs);
}
// Packets 1 and 5 are out of order and will not be stored.
auto& ackState = getAckState(conn, PacketNumberSpace::AppData);
std::deque<RecvdPacketInfo> expectedPktsInfo = {
{0, recvdTs}, {2, recvdTs}, {3, recvdTs}, {4, recvdTs}, {6, recvdTs}};
EXPECT_EQ(expectedPktsInfo.size(), ackState.recvdPacketInfos.size());
for (unsigned long i = 0; i < expectedPktsInfo.size(); i++) {
EXPECT_EQ(expectedPktsInfo[i].pktNum, ackState.recvdPacketInfos[i].pktNum);
EXPECT_EQ(
expectedPktsInfo[i].timeStamp, ackState.recvdPacketInfos[i].timeStamp);
}
EXPECT_EQ(ackState.lastRecvdPacketInfo.value().pktNum, 5);
EXPECT_EQ(ackState.lastRecvdPacketInfo.value().timeStamp, recvdTs);
}
INSTANTIATE_TEST_SUITE_P(
UpdateReceivedPacketTimestampsTests,
UpdateReceivedPacketTimestampsTest,
Values(PacketNumberSpace::AppData));
class UpdateAckStateTest : public TestWithParam<PacketNumberSpace> {};
TEST_P(UpdateAckStateTest, TestUpdateAckState) {
QuicServerConnectionState conn(
FizzServerQuicHandshakeContext::Builder().build());
PacketNum nextPacketNum = 0;
auto& ackState = getAckState(conn, GetParam());
updateAckState(conn, GetParam(), nextPacketNum++, true, false, Clock::now());
EXPECT_EQ(ackState.acks.size(), 1);
EXPECT_EQ(ackState.acks.front().start, 0);
EXPECT_EQ(ackState.acks.front().end, 0);
EXPECT_FALSE(ackState.needsToSendAckImmediately);
EXPECT_EQ(ackState.numRxPacketsRecvd, 1);
EXPECT_TRUE(conn.pendingEvents.scheduleAckTimeout);
conn.pendingEvents.scheduleAckTimeout = false;
updateAckState(conn, GetParam(), nextPacketNum++, true, false, Clock::now());
EXPECT_EQ(ackState.acks.size(), 1);
EXPECT_EQ(ackState.acks.front().start, 0);
EXPECT_EQ(ackState.acks.front().end, 1);
EXPECT_FALSE(ackState.needsToSendAckImmediately);
EXPECT_EQ(ackState.numRxPacketsRecvd, 2);
EXPECT_TRUE(conn.pendingEvents.scheduleAckTimeout);
// Have a gap for next packet
nextPacketNum += 2;
conn.pendingEvents.scheduleAckTimeout = false;
updateAckState(conn, GetParam(), nextPacketNum++, true, false, Clock::now());
EXPECT_EQ(ackState.acks.size(), 2);
EXPECT_EQ(ackState.acks.front().start, 0);
EXPECT_EQ(ackState.acks.front().end, 1);
EXPECT_EQ(ackState.acks.back().start, 4);
EXPECT_EQ(ackState.acks.back().end, 4);
EXPECT_TRUE(ackState.needsToSendAckImmediately);
EXPECT_EQ(0, ackState.numRxPacketsRecvd);
EXPECT_FALSE(conn.pendingEvents.scheduleAckTimeout);
ackState.needsToSendAckImmediately = false;
conn.pendingEvents.scheduleAckTimeout = false;
// Reaching retx limit
for (uint8_t i = 0;
i < conn.transportSettings.rxPacketsBeforeAckBeforeInit - 1;
++i) {
updateAckState(
conn, GetParam(), nextPacketNum++, true, false, Clock::now());
EXPECT_FALSE(ackState.needsToSendAckImmediately);
EXPECT_TRUE(conn.pendingEvents.scheduleAckTimeout);
EXPECT_EQ(ackState.numRxPacketsRecvd, i + 1);
}
// Hit the limit
updateAckState(conn, GetParam(), nextPacketNum++, true, false, Clock::now());
// Should send ack immediately once we have
// conn.transportSettings.rxPacketsBeforeAckBeforeInit retransmittable packets
EXPECT_TRUE(ackState.needsToSendAckImmediately);
EXPECT_FALSE(conn.pendingEvents.scheduleAckTimeout);
ackState.needsToSendAckImmediately = false;
conn.pendingEvents.scheduleAckTimeout = false;
// Nonrx limit
for (uint64_t i = 0; i < kNonRtxRxPacketsPendingBeforeAck; ++i) {
EXPECT_FALSE(ackState.needsToSendAckImmediately);
EXPECT_EQ(ackState.numNonRxPacketsRecvd, i);
updateAckState(
conn, GetParam(), nextPacketNum++, false, false, Clock::now());
}
// Should send ack immediately once we have
// kNonRtxRxPacketsPendingBeforeAck non retransmittable packets
EXPECT_TRUE(ackState.needsToSendAckImmediately);
// Non-rx packets don't turn on Ack timer:
EXPECT_FALSE(conn.pendingEvents.scheduleAckTimeout);
ackState.needsToSendAckImmediately = false;
// Crypto always triggers immediately ack:
updateAckState(conn, GetParam(), nextPacketNum++, true, true, Clock::now());
EXPECT_TRUE(ackState.needsToSendAckImmediately);
EXPECT_FALSE(conn.pendingEvents.scheduleAckTimeout);
}
TEST_P(UpdateAckStateTest, TestUpdateAckStateFrequency) {
QuicServerConnectionState conn(
FizzServerQuicHandshakeContext::Builder().build());
conn.transportSettings.rxPacketsBeforeAckInitThreshold = 20;
conn.transportSettings.rxPacketsBeforeAckBeforeInit = 2;
conn.transportSettings.rxPacketsBeforeAckAfterInit = 10;
PacketNum nextPacketNum = 0;
auto& ackState = getAckState(conn, GetParam());
for (uint8_t i = 0;
i < conn.transportSettings.rxPacketsBeforeAckBeforeInit - 1;
++i) {
updateAckState(
conn, GetParam(), nextPacketNum++, true, false, Clock::now());
EXPECT_FALSE(ackState.needsToSendAckImmediately);
EXPECT_TRUE(conn.pendingEvents.scheduleAckTimeout);
EXPECT_EQ(ackState.numRxPacketsRecvd, i + 1);
}
updateAckState(conn, GetParam(), nextPacketNum++, true, false, Clock::now());
EXPECT_TRUE(ackState.needsToSendAckImmediately);
EXPECT_FALSE(conn.pendingEvents.scheduleAckTimeout);
ackState.needsToSendAckImmediately = false;
conn.pendingEvents.scheduleAckTimeout = false;
for (;
nextPacketNum <= conn.transportSettings.rxPacketsBeforeAckInitThreshold;
nextPacketNum++) {
updateAckState(conn, GetParam(), nextPacketNum, true, false, Clock::now());
}
ASSERT_EQ(
ackState.largestRecvdPacketNum.value(),
conn.transportSettings.rxPacketsBeforeAckInitThreshold);
ackState.needsToSendAckImmediately = false;
conn.pendingEvents.scheduleAckTimeout = false;
ackState.numRxPacketsRecvd = 0;
for (uint8_t i = 0;
i < conn.transportSettings.rxPacketsBeforeAckAfterInit - 1;
++i) {
updateAckState(
conn, GetParam(), nextPacketNum++, true, false, Clock::now());
EXPECT_FALSE(ackState.needsToSendAckImmediately);
EXPECT_TRUE(conn.pendingEvents.scheduleAckTimeout);
EXPECT_EQ(ackState.numRxPacketsRecvd, i + 1);
}
updateAckState(conn, GetParam(), nextPacketNum++, true, false, Clock::now());
EXPECT_TRUE(ackState.needsToSendAckImmediately);
EXPECT_FALSE(conn.pendingEvents.scheduleAckTimeout);
}
TEST_P(UpdateAckStateTest, TestUpdateAckStateFrequencyFromTolerance) {
QuicServerConnectionState conn(
FizzServerQuicHandshakeContext::Builder().build());
PacketNum nextPacketNum = 1;
auto& ackState = getAckState(conn, GetParam());
ackState.largestRecvdPacketNum = nextPacketNum - 1;
ackState.tolerance = 2;
for (; nextPacketNum <= 10; nextPacketNum++) {
updateAckState(conn, GetParam(), nextPacketNum, true, false, Clock::now());
if (nextPacketNum < 2) {
EXPECT_FALSE(ackState.needsToSendAckImmediately);
EXPECT_TRUE(conn.pendingEvents.scheduleAckTimeout);
EXPECT_EQ(nextPacketNum, ackState.numRxPacketsRecvd);
} else {
EXPECT_TRUE(ackState.needsToSendAckImmediately);
EXPECT_FALSE(conn.pendingEvents.scheduleAckTimeout);
EXPECT_EQ(0, ackState.numRxPacketsRecvd);
}
EXPECT_EQ(0, ackState.numNonRxPacketsRecvd);
}
ackState.tolerance = 10;
for (; nextPacketNum <= 40; nextPacketNum++) {
updateAckState(conn, GetParam(), nextPacketNum, true, false, Clock::now());
if (nextPacketNum < 10) {
EXPECT_FALSE(ackState.needsToSendAckImmediately);
EXPECT_TRUE(conn.pendingEvents.scheduleAckTimeout);
EXPECT_EQ(nextPacketNum, ackState.numRxPacketsRecvd);
} else {
EXPECT_TRUE(ackState.needsToSendAckImmediately);
EXPECT_FALSE(conn.pendingEvents.scheduleAckTimeout);
EXPECT_EQ(0, ackState.numRxPacketsRecvd);
}
EXPECT_EQ(0, ackState.numRxPacketsRecvd);
}
}
TEST_F(UpdateAckStateTest, UpdateAckStateOnAckTimeout) {
QuicConnectionStateBase conn(QuicNodeType::Client);
auto& initialAckState = getAckState(conn, PacketNumberSpace::Initial);
auto& handshakeAckState = getAckState(conn, PacketNumberSpace::Handshake);
auto& appDataAckState = getAckState(conn, PacketNumberSpace::AppData);
initialAckState.numRxPacketsRecvd = 1;
handshakeAckState.numRxPacketsRecvd = 2;
appDataAckState.numRxPacketsRecvd = 3;
initialAckState.numNonRxPacketsRecvd = 4;
handshakeAckState.numNonRxPacketsRecvd = 5;
appDataAckState.numNonRxPacketsRecvd = 6;
updateAckStateOnAckTimeout(conn);
EXPECT_TRUE(appDataAckState.needsToSendAckImmediately);
EXPECT_FALSE(conn.pendingEvents.scheduleAckTimeout);
EXPECT_EQ(0, appDataAckState.numRxPacketsRecvd);
EXPECT_EQ(0, appDataAckState.numNonRxPacketsRecvd);
EXPECT_FALSE(initialAckState.needsToSendAckImmediately);
EXPECT_EQ(1, initialAckState.numRxPacketsRecvd);
EXPECT_EQ(4, initialAckState.numNonRxPacketsRecvd);
EXPECT_FALSE(handshakeAckState.needsToSendAckImmediately);
EXPECT_FALSE(conn.pendingEvents.scheduleAckTimeout);
EXPECT_EQ(2, handshakeAckState.numRxPacketsRecvd);
EXPECT_EQ(5, handshakeAckState.numNonRxPacketsRecvd);
}
TEST_P(UpdateAckStateTest, UpdateAckSendStateOnRecvPacketsCrypto) {
// Crypto always leads to immediate ack
QuicConnectionStateBase conn(QuicNodeType::Client);
auto& ackState = getAckState(conn, GetParam());
updateAckSendStateOnRecvPacket(conn, ackState, 0, true, true);
EXPECT_TRUE(verifyToAckImmediatelyAndZeroPacketsReceived(conn, ackState));
EXPECT_FALSE(verifyToScheduleAckTimeout(conn));
}
TEST_P(
UpdateAckStateTest,
UpdateAckSendStateOnRecvPacketsInitCryptoExperimental) {
// Crypto data leads to immediate ack unless init packet space.
QuicConnectionStateBase conn(QuicNodeType::Server);
bool isInitPktNumSpace = GetParam() == PacketNumberSpace::Initial;
auto& ackState = getAckState(conn, GetParam());
updateAckSendStateOnRecvPacket(
conn, ackState, false, true, true, isInitPktNumSpace);
EXPECT_EQ(
verifyToAckImmediatelyAndZeroPacketsReceived(conn, ackState),
!isInitPktNumSpace);
EXPECT_EQ(verifyToScheduleAckTimeout(conn), isInitPktNumSpace);
}
TEST_P(UpdateAckStateTest, UpdateAckSendStateOnRecvPacketsRxLimit) {
// Retx packets reach thresh
QuicConnectionStateBase conn(QuicNodeType::Client);
auto& ackState = getAckState(conn, GetParam());
for (size_t i = 0;
i < conn.transportSettings.rxPacketsBeforeAckBeforeInit - 1;
i++) {
updateAckSendStateOnRecvPacket(conn, ackState, 0, true, false);
EXPECT_FALSE(verifyToAckImmediatelyAndZeroPacketsReceived(conn, ackState));
EXPECT_TRUE(verifyToScheduleAckTimeout(conn));
}
updateAckSendStateOnRecvPacket(conn, ackState, 0, true, false);
EXPECT_TRUE(verifyToAckImmediatelyAndZeroPacketsReceived(conn, ackState));
EXPECT_FALSE(verifyToScheduleAckTimeout(conn));
// Followed by a retx packet, we will still need to ack immediately
updateAckSendStateOnRecvPacket(conn, ackState, 0, true, false);
EXPECT_TRUE(verifyToAckImmediatelyAndZeroPacketsReceived(conn, ackState));
EXPECT_FALSE(verifyToScheduleAckTimeout(conn));
}
TEST_P(UpdateAckStateTest, UpdateAckSendStateOnRecvPacketsNonRxLimit) {
// Non-rx packets reach thresh
QuicConnectionStateBase conn(QuicNodeType::Client);
auto& ackState = getAckState(conn, GetParam());
for (size_t i = 0; i < kNonRtxRxPacketsPendingBeforeAck - 1; i++) {
updateAckSendStateOnRecvPacket(conn, ackState, 0, false, false);
EXPECT_FALSE(verifyToAckImmediatelyAndZeroPacketsReceived(conn, ackState));
EXPECT_FALSE(verifyToScheduleAckTimeout(conn));
}
updateAckSendStateOnRecvPacket(conn, ackState, 0, false, false);
EXPECT_TRUE(verifyToAckImmediatelyAndZeroPacketsReceived(conn, ackState));
EXPECT_FALSE(verifyToScheduleAckTimeout(conn));
// Followed by a non-rx packet, we will still need to ack immediately
updateAckSendStateOnRecvPacket(conn, ackState, 0, false, false);
EXPECT_TRUE(verifyToAckImmediatelyAndZeroPacketsReceived(conn, ackState));
EXPECT_FALSE(verifyToScheduleAckTimeout(conn));
}
TEST_P(
UpdateAckStateTest,
UpdateAckSendStateOnRecvPacketsNonRxLimitWithRxPackets) {
// Non-rx packets reach thresh
QuicConnectionStateBase conn(QuicNodeType::Client);
auto& ackState = getAckState(conn, GetParam());
// use 1 rx packet
updateAckSendStateOnRecvPacket(conn, ackState, 0, true, false);
for (size_t i = 0;
i < conn.transportSettings.rxPacketsBeforeAckBeforeInit - 2;
i++) {
updateAckSendStateOnRecvPacket(conn, ackState, 0, false, false);
EXPECT_FALSE(verifyToAckImmediatelyAndZeroPacketsReceived(conn, ackState));
EXPECT_TRUE(verifyToScheduleAckTimeout(conn));
}
updateAckSendStateOnRecvPacket(conn, ackState, 0, false, false);
EXPECT_TRUE(verifyToAckImmediatelyAndZeroPacketsReceived(conn, ackState));
EXPECT_FALSE(verifyToScheduleAckTimeout(conn));
// Followed by a non-rx packet, we will still need to ack immediately
updateAckSendStateOnRecvPacket(conn, ackState, 0, false, false);
EXPECT_TRUE(verifyToAckImmediatelyAndZeroPacketsReceived(conn, ackState));
EXPECT_FALSE(verifyToScheduleAckTimeout(conn));
}
TEST_P(
UpdateAckStateTest,
UpdateAckSendStateOnRecvPacketsRxLimitFollowedByNonRx) {
// Retx packets reach thresh
QuicConnectionStateBase conn(QuicNodeType::Client);
auto& ackState = getAckState(conn, GetParam());
for (size_t i = 0;
i < conn.transportSettings.rxPacketsBeforeAckBeforeInit - 1;
i++) {
updateAckSendStateOnRecvPacket(conn, ackState, 0, true, false);
EXPECT_FALSE(verifyToAckImmediatelyAndZeroPacketsReceived(conn, ackState));
EXPECT_TRUE(verifyToScheduleAckTimeout(conn));
}
updateAckSendStateOnRecvPacket(conn, ackState, 0, true, false);
EXPECT_TRUE(verifyToAckImmediatelyAndZeroPacketsReceived(conn, ackState));
EXPECT_FALSE(verifyToScheduleAckTimeout(conn));
// Followed by a non-retx packet, we will still need to ack immediately
updateAckSendStateOnRecvPacket(conn, ackState, 0, false, false);
EXPECT_TRUE(verifyToAckImmediatelyAndZeroPacketsReceived(conn, ackState));
EXPECT_FALSE(verifyToScheduleAckTimeout(conn));
}
TEST_P(
UpdateAckStateTest,
UpdateAckSendStateOnRecvPacketsNonRxLimitFollowedByRx) {
// Non-rx packets reach thresh
QuicConnectionStateBase conn(QuicNodeType::Client);
auto& ackState = getAckState(conn, GetParam());
for (size_t i = 0; i < kNonRtxRxPacketsPendingBeforeAck - 1; i++) {
updateAckSendStateOnRecvPacket(conn, ackState, 0, false, false);
EXPECT_FALSE(verifyToAckImmediatelyAndZeroPacketsReceived(conn, ackState));
EXPECT_FALSE(verifyToScheduleAckTimeout(conn));
}
updateAckSendStateOnRecvPacket(conn, ackState, 0, false, false);
EXPECT_TRUE(verifyToAckImmediatelyAndZeroPacketsReceived(conn, ackState));
EXPECT_FALSE(verifyToScheduleAckTimeout(conn));
// Followed by a retx packet, we will still need to ack immediately
updateAckSendStateOnRecvPacket(conn, ackState, 0, true, false);
EXPECT_TRUE(verifyToAckImmediatelyAndZeroPacketsReceived(conn, ackState));
EXPECT_FALSE(verifyToScheduleAckTimeout(conn));
}
TEST_P(UpdateAckStateTest, UpdateAckSendStateOnRecvPacketsRxAndNonRxMixed) {
// Rx and non-rx mixed together. We should still just need
// conn.transportSettings.rxPacketsBeforeAckBeforeInit to trigger an ack
QuicConnectionStateBase conn(QuicNodeType::Client);
auto& ackState = getAckState(conn, GetParam());
for (size_t i = 0;
i < conn.transportSettings.rxPacketsBeforeAckBeforeInit - 1;
i++) {
bool isRetransmittable = i % 2;
updateAckSendStateOnRecvPacket(conn, ackState, 0, isRetransmittable, false);
EXPECT_FALSE(verifyToAckImmediatelyAndZeroPacketsReceived(conn, ackState));
EXPECT_EQ(i >= 1, verifyToScheduleAckTimeout(conn));
}
updateAckSendStateOnRecvPacket(conn, ackState, 0, true, false);
EXPECT_TRUE(verifyToAckImmediatelyAndZeroPacketsReceived(conn, ackState));
EXPECT_FALSE(verifyToScheduleAckTimeout(conn));
// Followed by a retx packet, we will still need to ack immediately
updateAckSendStateOnRecvPacket(conn, ackState, 0, true, false);
EXPECT_TRUE(verifyToAckImmediatelyAndZeroPacketsReceived(conn, ackState));
EXPECT_FALSE(verifyToScheduleAckTimeout(conn));
}
TEST_P(UpdateAckStateTest, UpdateAckSendStateOnRecvPacketsRxOutOfOrder) {
// Retransmittable & out of order: ack immediately
QuicConnectionStateBase conn(QuicNodeType::Client);
auto& ackState = getAckState(conn, GetParam());
updateAckSendStateOnRecvPacket(conn, ackState, 1, true, false);
EXPECT_TRUE(verifyToAckImmediatelyAndZeroPacketsReceived(conn, ackState));
EXPECT_FALSE(verifyToScheduleAckTimeout(conn));
}
TEST_P(
UpdateAckStateTest,
UpdateAckSendStateOnRecvPacketsRxOutOfOrderThresholdNotExceeded) {
// Retransmittable & out of order: don't ack immediately if threshold not
// exceeded.
QuicConnectionStateBase conn(QuicNodeType::Client);
auto& ackState = getAckState(conn, GetParam());
ackState.reorderThreshold = 3;
updateAckSendStateOnRecvPacket(conn, ackState, 3, true, false);
EXPECT_FALSE(verifyToAckImmediatelyAndZeroPacketsReceived(conn, ackState));
EXPECT_TRUE(verifyToScheduleAckTimeout(conn));
}
TEST_P(UpdateAckStateTest, UpdateAckSendStateOnRecvPacketsNonRxOutOfOrder) {
// Non-retransmittable & out of order: not ack immediately
QuicConnectionStateBase conn(QuicNodeType::Client);
auto& ackState = getAckState(conn, GetParam());
updateAckSendStateOnRecvPacket(conn, ackState, 3, false, false);
EXPECT_FALSE(verifyToAckImmediatelyAndZeroPacketsReceived(conn, ackState));
EXPECT_FALSE(verifyToScheduleAckTimeout(conn));
}
TEST_P(
UpdateAckStateTest,
UpdateAckSendStateOnRecvPacketsRxOutOfOrderFollowedByInOrder) {
// Retransmittable & out of order: ack immediately
QuicConnectionStateBase conn(QuicNodeType::Client);
auto& ackState = getAckState(conn, GetParam());
updateAckSendStateOnRecvPacket(conn, ackState, 1, true, false);
EXPECT_TRUE(verifyToAckImmediatelyAndZeroPacketsReceived(conn, ackState));
EXPECT_FALSE(verifyToScheduleAckTimeout(conn));
// Followed by a retransmittable & in order: still ack immediately
updateAckSendStateOnRecvPacket(conn, ackState, 0, true, false);
EXPECT_TRUE(verifyToAckImmediatelyAndZeroPacketsReceived(conn, ackState));
EXPECT_FALSE(verifyToScheduleAckTimeout(conn));
}
TEST_P(
UpdateAckStateTest,
UpdateAckSendStateOnRecvPacketsCryptoFollowedByNonCrypto) {
// Retransmittable & Crypto: ack immediately
QuicConnectionStateBase conn(QuicNodeType::Client);
auto& ackState = getAckState(conn, GetParam());
updateAckSendStateOnRecvPacket(conn, ackState, 0, true, true);
EXPECT_TRUE(verifyToAckImmediatelyAndZeroPacketsReceived(conn, ackState));
EXPECT_FALSE(verifyToScheduleAckTimeout(conn));
// Followed by a retransmittable & non Crypo: still ack immediately
updateAckSendStateOnRecvPacket(conn, ackState, 0, true, false);
EXPECT_TRUE(verifyToAckImmediatelyAndZeroPacketsReceived(conn, ackState));
EXPECT_FALSE(verifyToScheduleAckTimeout(conn));
}
INSTANTIATE_TEST_SUITE_P(
UpdateAckStateTests,
UpdateAckStateTest,
Values(
PacketNumberSpace::Initial,
PacketNumberSpace::Handshake,
PacketNumberSpace::AppData));
class QuicStateFunctionsTest : public TestWithParam<PacketNumberSpace> {};
TEST_F(QuicStateFunctionsTest, RttCalculationZeroAckDelayFirstRtt) {
QuicServerConnectionState conn(
FizzServerQuicHandshakeContext::Builder().build());
const auto rttSample = 1100us;
const auto ackDelay = 0us;
updateRtt(conn, rttSample, ackDelay);
EXPECT_EQ(1100, conn.lossState.srtt.count());
EXPECT_EQ(1100, conn.lossState.lrtt.count());
EXPECT_EQ(1100 / 2, conn.lossState.rttvar.count());
EXPECT_EQ(1100, conn.lossState.mrtt.count());
EXPECT_EQ(0us, conn.lossState.maxAckDelay);
}
TEST_F(QuicStateFunctionsTest, RttCalculationWithAckDelayFirstRtt) {
QuicServerConnectionState conn(
FizzServerQuicHandshakeContext::Builder().build());
const auto rttSample = 1000us;
const auto ackDelay = 300us;
updateRtt(conn, rttSample, ackDelay);
EXPECT_EQ(1000, conn.lossState.srtt.count());
EXPECT_EQ(1000, conn.lossState.lrtt.count());
EXPECT_EQ(1000, conn.lossState.mrtt.count());
EXPECT_EQ(1000 / 2, conn.lossState.rttvar.count());
EXPECT_EQ(300us, conn.lossState.maxAckDelay);
}
TEST_F(QuicStateFunctionsTest, RttCalculationWithExistingMrttNewLower) {
QuicServerConnectionState conn(
FizzServerQuicHandshakeContext::Builder().build());
conn.lossState.mrtt = 100us;
const auto rttSample = 50us;
const auto ackDelay = 100us;
updateRtt(conn, rttSample, ackDelay);
EXPECT_EQ(50, conn.lossState.srtt.count());
EXPECT_EQ(50, conn.lossState.lrtt.count());
EXPECT_EQ(50, conn.lossState.mrtt.count());
EXPECT_EQ(50 / 2, conn.lossState.rttvar.count());
}
TEST_F(QuicStateFunctionsTest, RttCalculationWithExistingMrttStaysSame) {
QuicServerConnectionState conn(
FizzServerQuicHandshakeContext::Builder().build());
conn.lossState.mrtt = 25us;
const auto rttSample = 50us;
const auto ackDelay = 100us;
updateRtt(conn, rttSample, ackDelay);
EXPECT_EQ(50, conn.lossState.srtt.count());
EXPECT_EQ(50, conn.lossState.lrtt.count());
EXPECT_EQ(25, conn.lossState.mrtt.count());
EXPECT_EQ(50 / 2, conn.lossState.rttvar.count());
}
TEST_F(QuicStateFunctionsTest, RttCalculationWithExistingMrttZeroAckDelay) {
QuicServerConnectionState conn(
FizzServerQuicHandshakeContext::Builder().build());
conn.lossState.mrtt = 100us;
conn.lossState.maxAckDelay = 500us;
const auto rttSample = 1100us;
const auto ackDelay = 0us;
updateRtt(conn, rttSample, ackDelay);
EXPECT_EQ(1100, conn.lossState.srtt.count());
EXPECT_EQ(1100, conn.lossState.lrtt.count());
EXPECT_EQ(100, conn.lossState.mrtt.count());
EXPECT_EQ(1100 / 2, conn.lossState.rttvar.count());
EXPECT_EQ(500us, conn.lossState.maxAckDelay);
}
TEST_F(QuicStateFunctionsTest, RttCalculationWithExistingMrttSubtractAckDelay) {
QuicServerConnectionState conn(
FizzServerQuicHandshakeContext::Builder().build());
conn.lossState.mrtt = 100us;
const auto rttSample = 1000us;
const auto ackDelay = 300us;
updateRtt(conn, rttSample, ackDelay);
EXPECT_EQ(700, conn.lossState.srtt.count()); // 700 as ack delay subtracted
EXPECT_EQ(1000, conn.lossState.lrtt.count()); // 1000 as lrtt = rttSample
EXPECT_EQ(100, conn.lossState.mrtt.count());
EXPECT_EQ(
700 / 2, conn.lossState.rttvar.count()); // 700 as ack delay subtracted
EXPECT_EQ(300us, conn.lossState.maxAckDelay);
}
TEST_F(QuicStateFunctionsTest, RttCalculationWithExistingMrttIgnoreAckDelay) {
QuicServerConnectionState conn(
FizzServerQuicHandshakeContext::Builder().build());
conn.lossState.mrtt = 700us;
const auto rttSample = 900us;
const auto ackDelay = 300us;
updateRtt(conn, rttSample, ackDelay);
EXPECT_EQ(900, conn.lossState.srtt.count());
EXPECT_EQ(900, conn.lossState.lrtt.count());
EXPECT_EQ(700, conn.lossState.mrtt.count());
EXPECT_EQ(450, conn.lossState.rttvar.count());
EXPECT_EQ(300us, conn.lossState.maxAckDelay);
}
TEST_F(QuicStateFunctionsTest, RttCalculationWithNewLowerMrttZeroAckDelay) {
QuicServerConnectionState conn(
FizzServerQuicHandshakeContext::Builder().build());
conn.lossState.mrtt = 100us;
conn.lossState.maxAckDelay = 500us;
const auto rttSample = 50us;
const auto ackDelay = 0us;
updateRtt(conn, rttSample, ackDelay);
EXPECT_EQ(50, conn.lossState.srtt.count());
EXPECT_EQ(50, conn.lossState.lrtt.count());
EXPECT_EQ(50, conn.lossState.mrtt.count());
EXPECT_EQ(50 / 2, conn.lossState.rttvar.count());
EXPECT_EQ(500us, conn.lossState.maxAckDelay);
}
TEST_F(QuicStateFunctionsTest, RttCalculationWithNewLowerMrttIgnoreAckDelay) {
QuicServerConnectionState conn(
FizzServerQuicHandshakeContext::Builder().build());
conn.lossState.mrtt = 100us;
const auto rttSample = 50us;
const auto ackDelay = 25us;
updateRtt(conn, rttSample, ackDelay);
EXPECT_EQ(50, conn.lossState.srtt.count());
EXPECT_EQ(50, conn.lossState.lrtt.count());
EXPECT_EQ(50, conn.lossState.mrtt.count());
EXPECT_EQ(50 / 2, conn.lossState.rttvar.count());
EXPECT_EQ(25us, conn.lossState.maxAckDelay);
}
TEST_F(QuicStateFunctionsTest, RttCalculationMaxAckDelayIncreases) {
QuicServerConnectionState conn(
FizzServerQuicHandshakeContext::Builder().build());
conn.lossState.mrtt = 100us;
conn.lossState.maxAckDelay = 50us;
const auto rttSample = 500us;
const auto ackDelay = 100us;
updateRtt(conn, rttSample, ackDelay);
EXPECT_EQ(400, conn.lossState.srtt.count()); // 400 as ack delay subtracted
EXPECT_EQ(500, conn.lossState.lrtt.count()); // 500 as lrtt = rttSample
EXPECT_EQ(100, conn.lossState.mrtt.count());
EXPECT_EQ(400 / 2, conn.lossState.rttvar.count());
EXPECT_EQ(100us, conn.lossState.maxAckDelay);
}
TEST_F(QuicStateFunctionsTest, RttCalculationMaxAckDelayStaysSame) {
QuicServerConnectionState conn(
FizzServerQuicHandshakeContext::Builder().build());
conn.lossState.mrtt = 100us;
conn.lossState.maxAckDelay = 5000us;
const auto rttSample = 500us;
const auto ackDelay = 100us;
updateRtt(conn, rttSample, ackDelay);
EXPECT_EQ(400, conn.lossState.srtt.count()); // 400 as ack delay subtracted
EXPECT_EQ(500, conn.lossState.lrtt.count()); // 500 as lrtt = rttSample
EXPECT_EQ(100, conn.lossState.mrtt.count());
EXPECT_EQ(400 / 2, conn.lossState.rttvar.count());
EXPECT_EQ(5000us, conn.lossState.maxAckDelay);
}
TEST_F(QuicStateFunctionsTest, RttCalculationNewLowerMrttMaxAckDelayIncreases) {
QuicServerConnectionState conn(
FizzServerQuicHandshakeContext::Builder().build());
conn.lossState.mrtt = 100us;
conn.lossState.maxAckDelay = 50us;
const auto rttSample = 50us;
const auto ackDelay = 100us;
updateRtt(conn, rttSample, ackDelay);
EXPECT_EQ(50, conn.lossState.srtt.count());
EXPECT_EQ(50, conn.lossState.lrtt.count());
EXPECT_EQ(50, conn.lossState.mrtt.count());
EXPECT_EQ(50 / 2, conn.lossState.rttvar.count());
EXPECT_EQ(100us, conn.lossState.maxAckDelay);
}
TEST_F(QuicStateFunctionsTest, RttCalculationNewLowerMrttMaxAckDelayStaysSame) {
QuicServerConnectionState conn(
FizzServerQuicHandshakeContext::Builder().build());
conn.lossState.mrtt = 100us;
conn.lossState.maxAckDelay = 5000us;
const auto rttSample = 50us;
const auto ackDelay = 10us;
updateRtt(conn, rttSample, ackDelay);
EXPECT_EQ(50, conn.lossState.srtt.count());
EXPECT_EQ(50, conn.lossState.lrtt.count());
EXPECT_EQ(50, conn.lossState.mrtt.count());
EXPECT_EQ(50 / 2, conn.lossState.rttvar.count());
EXPECT_EQ(5000us, conn.lossState.maxAckDelay);
}
TEST_F(QuicStateFunctionsTest, RttCalculationAckDelayLargerThanSample) {
QuicServerConnectionState conn(
FizzServerQuicHandshakeContext::Builder().build());
const auto rttSample = 10us;
const auto ackDelay = 300us;
updateRtt(conn, rttSample, ackDelay);
EXPECT_EQ(10, conn.lossState.srtt.count());
EXPECT_EQ(10, conn.lossState.lrtt.count());
EXPECT_EQ(10, conn.lossState.mrtt.count());
EXPECT_EQ(5, conn.lossState.rttvar.count());
EXPECT_EQ(300us, conn.lossState.maxAckDelay);
}
TEST_F(
QuicStateFunctionsTest,
RttCalculationWithNewLowerMrttAckDelayLargerThanSample) {
QuicServerConnectionState conn(
FizzServerQuicHandshakeContext::Builder().build());
conn.lossState.mrtt = 100us;
const auto rttSample = 10us;
const auto ackDelay = 300us;
updateRtt(conn, rttSample, ackDelay);
EXPECT_EQ(10, conn.lossState.srtt.count());
EXPECT_EQ(10, conn.lossState.lrtt.count());
EXPECT_EQ(10, conn.lossState.mrtt.count());
EXPECT_EQ(5, conn.lossState.rttvar.count());
EXPECT_EQ(300us, conn.lossState.maxAckDelay);
}
TEST_F(QuicStateFunctionsTest, RttCalculationExtraRttMetricsStoredInLossState) {
QuicServerConnectionState conn(
FizzServerQuicHandshakeContext::Builder().build());
// Test cases
//
// || [ Value Expected ] |
// Case | RTT (delay) | RTT w/o delay || mRTT | w/o ACK delay | Updated
// -----|-------------|---------------||------- |----------------|----------
// 1 | 31ms (5 ms) | 26ms || 31 | 26 | (both)
// 2 | 30ms (3 ms) | 27ms || 30 | 26 | (1)
// 3 | 30ms (8 ms) | 22ms || 30 | 22 | (2)
// 4 | 37ms (8 ms) | 29ms || 30 | 22 | (none)
// 5 | 25ms (0 ms) | 29ms || 25 | 22 | (1)
// 6 | 25ms (4 ms) | 29ms || 25 | 21 | (2)
// 7 | 20ms (0 ms) | 29ms || 20 | 20 | (both)
// 8 | 0ms (0 ms) | 0ms || 0 | 0 | (both)
// 9 | 0ms (10 ms) | 0ms || 0 | 0 | (none)
// case 1
updateRtt(conn, 31ms /* RTT sample */, 5ms /* ack delay */);
EXPECT_EQ(31ms, conn.lossState.mrtt);
EXPECT_EQ(26ms, conn.lossState.maybeMrttNoAckDelay);
EXPECT_EQ(31ms, conn.lossState.maybeLrtt);
EXPECT_EQ(5ms, conn.lossState.maybeLrttAckDelay);
// case 2
updateRtt(conn, 30ms /* RTT sample */, 3ms /* ack delay */);
EXPECT_EQ(30ms, conn.lossState.mrtt);
EXPECT_EQ(26ms, conn.lossState.maybeMrttNoAckDelay);
EXPECT_EQ(30ms, conn.lossState.maybeLrtt);
EXPECT_EQ(3ms, conn.lossState.maybeLrttAckDelay);
// case 3
updateRtt(conn, 30ms /* RTT sample */, 8ms /* ack delay */);
EXPECT_EQ(30ms, conn.lossState.mrtt);
EXPECT_EQ(22ms, conn.lossState.maybeMrttNoAckDelay);
EXPECT_EQ(30ms, conn.lossState.maybeLrtt);
EXPECT_EQ(8ms, conn.lossState.maybeLrttAckDelay);
// case 4
updateRtt(conn, 37ms /* RTT sample */, 8ms /* ack delay */);
EXPECT_EQ(30ms, conn.lossState.mrtt);
EXPECT_EQ(22ms, conn.lossState.maybeMrttNoAckDelay);
EXPECT_EQ(37ms, conn.lossState.maybeLrtt);
EXPECT_EQ(8ms, conn.lossState.maybeLrttAckDelay);
// case 5
updateRtt(conn, 25ms /* RTT sample */, 0ms /* ack delay */);
EXPECT_EQ(25ms, conn.lossState.mrtt);
EXPECT_EQ(22ms, conn.lossState.maybeMrttNoAckDelay);
EXPECT_EQ(25ms, conn.lossState.maybeLrtt);
EXPECT_EQ(0ms, conn.lossState.maybeLrttAckDelay);
// case 6
updateRtt(conn, 25ms /* RTT sample */, 4ms /* ack delay */);
EXPECT_EQ(25ms, conn.lossState.mrtt);
EXPECT_EQ(21ms, conn.lossState.maybeMrttNoAckDelay);
EXPECT_EQ(25ms, conn.lossState.maybeLrtt);
EXPECT_EQ(4ms, conn.lossState.maybeLrttAckDelay);
// case 7
updateRtt(conn, 20ms /* RTT sample */, 0ms /* ack delay */);
EXPECT_EQ(20ms, conn.lossState.mrtt);
EXPECT_EQ(20ms, conn.lossState.maybeMrttNoAckDelay);
EXPECT_EQ(20ms, conn.lossState.maybeLrtt);
EXPECT_EQ(0ms, conn.lossState.maybeLrttAckDelay);
// case 8
updateRtt(conn, 0ms /* RTT sample */, 0ms /* ack delay */);
EXPECT_EQ(0ms, conn.lossState.mrtt);
EXPECT_EQ(0ms, conn.lossState.maybeMrttNoAckDelay);
EXPECT_EQ(0ms, conn.lossState.maybeLrtt);
EXPECT_EQ(0ms, conn.lossState.maybeLrttAckDelay);
// case 9
updateRtt(conn, 0ms /* RTT sample */, 10ms /* ack delay */);
EXPECT_EQ(0ms, conn.lossState.mrtt);
EXPECT_EQ(0ms, conn.lossState.maybeMrttNoAckDelay);
EXPECT_EQ(0ms, conn.lossState.maybeLrtt);
EXPECT_EQ(10ms, conn.lossState.maybeLrttAckDelay);
}
TEST_F(QuicStateFunctionsTest, TestInvokeStreamStateMachineConnectionError) {
QuicServerConnectionState conn(
FizzServerQuicHandshakeContext::Builder().build());
QuicStreamState stream(1, conn);
RstStreamFrame rst(1, GenericApplicationErrorCode::UNKNOWN, 100);
stream.finalReadOffset = 1024;
EXPECT_THROW(
receiveRstStreamSMHandler(stream, std::move(rst)),
QuicTransportException);
// This doesn't change the send state machine implicitly anymore
bool matches = (stream.sendState == StreamSendState::Open);
EXPECT_TRUE(matches);
}
TEST_F(QuicStateFunctionsTest, InvokeResetDoesNotSendFlowControl) {
QuicServerConnectionState conn(
FizzServerQuicHandshakeContext::Builder().build());
QuicStreamState stream(1, conn);
RstStreamFrame rst(1, GenericApplicationErrorCode::UNKNOWN, 90);
// this would normally trigger a flow control update.
stream.flowControlState.advertisedMaxOffset = 100;
stream.flowControlState.windowSize = 100;
conn.flowControlState.advertisedMaxOffset = 100;
conn.flowControlState.windowSize = 100;
receiveRstStreamSMHandler(stream, std::move(rst));
bool matches = (stream.recvState == StreamRecvState::Closed);
EXPECT_TRUE(matches);
EXPECT_FALSE(conn.streamManager->hasWindowUpdates());
EXPECT_TRUE(conn.pendingEvents.connWindowUpdate);
}
TEST_F(QuicStateFunctionsTest, TestInvokeStreamStateMachineStreamError) {
// We isolate invalid events on streams to affect only the streams. Is that
// a good idea? We'll find out.
QuicServerConnectionState conn(
FizzServerQuicHandshakeContext::Builder().build());
QuicStreamState stream(1, conn);
RstStreamFrame rst(1, GenericApplicationErrorCode::UNKNOWN, 100);
try {
sendRstAckSMHandler(stream);
ADD_FAILURE();
} catch (QuicTransportException& ex) {
EXPECT_EQ(ex.errorCode(), TransportErrorCode::STREAM_STATE_ERROR);
}
bool matches = (stream.sendState == StreamSendState::Open);
EXPECT_TRUE(matches);
}
TEST_F(QuicStateFunctionsTest, UpdateMinRtt) {
QuicServerConnectionState conn(
FizzServerQuicHandshakeContext::Builder().build());
auto qLogger = std::make_shared<FileQLogger>(VantagePoint::Server);
conn.qLogger = qLogger;
// First rtt sample, will be assign to both srtt and mrtt
auto rttSample = 100us;
updateRtt(conn, rttSample, 0us);
EXPECT_EQ(100us, conn.lossState.lrtt);
EXPECT_EQ(conn.lossState.lrtt, conn.lossState.mrtt);
EXPECT_EQ(conn.lossState.lrtt, conn.lossState.srtt);
auto oldMrtt = conn.lossState.mrtt;
// Slower packet
rttSample = 550us;
updateRtt(conn, rttSample, 0us);
EXPECT_EQ(oldMrtt, conn.lossState.mrtt);
// Faster packet
rttSample = 20us;
updateRtt(conn, rttSample, 0us);
EXPECT_EQ(20us, conn.lossState.mrtt);
std::vector<int> indices =
getQLogEventIndices(QLogEventType::MetricUpdate, qLogger);
EXPECT_EQ(indices.size(), 3);
std::array<std::chrono::microseconds, 3> rttSampleArr = {100us, 550us, 20us};
std::array<std::chrono::microseconds, 3> mrttArr = {oldMrtt, oldMrtt, 20us};
std::array<std::chrono::microseconds, 3> srttArr = {100us, 155us, 137us};
for (int i = 0; i < 3; ++i) {
auto tmp = std::move(qLogger->logs[indices[i]]);
auto event = dynamic_cast<QLogMetricUpdateEvent*>(tmp.get());
EXPECT_EQ(event->latestRtt, rttSampleArr[i]);
EXPECT_EQ(event->mrtt, mrttArr[i]);
EXPECT_EQ(event->srtt, srttArr[i]);
EXPECT_EQ(event->ackDelay, 0us);
}
}
TEST_F(QuicStateFunctionsTest, UpdateMaxAckDelay) {
QuicServerConnectionState conn(
FizzServerQuicHandshakeContext::Builder().build());
EXPECT_EQ(0us, conn.lossState.maxAckDelay);
auto rttSample = 100us;
// update maxAckDelay
updateRtt(conn, rttSample, 30us);
EXPECT_EQ(30us, conn.lossState.maxAckDelay);
// smaller ackDelay
updateRtt(conn, rttSample, 3us);
EXPECT_EQ(30us, conn.lossState.maxAckDelay);
}
TEST_F(QuicStateFunctionsTest, IsConnectionPaced) {
QuicConnectionStateBase state(QuicNodeType::Client);
EXPECT_FALSE(isConnectionPaced(state));
state.canBePaced = true;
EXPECT_FALSE(isConnectionPaced(state));
state.transportSettings.pacingEnabled = true;
EXPECT_FALSE(isConnectionPaced(state));
}
TEST_F(QuicStateFunctionsTest, GetOutstandingPackets) {
QuicConnectionStateBase conn(QuicNodeType::Client);
conn.outstandings.packets.emplace_back(
makeTestLongPacket(LongHeader::Types::Initial),
Clock::now(),
135,
0,
false,
0,
0,
0,
0,
LossState(),
0,
OutstandingPacketMetadata::DetailsPerStream());
conn.outstandings.packets.emplace_back(
makeTestLongPacket(LongHeader::Types::Handshake),
Clock::now(),
1217,
0,
false,
0,
0,
0,
0,
LossState(),
0,
OutstandingPacketMetadata::DetailsPerStream());
conn.outstandings.packets.emplace_back(
makeTestShortPacket(),
Clock::now(),
5556,
5000,
false,
0,
0,
0,
0,
LossState(),
0,
OutstandingPacketMetadata::DetailsPerStream());
conn.outstandings.packets.emplace_back(
makeTestLongPacket(LongHeader::Types::Initial),
Clock::now(),
56,
0,
false,
0,
0,
0,
0,
LossState(),
0,
OutstandingPacketMetadata::DetailsPerStream());
conn.outstandings.packets.emplace_back(
makeTestShortPacket(),
Clock::now(),
6665,
6000,
false,
0,
0,
0,
0,
LossState(),
0,
OutstandingPacketMetadata::DetailsPerStream());
EXPECT_EQ(
135,
getFirstOutstandingPacket(conn, PacketNumberSpace::Initial)
->metadata.encodedSize);
EXPECT_EQ(
0,
getFirstOutstandingPacket(conn, PacketNumberSpace::Initial)
->metadata.encodedBodySize);
EXPECT_EQ(
56,
getLastOutstandingPacket(conn, PacketNumberSpace::Initial)
->metadata.encodedSize);
EXPECT_EQ(
0,
getLastOutstandingPacket(conn, PacketNumberSpace::Initial)
->metadata.encodedBodySize);
EXPECT_EQ(
1217,
getFirstOutstandingPacket(conn, PacketNumberSpace::Handshake)
->metadata.encodedSize);
EXPECT_EQ(
0,
getFirstOutstandingPacket(conn, PacketNumberSpace::Handshake)
->metadata.encodedBodySize);
EXPECT_EQ(
5556,
getFirstOutstandingPacket(conn, PacketNumberSpace::AppData)
->metadata.encodedSize);
EXPECT_EQ(
5000,
getFirstOutstandingPacket(conn, PacketNumberSpace::AppData)
->metadata.encodedBodySize);
EXPECT_EQ(
6665,
getLastOutstandingPacket(conn, PacketNumberSpace::AppData)
->metadata.encodedSize);
EXPECT_EQ(
6000,
getLastOutstandingPacket(conn, PacketNumberSpace::AppData)
->metadata.encodedBodySize);
}
TEST_F(QuicStateFunctionsTest, UpdateLargestReceivePacketsAtLatCloseSent) {
QuicConnectionStateBase conn(QuicNodeType::Client);
EXPECT_FALSE(conn.ackStates.initialAckState.largestReceivedAtLastCloseSent);
EXPECT_FALSE(conn.ackStates.handshakeAckState.largestReceivedAtLastCloseSent);
EXPECT_FALSE(conn.ackStates.appDataAckState.largestReceivedAtLastCloseSent);
conn.ackStates.initialAckState.largestRecvdPacketNum = 123;
conn.ackStates.handshakeAckState.largestRecvdPacketNum = 654;
conn.ackStates.appDataAckState.largestRecvdPacketNum = 789;
updateLargestReceivedPacketsAtLastCloseSent(conn);
EXPECT_EQ(
123, *conn.ackStates.initialAckState.largestReceivedAtLastCloseSent);
EXPECT_EQ(
654, *conn.ackStates.handshakeAckState.largestReceivedAtLastCloseSent);
EXPECT_EQ(
789, *conn.ackStates.appDataAckState.largestReceivedAtLastCloseSent);
}
TEST_P(QuicStateFunctionsTest, HasReceivedPackets) {
QuicConnectionStateBase conn(QuicNodeType::Server);
EXPECT_FALSE(hasReceivedPackets(conn));
getAckState(conn, GetParam()).largestRecvdPacketNum = 123;
EXPECT_TRUE(hasReceivedPackets(conn));
}
TEST_P(QuicStateFunctionsTest, HasReceivedPacketsAtLastCloseSent) {
QuicConnectionStateBase conn(QuicNodeType::Server);
EXPECT_FALSE(hasReceivedPacketsAtLastCloseSent(conn));
getAckState(conn, GetParam()).largestReceivedAtLastCloseSent = 1;
EXPECT_TRUE(hasReceivedPacketsAtLastCloseSent(conn));
}
TEST_P(QuicStateFunctionsTest, HasNotReceivedNewPacketsSinceLastClose) {
QuicConnectionStateBase conn(QuicNodeType::Server);
EXPECT_TRUE(hasNotReceivedNewPacketsSinceLastCloseSent(conn));
getAckState(conn, GetParam()).largestRecvdPacketNum = 1;
EXPECT_FALSE(hasNotReceivedNewPacketsSinceLastCloseSent(conn));
getAckState(conn, GetParam()).largestReceivedAtLastCloseSent = 1;
EXPECT_TRUE(hasReceivedPacketsAtLastCloseSent(conn));
}
TEST_F(QuicStateFunctionsTest, EarliestLossTimer) {
QuicConnectionStateBase conn(QuicNodeType::Server);
EXPECT_FALSE(earliestLossTimer(conn).first.has_value());
auto currentTime = Clock::now();
// Before handshake completed
conn.lossState.lossTimes[PacketNumberSpace::Initial] = currentTime;
EXPECT_EQ(PacketNumberSpace::Initial, earliestLossTimer(conn).second);
EXPECT_EQ(currentTime, earliestLossTimer(conn).first.value());
conn.lossState.lossTimes[PacketNumberSpace::AppData] = currentTime - 2s;
EXPECT_EQ(PacketNumberSpace::Initial, earliestLossTimer(conn).second);
EXPECT_EQ(currentTime, earliestLossTimer(conn).first.value());
conn.lossState.lossTimes[PacketNumberSpace::Handshake] = currentTime - 1s;
EXPECT_EQ(PacketNumberSpace::Handshake, earliestLossTimer(conn).second);
EXPECT_EQ(currentTime - 1s, earliestLossTimer(conn).first.value());
conn.oneRttWriteCipher = createNoOpAead();
// After one-rtt cipher is available
EXPECT_EQ(PacketNumberSpace::AppData, earliestLossTimer(conn).second);
EXPECT_EQ(currentTime - 2s, earliestLossTimer(conn).first.value());
conn.lossState.lossTimes[PacketNumberSpace::AppData] = currentTime + 1s;
EXPECT_EQ(PacketNumberSpace::Handshake, earliestLossTimer(conn).second);
EXPECT_EQ(currentTime - 1s, earliestLossTimer(conn).first.value());
}
TEST_P(QuicStateFunctionsTest, CloseTranportStateChange) {
QuicConnectionStateBase conn(QuicNodeType::Server);
getAckState(conn, GetParam()).nextPacketNum = kMaxPacketNumber - 2;
EXPECT_FALSE(conn.pendingEvents.closeTransport);
increaseNextPacketNum(conn, GetParam());
EXPECT_TRUE(conn.pendingEvents.closeTransport);
}
INSTANTIATE_TEST_SUITE_P(
QuicStateFunctionsTests,
QuicStateFunctionsTest,
Values(
PacketNumberSpace::Initial,
PacketNumberSpace::Handshake,
PacketNumberSpace::AppData));
} // namespace quic::test