1
0
mirror of https://github.com/facebookincubator/mvfst.git synced 2025-04-18 17:24:03 +03:00
mvfst/quic/server/QuicServerTransport.cpp
Alan Frindell 444a0f261b Use new PriorityQueue interface
Summary:
Migrating mvfst priority API to be abstract, based on new classes is quic/priority.  For now, it requires applications use `HTTPPriorityQueue::Priority`, to be compatible with the hardcoded `deprecated::PriorityQueue` implementation and apps cannot yet change the queue impl.  Eventually the application will have full control of the queue.

There are minor functional changes in this diff:

1. Priority QLog types changed from int/bool to string
2. Any PAUSED stream has priority `u=7,i` if paused streams are disabled (previously explicitly settable to any priority)

Reviewed By: jbeshay

Differential Revision: D68696110

fbshipit-source-id: 5a4721b08248ac75d725f51b5cb3e5d5de206d86
2025-04-09 13:54:27 -07:00

1428 lines
56 KiB
C++

/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
#include <quic/congestion_control/Bbr.h>
#include <quic/congestion_control/ServerCongestionControllerFactory.h>
#include <quic/dsr/frontend/WriteFunctions.h>
#include <quic/fizz/server/handshake/FizzServerQuicHandshakeContext.h>
#include <quic/priority/HTTPPriorityQueue.h>
#include <quic/server/QuicServerTransport.h>
#include <quic/server/handshake/AppToken.h>
#include <quic/server/handshake/DefaultAppTokenValidator.h>
#include <quic/state/QuicStreamUtilities.h>
#include <quic/state/TransportSettingsFunctions.h>
#include <quic/common/Optional.h>
#include <quic/common/TransportKnobs.h>
#include <chrono>
#include <memory>
#include <stdexcept>
namespace quic {
QuicServerTransport::QuicServerTransport(
std::shared_ptr<QuicEventBase> evb,
std::unique_ptr<QuicAsyncUDPSocket> sock,
folly::MaybeManagedPtr<ConnectionSetupCallback> connSetupCb,
folly::MaybeManagedPtr<ConnectionCallback> connStreamsCb,
std::shared_ptr<const fizz::server::FizzServerContext> ctx,
std::unique_ptr<CryptoFactory> cryptoFactory,
PacketNum startingPacketNum)
: QuicServerTransport(
std::move(evb),
std::move(sock),
connSetupCb,
connStreamsCb,
std::move(ctx),
std::move(cryptoFactory)) {
conn_->ackStates = AckStates(startingPacketNum);
}
QuicServerTransport::QuicServerTransport(
std::shared_ptr<QuicEventBase> evb,
std::unique_ptr<QuicAsyncUDPSocket> sock,
folly::MaybeManagedPtr<ConnectionSetupCallback> connSetupCb,
folly::MaybeManagedPtr<ConnectionCallback> connStreamsCb,
std::shared_ptr<const fizz::server::FizzServerContext> ctx,
std::unique_ptr<CryptoFactory> cryptoFactory,
bool useConnectionEndWithErrorCallback)
: QuicTransportBaseLite(
evb,
std::move(sock),
useConnectionEndWithErrorCallback),
QuicTransportBase(
std::move(evb),
nullptr /* Initialized through the QuicTransportBaseLite constructor
*/
,
useConnectionEndWithErrorCallback),
ctx_(std::move(ctx)),
wrappedObserverContainer_(this) {
auto tempConn = std::make_unique<QuicServerConnectionState>(
FizzServerQuicHandshakeContext::Builder()
.setFizzServerContext(ctx_)
.setCryptoFactory(std::move(cryptoFactory))
.build());
tempConn->serverAddr = socket_->address();
serverConn_ = tempConn.get();
conn_.reset(tempConn.release());
conn_->observerContainer = wrappedObserverContainer_.getWeakPtr();
setConnectionSetupCallback(connSetupCb);
setConnectionCallbackFromCtor(connStreamsCb);
registerAllTransportKnobParamHandlers();
}
QuicServerTransport::~QuicServerTransport() {
VLOG(10) << "Destroyed connection to client=" << *this;
// The caller probably doesn't need the conn callback after destroying the
// transport.
resetConnectionCallbacks();
closeImpl(
QuicError(
QuicErrorCode(LocalErrorCode::SHUTTING_DOWN),
std::string("Closing from server destructor")),
false /* drainConnection */);
// closeImpl may have been called earlier with drain = true, so force close.
closeUdpSocket();
}
QuicServerTransport::Ptr QuicServerTransport::make(
folly::EventBase* evb,
std::unique_ptr<FollyAsyncUDPSocketAlias> sock,
const folly::MaybeManagedPtr<ConnectionSetupCallback>& connSetupCb,
const folly::MaybeManagedPtr<ConnectionCallback>& connStreamsCb,
std::shared_ptr<const fizz::server::FizzServerContext> ctx,
bool useConnectionEndWithErrorCallback) {
auto qEvb = std::make_shared<FollyQuicEventBase>(evb);
auto qSock = std::make_unique<FollyQuicAsyncUDPSocket>(qEvb, std::move(sock));
return std::make_shared<QuicServerTransport>(
std::move(qEvb),
std::move(qSock),
connSetupCb,
connStreamsCb,
ctx,
nullptr /* cryptoFactory */,
useConnectionEndWithErrorCallback);
}
void QuicServerTransport::setRoutingCallback(
RoutingCallback* callback) noexcept {
routingCb_ = callback;
}
void QuicServerTransport::setHandshakeFinishedCallback(
HandshakeFinishedCallback* callback) noexcept {
handshakeFinishedCb_ = callback;
}
void QuicServerTransport::setOriginalPeerAddress(
const folly::SocketAddress& addr) {
conn_->originalPeerAddress = addr;
}
void QuicServerTransport::setServerConnectionIdParams(
ServerConnectionIdParams params) noexcept {
serverConn_->serverConnIdParams.assign(std::move(params));
}
void QuicServerTransport::setTransportStatsCallback(
QuicTransportStatsCallback* statsCallback) noexcept {
if (conn_) {
conn_->statsCallback = statsCallback;
if (conn_->readCodec) {
conn_->readCodec->setConnectionStatsCallback(statsCallback);
}
}
}
void QuicServerTransport::setConnectionIdAlgo(
ConnectionIdAlgo* connIdAlgo) noexcept {
CHECK(connIdAlgo);
if (serverConn_) {
serverConn_->connIdAlgo = connIdAlgo;
}
}
void QuicServerTransport::setServerConnectionIdRejector(
ServerConnectionIdRejector* connIdRejector) noexcept {
CHECK(connIdRejector);
if (serverConn_) {
serverConn_->connIdRejector = connIdRejector;
}
}
folly::Expected<folly::Unit, QuicError> QuicServerTransport::onReadData(
const folly::SocketAddress& peer,
ReceivedUdpPacket&& udpPacket) {
ServerEvents::ReadData readData;
readData.peer = peer;
readData.udpPacket = std::move(udpPacket);
bool waitingForFirstPacket = !hasReceivedUdpPackets(*conn_);
uint64_t prevWritableBytes = serverConn_->writableBytesLimit
? *serverConn_->writableBytesLimit
: std::numeric_limits<uint64_t>::max();
onServerReadData(*serverConn_, readData);
processPendingData(true);
if (closeState_ == CloseState::CLOSED) {
return folly::unit;
}
if (!notifiedRouting_ && routingCb_ && conn_->serverConnectionId) {
notifiedRouting_ = true;
routingCb_->onConnectionIdAvailable(
shared_from_this(), *conn_->serverConnectionId);
}
if (connSetupCallback_ && waitingForFirstPacket &&
hasReceivedUdpPackets(*conn_)) {
connSetupCallback_->onFirstPeerPacketProcessed();
}
uint64_t curWritableBytes = serverConn_->writableBytesLimit
? *serverConn_->writableBytesLimit
: std::numeric_limits<uint64_t>::max();
// If we've increased our writable bytes limit after processing incoming data
// and we were previously blocked from writing probes, fire the PTO alarm
if (serverConn_->transportSettings.enableWritableBytesLimit &&
serverConn_->numProbesWritableBytesLimited &&
prevWritableBytes < curWritableBytes) {
auto ptoAlarmResult = onPTOAlarm(*serverConn_);
if (ptoAlarmResult.hasError()) {
return ptoAlarmResult;
}
serverConn_->numProbesWritableBytesLimited = 0;
}
maybeWriteNewSessionTicket();
maybeNotifyConnectionIdBound();
maybeNotifyHandshakeFinished();
maybeNotifyConnectionIdRetired();
maybeIssueConnectionIds();
maybeNotifyTransportReady();
return folly::unit;
}
void QuicServerTransport::accept() {
setIdleTimer();
updateFlowControlStateWithSettings(
conn_->flowControlState, conn_->transportSettings);
serverConn_->serverHandshakeLayer->initialize(
getFollyEventbase(),
this,
std::make_unique<DefaultAppTokenValidator>(serverConn_));
}
folly::Expected<folly::Unit, QuicError> QuicServerTransport::writeData() {
if (!conn_->clientConnectionId || !conn_->serverConnectionId) {
return folly::unit;
}
auto version = conn_->version.value_or(*(conn_->originalVersion));
const ConnectionId& srcConnId = *conn_->serverConnectionId;
const ConnectionId& destConnId = *conn_->clientConnectionId;
if (closeState_ == CloseState::CLOSED) {
if (conn_->peerConnectionError &&
hasReceivedUdpPacketsAtLastCloseSent(*conn_)) {
// The peer sent us an error, we are in draining state now.
return folly::unit;
}
if (hasReceivedUdpPacketsAtLastCloseSent(*conn_) &&
hasNotReceivedNewPacketsSinceLastCloseSent(*conn_)) {
// We did not receive any new packets, do not sent a new close frame.
return folly::unit;
}
updateLargestReceivedUdpPacketsAtLastCloseSent(*conn_);
if (conn_->oneRttWriteCipher) {
CHECK(conn_->oneRttWriteHeaderCipher);
writeShortClose(
*socket_,
*conn_,
destConnId,
conn_->localConnectionError,
*conn_->oneRttWriteCipher,
*conn_->oneRttWriteHeaderCipher);
}
if (conn_->handshakeWriteCipher) {
CHECK(conn_->handshakeWriteHeaderCipher);
writeLongClose(
*socket_,
*conn_,
srcConnId,
destConnId,
LongHeader::Types::Handshake,
conn_->localConnectionError,
*conn_->handshakeWriteCipher,
*conn_->handshakeWriteHeaderCipher,
version);
}
if (conn_->initialWriteCipher) {
CHECK(conn_->initialHeaderCipher);
writeLongClose(
*socket_,
*conn_,
srcConnId,
destConnId,
LongHeader::Types::Initial,
conn_->localConnectionError,
*conn_->initialWriteCipher,
*conn_->initialHeaderCipher,
version);
}
return folly::unit;
}
uint64_t packetLimit =
(isConnectionPaced(*conn_)
? conn_->pacer->updateAndGetWriteBatchSize(Clock::now())
: conn_->transportSettings.writeConnectionDataPacketsLimit);
// At the end of this function, clear out any probe packets credit we didn't
// use.
SCOPE_EXIT {
conn_->pendingEvents.numProbePackets = {};
maybeInitiateKeyUpdate(*conn_);
};
if (conn_->initialWriteCipher) {
auto res = handleInitialWriteDataCommon(srcConnId, destConnId, packetLimit);
if (res.hasError()) {
return folly::makeUnexpected(res.error());
}
packetLimit -= res->packetsWritten;
serverConn_->numHandshakeBytesSent += res->bytesWritten;
if (!packetLimit && !conn_->pendingEvents.anyProbePackets()) {
return folly::unit;
}
}
if (conn_->handshakeWriteCipher) {
auto res =
handleHandshakeWriteDataCommon(srcConnId, destConnId, packetLimit);
if (res.hasError()) {
return folly::makeUnexpected(res.error());
}
packetLimit -= res->packetsWritten;
serverConn_->numHandshakeBytesSent += res->bytesWritten;
if (!packetLimit && !conn_->pendingEvents.anyProbePackets()) {
return folly::unit;
}
}
if (conn_->oneRttWriteCipher) {
CHECK(conn_->oneRttWriteHeaderCipher);
auto writeLoopBeginTime = Clock::now();
auto nonDsrPath =
[&](auto limit) -> folly::Expected<WriteQuicDataResult, QuicError> {
auto result = writeQuicDataToSocket(
*socket_,
*conn_,
srcConnId /* src */,
destConnId /* dst */,
*conn_->oneRttWriteCipher,
*conn_->oneRttWriteHeaderCipher,
version,
limit,
writeLoopBeginTime);
if (result.hasError()) {
return folly::makeUnexpected(result.error());
}
return result.value();
};
auto dsrPath =
[&](auto limit) -> folly::Expected<WriteQuicDataResult, QuicError> {
auto bytesBefore = conn_->lossState.totalBytesSent;
// The DSR path can't write probes.
// This is packetsWritte, probesWritten, bytesWritten.
auto dsrResult = writePacketizationRequest(
*serverConn_,
destConnId,
limit,
*conn_->oneRttWriteCipher,
writeLoopBeginTime);
if (dsrResult.hasError()) {
return folly::makeUnexpected(dsrResult.error());
}
auto result = WriteQuicDataResult{
dsrResult.value(), 0, conn_->lossState.totalBytesSent - bytesBefore};
return result;
};
// We need a while loop because both paths write streams from the same
// queue, which can result in empty writes.
while (packetLimit) {
auto totalSentBefore = conn_->lossState.totalBytesSent;
// Give the non-DSR path a chance first for things like ACKs and flow
// control.
auto written = nonDsrPath(packetLimit);
if (written.hasError()) {
return folly::makeUnexpected(written.error());
}
// For both paths we only consider full packets against the packet
// limit. While this is slightly more aggressive than the intended
// packet limit it also helps ensure that small packets don't cause
// us to underutilize the link when mixing between DSR and non-DSR.
packetLimit -= written->bytesWritten / conn_->udpSendPacketLen;
if (packetLimit && congestionControlWritableBytes(*serverConn_)) {
auto dsrWritten = dsrPath(packetLimit);
if (dsrWritten.hasError()) {
return folly::makeUnexpected(dsrWritten.error());
}
packetLimit -= dsrWritten->bytesWritten / conn_->udpSendPacketLen;
}
if (totalSentBefore == conn_->lossState.totalBytesSent) {
// We haven't written anything with either path, so we're done.
break;
}
}
}
return folly::unit;
}
void QuicServerTransport::closeTransport() {
if (!serverConn_->serverHandshakeLayer->isHandshakeDone()) {
QUIC_STATS(conn_->statsCallback, onServerUnfinishedHandshake);
if (handshakeFinishedCb_) {
handshakeFinishedCb_->onHandshakeUnfinished();
handshakeFinishedCb_ = nullptr;
}
}
serverConn_->serverHandshakeLayer->cancel();
// Clear out pending data.
serverConn_->pendingZeroRttData.reset();
serverConn_->pendingOneRttData.reset();
onServerClose(*serverConn_);
}
void QuicServerTransport::unbindConnection() {
if (routingCb_) {
auto routingCb = routingCb_;
routingCb_ = nullptr;
CHECK(conn_->clientChosenDestConnectionId);
if (conn_->serverConnectionId) {
auto connectionIds =
conn_->selfConnectionIds; // We pass a copy as this transport might be
// deleted.
routingCb->onConnectionUnbound(
this,
std::make_pair(
getOriginalPeerAddress(), *conn_->clientChosenDestConnectionId),
connectionIds);
}
}
}
bool QuicServerTransport::hasWriteCipher() const {
return conn_->oneRttWriteCipher != nullptr;
}
bool QuicServerTransport::hasReadCipher() const {
return conn_->readCodec != nullptr &&
conn_->readCodec->getOneRttReadCipher() != nullptr;
}
std::shared_ptr<QuicTransportBaseLite> QuicServerTransport::sharedGuard() {
return shared_from_this();
}
void QuicServerTransport::setClientConnectionId(
const ConnectionId& clientConnectionId) {
conn_->clientConnectionId.assign(clientConnectionId);
conn_->peerConnectionIds.emplace_back(
clientConnectionId, kInitialSequenceNumber);
}
void QuicServerTransport::setClientChosenDestConnectionId(
const ConnectionId& clientChosenDestConnectionId) {
conn_->clientChosenDestConnectionId.assign(clientChosenDestConnectionId);
}
void QuicServerTransport::onCryptoEventAvailable() noexcept {
try {
VLOG(10) << "onCryptoEventAvailable " << *this;
if (closeState_ != CloseState::OPEN) {
VLOG(10) << "Got crypto event after connection closed " << *this;
return;
}
[[maybe_unused]] auto self = sharedGuard();
updateHandshakeState(*serverConn_);
processPendingData(false);
// pending data may contain connection close
if (closeState_ == CloseState::CLOSED) {
return;
}
maybeWriteNewSessionTicket();
maybeNotifyConnectionIdBound();
maybeNotifyHandshakeFinished();
maybeIssueConnectionIds();
auto writeResult = writeSocketData();
if (writeResult.hasError()) {
closeImpl(writeResult.error());
return;
}
maybeNotifyTransportReady();
} catch (const QuicTransportException& ex) {
VLOG(4) << "onCryptoEventAvailable() error " << ex.what() << " " << *this;
closeImpl(QuicError(QuicErrorCode(ex.errorCode()), std::string(ex.what())));
} catch (const QuicInternalException& ex) {
VLOG(4) << "onCryptoEventAvailable() error " << ex.what() << " " << *this;
closeImpl(QuicError(QuicErrorCode(ex.errorCode()), std::string(ex.what())));
} catch (const std::exception& ex) {
VLOG(4) << "read() error " << ex.what() << " " << *this;
closeImpl(QuicError(
QuicErrorCode(TransportErrorCode::INTERNAL_ERROR),
std::string(ex.what())));
}
}
void QuicServerTransport::handleTransportKnobParams(
const TransportKnobParams& params) {
for (const auto& param : params) {
auto maybeParamHandler = transportKnobParamHandlers_.find(param.id);
TransportKnobParamId knobParamId = TransportKnobParamId::UNKNOWN;
if (TransportKnobParamId::_is_valid(param.id)) {
knobParamId = TransportKnobParamId::_from_integral(param.id);
}
if (maybeParamHandler != transportKnobParamHandlers_.end()) {
try {
(maybeParamHandler->second)(this, param.val);
QUIC_STATS(conn_->statsCallback, onTransportKnobApplied, knobParamId);
} catch (const std::exception& /* ex */) {
QUIC_STATS(conn_->statsCallback, onTransportKnobError, knobParamId);
}
} else {
QUIC_STATS(conn_->statsCallback, onTransportKnobError, knobParamId);
}
}
}
void QuicServerTransport::processPendingData(bool async) {
// The case when both 0-rtt and 1-rtt pending data are ready to be processed
// but neither had been shouldn't happen
std::unique_ptr<std::vector<ServerEvents::ReadData>> pendingData;
if (conn_->readCodec && conn_->readCodec->getOneRttReadCipher()) {
pendingData = std::move(serverConn_->pendingOneRttData);
// It's possible that 0-rtt packets are received after CFIN, we are not
// dealing with that much level of reordering.
serverConn_->pendingZeroRttData.reset();
} else if (conn_->readCodec && conn_->readCodec->getZeroRttReadCipher()) {
pendingData = std::move(serverConn_->pendingZeroRttData);
}
if (pendingData) {
// Move the pending data out so that we don't ever add new data to the
// pending data.
VLOG_IF(10, !pendingData->empty())
<< "Processing pending data size=" << pendingData->size() << " "
<< *this;
auto func = [pendingData = std::move(pendingData), this](auto) {
for (auto& pendingPacket : *pendingData) {
onNetworkData(
pendingPacket.peer,
NetworkData(std::move(pendingPacket.udpPacket)));
if (closeState_ == CloseState::CLOSED) {
// The pending data could potentially contain a connection close, or
// the app could have triggered a connection close with an error. It
// is not useful to continue the handshake.
return;
}
// The app could have triggered a graceful close from the callbacks,
// in which case we should continue with the handshake and processing
// the remaining data because it could potentially have a FIN which
// could end the graceful close.
}
};
if (async) {
runOnEvbAsync(std::move(func));
} else {
func(shared_from_this());
}
}
}
bool QuicServerTransport::shouldWriteNewSessionTicket() {
if (!newSessionTicketWrittenTimestamp_) {
// No session ticket has been written yet, we should write one.
return true;
}
// Conditions for writing more session tickets after the first one:
// 1. includeCwndHintsInSessionTicket transport setting is set
// 2. The current BDP is either smaller than or more than twice
// the last one we sent in a session ticket
// 3. We haven't sent any session ticket in the last
// kMinIntervalBetweenSessionTickets
if (conn_->transportSettings.includeCwndHintsInSessionTicket &&
conn_->congestionController &&
Clock::now() - newSessionTicketWrittenTimestamp_.value() >
kMinIntervalBetweenSessionTickets) {
const auto& targetBDP = conn_->congestionController->getBDP();
bool bdpChangedSinceLastHint =
!newSessionTicketWrittenCwndHint_.has_value() ||
targetBDP / 2 > *newSessionTicketWrittenCwndHint_ ||
targetBDP < *newSessionTicketWrittenCwndHint_;
if (bdpChangedSinceLastHint) {
return true;
}
}
return false;
}
void QuicServerTransport::maybeWriteNewSessionTicket() {
if (shouldWriteNewSessionTicket() &&
serverConn_->serverHandshakeLayer->isHandshakeDone()) {
if (conn_->qLogger) {
conn_->qLogger->addTransportStateUpdate(kWriteNst);
}
newSessionTicketWrittenTimestamp_ = Clock::now();
Optional<uint64_t> cwndHint = none;
if (conn_->transportSettings.includeCwndHintsInSessionTicket &&
conn_->congestionController) {
const auto& bdp = conn_->congestionController->getBDP();
VLOG(7) << "Writing a new session ticket with cwnd hint=" << bdp;
cwndHint = bdp;
newSessionTicketWrittenCwndHint_ = cwndHint;
}
AppToken appToken;
appToken.transportParams = createTicketTransportParameters(
conn_->transportSettings.idleTimeout.count(),
conn_->transportSettings.maxRecvPacketSize,
conn_->transportSettings.advertisedInitialConnectionFlowControlWindow,
conn_->transportSettings
.advertisedInitialBidiLocalStreamFlowControlWindow,
conn_->transportSettings
.advertisedInitialBidiRemoteStreamFlowControlWindow,
conn_->transportSettings.advertisedInitialUniStreamFlowControlWindow,
conn_->transportSettings.advertisedInitialMaxStreamsBidi,
conn_->transportSettings.advertisedInitialMaxStreamsUni,
conn_->transportSettings.advertisedExtendedAckFeatures,
cwndHint);
appToken.sourceAddresses = serverConn_->tokenSourceAddresses;
appToken.version = conn_->version.value();
// If a client connects to server for the first time and doesn't attempt
// early data, tokenSourceAddresses will not be set because
// validateAndUpdateSourceAddressToken is not called in this case.
// So checking if source address token is empty here and adding peerAddr
// if so.
// TODO accumulate recent source tokens
if (appToken.sourceAddresses.empty()) {
appToken.sourceAddresses.push_back(conn_->peerAddress.getIPAddress());
}
if (conn_->earlyDataAppParamsGetter) {
appToken.appParams = conn_->earlyDataAppParamsGetter();
}
serverConn_->serverHandshakeLayer->writeNewSessionTicket(appToken);
}
}
void QuicServerTransport::maybeNotifyConnectionIdRetired() {
if (!conn_->transportSettings.disableMigration && routingCb_ &&
!conn_->connIdsRetiringSoon->empty() &&
serverConn_->serverHandshakeLayer->isHandshakeDone()) {
for (const auto& connId : *conn_->connIdsRetiringSoon) {
routingCb_->onConnectionIdRetired(*this, connId);
}
conn_->connIdsRetiringSoon->clear();
}
}
void QuicServerTransport::maybeNotifyConnectionIdBound() {
// make this connId bound only when the keys are available
if (!notifiedConnIdBound_ && routingCb_ && conn_->serverConnectionId &&
serverConn_->serverHandshakeLayer->isHandshakeDone()) {
notifiedConnIdBound_ = true;
routingCb_->onConnectionIdBound(shared_from_this());
}
}
void QuicServerTransport::maybeNotifyHandshakeFinished() {
if (serverConn_->serverHandshakeLayer->isHandshakeDone()) {
if (handshakeFinishedCb_) {
handshakeFinishedCb_->onHandshakeFinished();
handshakeFinishedCb_ = nullptr;
}
if (connSetupCallback_ && !handshakeDoneNotified_) {
connSetupCallback_->onFullHandshakeDone();
handshakeDoneNotified_ = true;
}
}
}
void QuicServerTransport::maybeIssueConnectionIds() {
// If the peer specifies that they have a limit of 1,000,000 connection
// ids then only issue a small number at first, since the server still
// needs to be able to search through all issued ids for routing.
const uint64_t maximumIdsToIssue = maximumConnectionIdsToIssue(*conn_);
if (!conn_->transportSettings.disableMigration &&
(conn_->selfConnectionIds.size() < maximumIdsToIssue) &&
serverConn_->serverHandshakeLayer->isHandshakeDone()) {
CHECK(conn_->transportSettings.statelessResetTokenSecret.has_value());
// Make sure size of selfConnectionIds is not larger than maximumIdsToIssue
for (size_t i = conn_->selfConnectionIds.size(); i < maximumIdsToIssue;
++i) {
auto newConnIdData = serverConn_->createAndAddNewSelfConnId();
if (!newConnIdData.has_value()) {
return;
}
CHECK(routingCb_);
routingCb_->onConnectionIdAvailable(
shared_from_this(), newConnIdData->connId);
NewConnectionIdFrame frame(
newConnIdData->sequenceNumber,
0,
newConnIdData->connId,
*newConnIdData->token);
sendSimpleFrame(*conn_, std::move(frame));
}
}
}
void QuicServerTransport::maybeNotifyTransportReady() {
if (!transportReadyNotified_ && connSetupCallback_ && hasWriteCipher()) {
if (conn_->qLogger) {
conn_->qLogger->addTransportStateUpdate(kTransportReady);
}
transportReadyNotified_ = true;
connSetupCallback_->onTransportReady();
// This is a new connection. Update QUIC Stats
QUIC_STATS(conn_->statsCallback, onNewConnection);
}
}
void QuicServerTransport::registerTransportKnobParamHandler(
uint64_t paramId,
std::function<void(QuicServerTransport*, TransportKnobParam::Val)>&&
handler) {
transportKnobParamHandlers_.emplace(paramId, std::move(handler));
}
void QuicServerTransport::setBufAccessor(BufAccessor* bufAccessor) {
CHECK(bufAccessor);
conn_->bufAccessor = bufAccessor;
}
const std::shared_ptr<const folly::AsyncTransportCertificate>
QuicServerTransport::getPeerCertificate() const {
const auto handshakeLayer = serverConn_->serverHandshakeLayer;
if (handshakeLayer) {
return handshakeLayer->getState().clientCert();
}
return nullptr;
}
const std::shared_ptr<const folly::AsyncTransportCertificate>
QuicServerTransport::getSelfCertificate() const {
const auto handshakeLayer = serverConn_->serverHandshakeLayer;
if (handshakeLayer) {
return handshakeLayer->getState().serverCert();
}
return nullptr;
}
void QuicServerTransport::onTransportKnobs(Buf knobBlob) {
if (knobBlob->length() > 0) {
std::string serializedKnobs = std::string(
reinterpret_cast<const char*>(knobBlob->data()), knobBlob->length());
VLOG(4) << "Received transport knobs: " << serializedKnobs;
auto params = parseTransportKnobs(serializedKnobs);
if (params.hasValue()) {
handleTransportKnobParams(*params);
} else {
QUIC_STATS(
conn_->statsCallback,
onTransportKnobError,
TransportKnobParamId::UNKNOWN);
}
}
}
void QuicServerTransport::verifiedClientAddress() {
if (serverConn_) {
serverConn_->isClientAddrVerified = true;
conn_->writableBytesLimit.reset();
}
}
void QuicServerTransport::registerAllTransportKnobParamHandlers() {
registerTransportKnobParamHandler(
static_cast<uint64_t>(
TransportKnobParamId::FORCIBLY_SET_UDP_PAYLOAD_SIZE),
[](QuicServerTransport* serverTransport, TransportKnobParam::Val val) {
CHECK(serverTransport);
auto server_conn = serverTransport->serverConn_;
if (static_cast<bool>(std::get<uint64_t>(val))) {
server_conn->udpSendPacketLen = server_conn->peerMaxUdpPayloadSize;
VLOG(3)
<< "Knob param received, udpSendPacketLen is forcibly set to max UDP payload size advertised by peer";
}
});
registerTransportKnobParamHandler(
static_cast<uint64_t>(TransportKnobParamId::CC_ALGORITHM_KNOB),
[](QuicServerTransport* serverTransport, TransportKnobParam::Val val) {
CHECK(serverTransport);
auto server_conn = serverTransport->serverConn_;
auto cctype =
static_cast<CongestionControlType>(std::get<uint64_t>(val));
VLOG(3) << "Knob param received, set congestion control type to "
<< congestionControlTypeToString(cctype);
if (cctype == server_conn->congestionController->type()) {
return;
}
serverTransport->setCongestionControl(cctype);
});
registerTransportKnobParamHandler(
static_cast<uint64_t>(TransportKnobParamId::STARTUP_RTT_FACTOR_KNOB),
[](QuicServerTransport* serverTransport, TransportKnobParam::Val value) {
CHECK(serverTransport);
auto server_conn = serverTransport->serverConn_;
auto val = std::get<uint64_t>(value);
uint8_t numerator = (val / 100);
uint8_t denominator = (val - (numerator * 100));
VLOG(3) << "Knob param received, set STARTUP rtt factor to ("
<< unsigned(numerator) << "," << unsigned(denominator) << ")";
server_conn->transportSettings.startupRttFactor =
std::make_pair(numerator, denominator);
});
registerTransportKnobParamHandler(
static_cast<uint64_t>(TransportKnobParamId::DEFAULT_RTT_FACTOR_KNOB),
[](QuicServerTransport* serverTransport, TransportKnobParam::Val value) {
CHECK(serverTransport);
auto server_conn = serverTransport->serverConn_;
auto val = std::get<uint64_t>(value);
auto numerator = (uint8_t)(val / 100);
auto denominator = (uint8_t)(val - (numerator * 100));
VLOG(3) << "Knob param received, set DEFAULT rtt factor to ("
<< unsigned(numerator) << "," << unsigned(denominator) << ")";
server_conn->transportSettings.defaultRttFactor =
std::make_pair(numerator, denominator);
});
registerTransportKnobParamHandler(
static_cast<uint64_t>(TransportKnobParamId::MAX_PACING_RATE_KNOB),
[](QuicServerTransport* serverTransport, TransportKnobParam::Val value) {
CHECK(serverTransport);
auto val = std::get<uint64_t>(value);
// Check if the server should process this knob, i.e should set the max
// pacing rate to the given value. Currently there is a possibility that
// MAX_PACING_RATE_KNOB frames arrive out of order, causing incorrect
// max pacing rate to be set on the transport, i.e. the rate is set to a
// low value when it should be set to max value (i.e. disabled pacing).
//
// To address this issue while a new knob ID is introduced (where
// sequence number is included alongside the max pacing rate value),
// this handler will not call setMaxPacingRate(val) after it has
// received two consecutive frames where pacing is disabled, so that it
// can prevent the abovementioned scenario where the frames should be:
//
// NO_PACING --> PACING --> NO_PACING
//
// due to out-of-order, becomes:
//
// NO_PACING --> NO_PACING --> PACING
auto& maxPacingRateKnobState =
serverTransport->serverConn_->maxPacingRateKnobState;
if (maxPacingRateKnobState.frameOutOfOrderDetected) {
throw std::runtime_error(
"MAX_PACING_RATE_KNOB frame out of order detected");
}
// if pacing is already disabled and the new value is disabling it,
// assume there has been an out of order frame and stop processing
// pacing frames
if (maxPacingRateKnobState.lastMaxRateBytesPerSec ==
std::numeric_limits<uint64_t>::max() &&
maxPacingRateKnobState.lastMaxRateBytesPerSec == val) {
maxPacingRateKnobState.frameOutOfOrderDetected = true;
QUIC_STATS(
serverTransport->serverConn_->statsCallback,
onTransportKnobOutOfOrder,
TransportKnobParamId::MAX_PACING_RATE_KNOB);
throw std::runtime_error(
"MAX_PACING_RATE_KNOB frame out of order detected");
}
VLOG(3) << "Knob param received, set max pacing rate to ("
<< unsigned(val) << " bytes per second)";
serverTransport->setMaxPacingRate(val);
maxPacingRateKnobState.lastMaxRateBytesPerSec = val;
});
registerTransportKnobParamHandler(
static_cast<uint64_t>(
TransportKnobParamId::MAX_PACING_RATE_KNOB_SEQUENCED),
[](QuicServerTransport* serverTransport, TransportKnobParam::Val value) {
CHECK(serverTransport);
auto val = std::get<std::string>(value);
std::string rateBytesPerSecStr, seqNumStr;
if (!folly::split(',', val, rateBytesPerSecStr, seqNumStr)) {
std::string errMsg = fmt::format(
"MAX_PACING_RATE_KNOB_SEQUENCED frame value {} is not in expected format: "
"{{rate}},{{sequenceNumber}}",
val);
throw std::runtime_error(errMsg);
}
auto maybeRateBytesPerSec = folly::tryTo<uint64_t>(rateBytesPerSecStr);
if (maybeRateBytesPerSec.hasError()) {
std::string errMsg = fmt::format(
"MAX_PACING_RATE_KNOB_SEQUENCED frame received with invalid rate {}",
rateBytesPerSecStr);
throw std::runtime_error(errMsg);
}
auto expectedSeqNum = folly::tryTo<uint64_t>(seqNumStr);
if (expectedSeqNum.hasError()) {
std::string errMsg = fmt::format(
"MAX_PACING_RATE_KNOB_SEQUENCED frame received with invalid sequence number {}",
seqNumStr);
throw std::runtime_error(errMsg);
}
if (serverTransport->serverConn_->maybeLastMaxPacingRateKnobSeqNum >=
folly::make_optional(expectedSeqNum.value())) {
QUIC_STATS(
serverTransport->serverConn_->statsCallback,
onTransportKnobOutOfOrder,
TransportKnobParamId::MAX_PACING_RATE_KNOB_SEQUENCED);
throw std::runtime_error(
"MAX_PACING_RATE_KNOB_SEQUENCED frame received out of order");
}
VLOG(3) << fmt::format(
"MAX_PACING_RATE_KNOB_SEQUENCED frame received with rate {} bytes/sec "
"and sequence number {}",
maybeRateBytesPerSec.value(),
expectedSeqNum.value());
serverTransport->setMaxPacingRate(maybeRateBytesPerSec.value());
serverTransport->serverConn_->maybeLastMaxPacingRateKnobSeqNum =
expectedSeqNum.value();
});
registerTransportKnobParamHandler(
static_cast<uint64_t>(TransportKnobParamId::CC_EXPERIMENTAL),
[](QuicServerTransport* serverTransport, TransportKnobParam::Val val) {
CHECK(serverTransport);
auto server_conn = serverTransport->serverConn_;
if (server_conn->congestionController) {
auto enableExperimental = static_cast<bool>(std::get<uint64_t>(val));
server_conn->congestionController->setExperimental(
enableExperimental);
VLOG(3) << fmt::format(
"CC_EXPERIMENTAL KnobParam received, setting experimental={} "
"settings for congestion controller. Current congestion controller={}",
enableExperimental,
congestionControlTypeToString(
server_conn->congestionController->type()));
}
});
registerTransportKnobParamHandler(
static_cast<uint64_t>(TransportKnobParamId::SHORT_HEADER_PADDING_KNOB),
[](QuicServerTransport* serverTransport, TransportKnobParam::Val value) {
CHECK(serverTransport);
auto val = std::get<uint64_t>(value);
serverTransport->serverConn_->transportSettings.paddingModulo = val;
VLOG(3) << fmt::format(
"SHORT_HEADER_PADDING_KNOB KnobParam received, setting paddingModulo={}",
val);
});
registerTransportKnobParamHandler(
static_cast<uint64_t>(
TransportKnobParamId::FIXED_SHORT_HEADER_PADDING_KNOB),
[](QuicServerTransport* serverTransport, TransportKnobParam::Val value) {
CHECK(serverTransport);
auto val = std::get<uint64_t>(value);
serverTransport->serverConn_->transportSettings
.fixedShortHeaderPadding = val;
VLOG(3) << fmt::format(
"FIXED_SHORT_HEADER_PADDING_KNOB KnobParam received, setting fixedShortHeaderPadding={}",
val);
});
registerTransportKnobParamHandler(
static_cast<uint64_t>(TransportKnobParamId::ADAPTIVE_LOSS_DETECTION),
[](QuicServerTransport* serverTransport, TransportKnobParam::Val val) {
CHECK(serverTransport);
auto server_conn = serverTransport->serverConn_;
auto useAdaptiveLossReorderingThresholds =
static_cast<bool>(std::get<uint64_t>(val));
server_conn->transportSettings.useAdaptiveLossReorderingThresholds =
useAdaptiveLossReorderingThresholds;
VLOG(3) << fmt::format(
"ADAPTIVE_LOSS_DETECTION KnobParam received, UseAdaptiveLossReorderingThresholds is now set to {}",
useAdaptiveLossReorderingThresholds);
});
registerTransportKnobParamHandler(
static_cast<uint64_t>(TransportKnobParamId::PACER_EXPERIMENTAL),
[](QuicServerTransport* serverTransport, TransportKnobParam::Val val) {
CHECK(serverTransport);
auto server_conn = serverTransport->serverConn_;
if (server_conn->pacer) {
auto enableExperimental = static_cast<bool>(std::get<uint64_t>(val));
server_conn->pacer->setExperimental(enableExperimental);
VLOG(3) << fmt::format(
"PACER_EXPERIMENTAL KnobParam received, "
"setting experimental={} for pacer",
enableExperimental);
}
});
registerTransportKnobParamHandler(
static_cast<uint64_t>(TransportKnobParamId::KEEPALIVE_ENABLED),
[](QuicServerTransport* serverTransport, TransportKnobParam::Val value) {
CHECK(serverTransport);
auto val = std::get<uint64_t>(value);
auto server_conn = serverTransport->serverConn_;
server_conn->transportSettings.enableKeepalive = static_cast<bool>(val);
VLOG(3) << "KEEPALIVE_ENABLED KnobParam received: "
<< static_cast<bool>(val);
});
registerTransportKnobParamHandler(
static_cast<uint64_t>(TransportKnobParamId::REMOVE_FROM_LOSS_BUFFER),
[](QuicServerTransport* serverTransport, TransportKnobParam::Val value) {
CHECK(serverTransport);
auto val = std::get<uint64_t>(value);
// Temporarily disabled while we investigate some related bugs.
VLOG(3) << "REMOVE_FROM_LOSS_BUFFER KnobParam received: "
<< static_cast<bool>(val);
});
registerTransportKnobParamHandler(
static_cast<uint64_t>(TransportKnobParamId::ACK_FREQUENCY_POLICY),
[](QuicServerTransport* serverTransport, TransportKnobParam::Val value) {
CHECK(serverTransport);
auto val = std::get<std::string>(value);
CongestionControlConfig::AckFrequencyConfig ackFrequencyConfig;
bool parseSuccess = false;
try {
parseSuccess = folly::split(
',',
val,
ackFrequencyConfig.ackElicitingThreshold,
ackFrequencyConfig.reorderingThreshold,
ackFrequencyConfig.minRttDivisor,
ackFrequencyConfig.useSmallThresholdDuringStartup);
// Sanity check the values.
parseSuccess = parseSuccess &&
ackFrequencyConfig.ackElicitingThreshold > 1 &&
ackFrequencyConfig.reorderingThreshold > 1 &&
ackFrequencyConfig.minRttDivisor > 0;
} catch (std::exception&) {
parseSuccess = false;
}
if (parseSuccess) {
VLOG(3) << fmt::format(
"ACK_FREQUENCY_POLICY KnobParam received, "
"ackElicitingThreshold={}, "
"reorderingThreshold={}, "
"minRttDivisor={}, "
"useSmallThresholdDuringStartup={}, "
"raw knob={}",
ackFrequencyConfig.ackElicitingThreshold,
ackFrequencyConfig.reorderingThreshold,
ackFrequencyConfig.minRttDivisor,
ackFrequencyConfig.useSmallThresholdDuringStartup,
val);
serverTransport->conn_->transportSettings.ccaConfig
.ackFrequencyConfig = ackFrequencyConfig;
} else {
auto errMsg = fmt::format(
"Received invalid KnobParam for ACK_FREQUENCY_POLICY: {}", val);
VLOG(3) << errMsg;
throw std::runtime_error(errMsg);
}
});
registerTransportKnobParamHandler(
static_cast<uint64_t>(TransportKnobParamId::FIRE_LOOP_EARLY),
[](QuicServerTransport* serverTransport, TransportKnobParam::Val value) {
CHECK(serverTransport);
auto val = std::get<uint64_t>(value);
serverTransport->writeLooper_->setFireLoopEarly(static_cast<bool>(val));
VLOG(3) << "FIRE_LOOP_EARLY KnobParam received: "
<< static_cast<bool>(val);
});
registerTransportKnobParamHandler(
static_cast<uint64_t>(TransportKnobParamId::PACING_TIMER_TICK),
[](QuicServerTransport* serverTransport, TransportKnobParam::Val value) {
CHECK(serverTransport);
auto val = std::get<uint64_t>(value);
auto serverConn = serverTransport->serverConn_;
serverConn->transportSettings.pacingTickInterval =
std::chrono::microseconds(val);
VLOG(3) << "PACING_TIMER_TICK KnobParam received: " << val;
});
registerTransportKnobParamHandler(
static_cast<uint64_t>(TransportKnobParamId::DEFAULT_STREAM_PRIORITY),
[](QuicServerTransport* serverTransport, TransportKnobParam::Val value) {
CHECK(serverTransport);
auto val = std::get<std::string>(value);
auto serverConn = serverTransport->serverConn_;
uint8_t level;
bool incremental;
bool parseSuccess = false;
try {
parseSuccess = folly::split(',', val, level, incremental);
} catch (std::exception&) {
parseSuccess = false;
}
if (!parseSuccess || level > 7) {
auto errMsg = fmt::format(
"Received invalid KnobParam for DEFAULT_STREAM_PRIORITY: {}",
val);
VLOG(3) << errMsg;
throw std::runtime_error(errMsg);
}
serverConn->transportSettings.defaultPriority =
HTTPPriorityQueue::Priority(level, incremental);
VLOG(3) << "DEFAULT_STREAM_PRIORITY KnobParam received: " << val;
});
registerTransportKnobParamHandler(
static_cast<uint64_t>(TransportKnobParamId::WRITE_LOOP_TIME_FRACTION),
[](QuicServerTransport* serverTransport, TransportKnobParam::Val value) {
CHECK(serverTransport);
auto val = std::get<uint64_t>(value);
auto serverConn = serverTransport->serverConn_;
serverConn->transportSettings.writeLimitRttFraction = val;
VLOG(3) << "WRITE_LOOP_TIME_FRACTION KnobParam received: " << val;
});
registerTransportKnobParamHandler(
static_cast<uint64_t>(TransportKnobParamId::WRITES_PER_STREAM),
[](QuicServerTransport* serverTransport, TransportKnobParam::Val value) {
CHECK(serverTransport);
auto val = std::get<uint64_t>(value);
auto serverConn = serverTransport->serverConn_;
serverConn->transportSettings.priorityQueueWritesPerStream = val;
serverConn->streamManager->setWriteQueueMaxNextsPerStream(
serverConn->transportSettings.priorityQueueWritesPerStream);
VLOG(3) << "WRITES_PER_STREAM KnobParam received: " << val;
});
registerTransportKnobParamHandler(
static_cast<uint64_t>(TransportKnobParamId::CC_CONFIG),
[](QuicServerTransport* serverTransport, TransportKnobParam::Val value) {
CHECK(serverTransport);
auto val = std::get<std::string>(value);
serverTransport->conn_->transportSettings.ccaConfig =
parseCongestionControlConfig(val);
VLOG(3) << "CC_CONFIG KnobParam received: " << val;
});
registerTransportKnobParamHandler(
static_cast<uint64_t>(TransportKnobParamId::CONNECTION_MIGRATION),
[](QuicServerTransport* serverTransport, TransportKnobParam::Val value) {
CHECK(serverTransport);
auto val = std::get<uint64_t>(value);
auto server_conn = serverTransport->serverConn_;
server_conn->transportSettings.disableMigration =
!static_cast<bool>(val);
VLOG(3) << "CONNECTION_MIGRATION KnobParam received: "
<< static_cast<bool>(val);
});
registerTransportKnobParamHandler(
static_cast<uint64_t>(TransportKnobParamId::KEY_UPDATE_INTERVAL),
[](QuicServerTransport* serverTransport, TransportKnobParam::Val value) {
CHECK(serverTransport);
auto val = std::get<uint64_t>(value);
if (val < 1000 || val > 8ul * 1000 * 1000) {
std::string errMsg = fmt::format(
"KEY_UPDATE_INTERVAL KnobParam received with invalid value: {}",
val);
throw std::runtime_error(errMsg);
}
auto server_conn = serverTransport->serverConn_;
server_conn->transportSettings.initiateKeyUpdate = val > 0;
server_conn->transportSettings.keyUpdatePacketCountInterval = val;
VLOG(3) << "KEY_UPDATE_INTERVAL KnobParam received: " << val;
});
registerTransportKnobParamHandler(
static_cast<uint64_t>(
TransportKnobParamId::USE_NEW_STREAM_BLOCKED_CONDITION),
[](QuicServerTransport* serverTransport, TransportKnobParam::Val value) {
CHECK(serverTransport);
bool useNewStreamBlockedCondition =
static_cast<bool>(std::get<uint64_t>(value));
auto server_conn = serverTransport->serverConn_;
server_conn->transportSettings.useNewStreamBlockedCondition =
useNewStreamBlockedCondition;
VLOG(3) << "USE_NEW_STREAM_BLOCKED_CONDITION KnobParam received: "
<< useNewStreamBlockedCondition;
});
registerTransportKnobParamHandler(
static_cast<uint64_t>(
TransportKnobParamId::AUTOTUNE_RECV_STREAM_FLOW_CONTROL),
[](QuicServerTransport* serverTransport, TransportKnobParam::Val value) {
CHECK(serverTransport);
bool autotuneReceiveStreamFlowControl =
static_cast<bool>(std::get<uint64_t>(value));
auto server_conn = serverTransport->serverConn_;
server_conn->transportSettings.autotuneReceiveStreamFlowControl =
autotuneReceiveStreamFlowControl;
VLOG(3) << "AUTOTUNE_RECV_STREAM_FLOW_CONTROL KnobParam received: "
<< autotuneReceiveStreamFlowControl;
});
registerTransportKnobParamHandler(
static_cast<uint64_t>(
TransportKnobParamId::INFLIGHT_REORDERING_THRESHOLD),
[](QuicServerTransport* serverTransport, TransportKnobParam::Val value) {
CHECK(serverTransport);
bool inflightReorderingThreshold =
static_cast<bool>(std::get<uint64_t>(value));
auto server_conn = serverTransport->serverConn_;
server_conn->transportSettings.useInflightReorderingThreshold =
inflightReorderingThreshold;
VLOG(3) << "INFLIGHT_REORDERING_THRESHOLD KnobParam received: "
<< inflightReorderingThreshold;
});
registerTransportKnobParamHandler(
static_cast<uint64_t>(TransportKnobParamId::PACER_MIN_BURST_PACKETS),
[](QuicServerTransport* serverTransport, TransportKnobParam::Val value) {
CHECK(serverTransport);
auto val = std::get<uint64_t>(value);
auto serverConn = serverTransport->serverConn_;
serverConn->transportSettings.minBurstPackets = val;
VLOG(3) << "PACER_MIN_BURST_PACKETS KnobParam received: " << val;
});
registerTransportKnobParamHandler(
static_cast<uint64_t>(TransportKnobParamId::MAX_BATCH_PACKETS),
[](QuicServerTransport* serverTransport, TransportKnobParam::Val value) {
CHECK(serverTransport);
auto val = std::get<uint64_t>(value);
auto serverConn = serverTransport->serverConn_;
serverConn->transportSettings.writeConnectionDataPacketsLimit =
val <= kMaxWriteConnectionDataPacketLimit
? val
: kMaxWriteConnectionDataPacketLimit;
serverConn->transportSettings.maxBatchSize =
val <= kQuicMaxBatchSizeLimit ? val : kQuicMaxBatchSizeLimit;
VLOG(3) << "MAX_BATCH_PACKETS KnobParam received: " << val;
});
}
QuicConnectionStats QuicServerTransport::getConnectionsStats() const {
QuicConnectionStats connStats = QuicTransportBase::getConnectionsStats();
if (serverConn_) {
connStats.localAddress = serverConn_->serverAddr;
}
return connStats;
}
QuicSocket::WriteResult QuicServerTransport::writeBufMeta(
StreamId id,
const BufferMeta& data,
bool eof,
ByteEventCallback* cb) {
if (isReceivingStream(conn_->nodeType, id)) {
return folly::makeUnexpected(LocalErrorCode::INVALID_OPERATION);
}
if (closeState_ != CloseState::OPEN) {
return folly::makeUnexpected(LocalErrorCode::CONNECTION_CLOSED);
}
[[maybe_unused]] auto self = sharedGuard();
try {
// Check whether stream exists before calling getStream to avoid
// creating a peer stream if it does not exist yet.
if (!conn_->streamManager->streamExists(id)) {
return folly::makeUnexpected(LocalErrorCode::STREAM_NOT_EXISTS);
}
auto stream =
CHECK_NOTNULL(conn_->streamManager->getStream(id).value_or(nullptr));
if (!stream->writable()) {
return folly::makeUnexpected(LocalErrorCode::STREAM_CLOSED);
}
if (!stream->dsrSender) {
return folly::makeUnexpected(LocalErrorCode::INVALID_OPERATION);
}
if (stream->currentWriteOffset == 0 && stream->pendingWrites.empty()) {
// If nothing has been written ever, meta writing isn't allowed.
return folly::makeUnexpected(LocalErrorCode::INVALID_OPERATION);
}
// Register DeliveryCallback for the data + eof offset.
if (cb) {
auto dataLength = data.length + (eof ? 1 : 0);
if (dataLength) {
auto currentLargestWriteOffset = getLargestWriteOffsetSeen(*stream);
registerDeliveryCallback(
id, currentLargestWriteOffset + dataLength - 1, cb);
}
}
bool wasAppLimitedOrIdle = false;
if (conn_->congestionController) {
wasAppLimitedOrIdle = conn_->congestionController->isAppLimited();
wasAppLimitedOrIdle |= conn_->streamManager->isAppIdle();
}
auto writeResult = writeBufMetaToQuicStream(*stream, data, eof);
if (writeResult.hasError()) {
throw QuicTransportException(
writeResult.error().message,
*writeResult.error().code.asTransportErrorCode());
}
// If we were previously app limited restart pacing with the current rate.
if (wasAppLimitedOrIdle && conn_->pacer) {
conn_->pacer->reset();
}
updateWriteLooper(true);
} catch (const QuicTransportException& ex) {
VLOG(4) << __func__ << " streamId=" << id << " " << ex.what() << " "
<< *this;
exceptionCloseWhat_ = ex.what();
closeImpl(QuicError(
QuicErrorCode(ex.errorCode()), std::string("writeChain() error")));
return folly::makeUnexpected(LocalErrorCode::TRANSPORT_ERROR);
} catch (const QuicInternalException& ex) {
VLOG(4) << __func__ << " streamId=" << id << " " << ex.what() << " "
<< *this;
exceptionCloseWhat_ = ex.what();
closeImpl(QuicError(
QuicErrorCode(ex.errorCode()), std::string("writeChain() error")));
return folly::makeUnexpected(ex.errorCode());
} catch (const std::exception& ex) {
VLOG(4) << __func__ << " streamId=" << id << " " << ex.what() << " "
<< *this;
exceptionCloseWhat_ = ex.what();
closeImpl(QuicError(
QuicErrorCode(TransportErrorCode::INTERNAL_ERROR),
std::string("writeChain() error")));
return folly::makeUnexpected(LocalErrorCode::INTERNAL_ERROR);
}
return folly::unit;
}
QuicSocket::WriteResult QuicServerTransport::setDSRPacketizationRequestSender(
StreamId id,
std::unique_ptr<DSRPacketizationRequestSender> sender) {
if (closeState_ != CloseState::OPEN) {
return folly::makeUnexpected(LocalErrorCode::CONNECTION_CLOSED);
}
if (isReceivingStream(conn_->nodeType, id)) {
return folly::makeUnexpected(LocalErrorCode::INVALID_OPERATION);
}
[[maybe_unused]] auto self = sharedGuard();
try {
// Check whether stream exists before calling getStream to avoid
// creating a peer stream if it does not exist yet.
if (!conn_->streamManager->streamExists(id)) {
return folly::makeUnexpected(LocalErrorCode::STREAM_NOT_EXISTS);
}
auto stream =
CHECK_NOTNULL(conn_->streamManager->getStream(id).value_or(nullptr));
// Only allow resetting it back to nullptr once set.
if (stream->dsrSender && sender != nullptr) {
return folly::makeUnexpected(LocalErrorCode::INVALID_OPERATION);
}
if (stream->dsrSender != nullptr) {
// If any of these aren't true then we are abandoning stream data.
CHECK_EQ(stream->writeBufMeta.length, 0) << stream;
CHECK_EQ(stream->lossBufMetas.size(), 0) << stream;
CHECK_EQ(stream->retransmissionBufMetas.size(), 0) << stream;
stream->dsrSender->release();
stream->dsrSender = nullptr;
return folly::unit;
}
if (!stream->writable()) {
return folly::makeUnexpected(LocalErrorCode::STREAM_CLOSED);
}
stream->dsrSender = std::move(sender);
// Default to disabling opportunistic ACKing for DSR since it causes extra
// writes and spurious losses.
conn_->transportSettings.opportunisticAcking = false;
// Also turn on the default of 5 nexts per stream which has empirically
// shown good results.
if (conn_->transportSettings.priorityQueueWritesPerStream == 1) {
conn_->transportSettings.priorityQueueWritesPerStream = 5;
conn_->streamManager->setWriteQueueMaxNextsPerStream(5);
}
// Fow now, no appLimited or appIdle update here since we are not writing
// either BufferMetas yet. The first BufferMeta write will update it.
} catch (const QuicTransportException& ex) {
VLOG(4) << __func__ << " streamId=" << id << " " << ex.what() << " "
<< *this;
exceptionCloseWhat_ = ex.what();
closeImpl(QuicError(
QuicErrorCode(ex.errorCode()), std::string("writeChain() error")));
return folly::makeUnexpected(LocalErrorCode::TRANSPORT_ERROR);
} catch (const QuicInternalException& ex) {
VLOG(4) << __func__ << " streamId=" << id << " " << ex.what() << " "
<< *this;
exceptionCloseWhat_ = ex.what();
closeImpl(QuicError(
QuicErrorCode(ex.errorCode()), std::string("writeChain() error")));
return folly::makeUnexpected(ex.errorCode());
} catch (const std::exception& ex) {
VLOG(4) << __func__ << " streamId=" << id << " " << ex.what() << " "
<< *this;
exceptionCloseWhat_ = ex.what();
closeImpl(QuicError(
QuicErrorCode(TransportErrorCode::INTERNAL_ERROR),
std::string("writeChain() error")));
return folly::makeUnexpected(LocalErrorCode::INTERNAL_ERROR);
}
return folly::unit;
}
CipherInfo QuicServerTransport::getOneRttCipherInfo() const {
return {
*conn_->oneRttWriteCipher->getKey(),
*serverConn_->serverHandshakeLayer->getState().cipher(),
conn_->oneRttWriteHeaderCipher->getKey()->clone()};
}
void QuicServerTransport::logTimeBasedStats() const {
if (!conn_ || !conn_->statsCallback) {
return;
}
// Ignore 0 inflight bytes samples for now to not affect sampling.
if (conn_->lossState.inflightBytes > 0) {
QUIC_STATS(
conn_->statsCallback,
onInflightBytesSample,
conn_->lossState.inflightBytes);
}
// Only consider RTT sample if handshake is done.
if (serverConn_->serverHandshakeLayer->isHandshakeDone()) {
QUIC_STATS(
conn_->statsCallback,
onRttSample,
std::chrono::duration_cast<std::chrono::milliseconds>(
conn_->lossState.srtt)
.count());
}
if (conn_->congestionController) {
// We only log the bandwidth if it's available and the units are bytes/s.
auto bandwidth = conn_->congestionController->getBandwidth();
if (bandwidth.has_value() &&
bandwidth->unitType == Bandwidth::UnitType::BYTES) {
uint64_t bitsPerSecSample = bandwidth->normalize() * 8;
QUIC_STATS(conn_->statsCallback, onBandwidthSample, bitsPerSecSample);
}
}
}
Optional<std::vector<TransportParameter>>
QuicServerTransport::getPeerTransportParams() const {
if (serverConn_ && serverConn_->serverHandshakeLayer) {
auto maybeParams =
serverConn_->serverHandshakeLayer->getClientTransportParams();
if (maybeParams) {
return maybeParams->parameters;
}
}
return none;
}
void QuicServerTransport::setCongestionControl(CongestionControlType type) {
if (!conn_->congestionControllerFactory) {
// If you are hitting this, update your application to call
// setCongestionControllerFactory() on the transport to share one factory
// for all transports.
conn_->congestionControllerFactory =
std::make_shared<ServerCongestionControllerFactory>();
LOG(WARNING)
<< "A congestion controller factory is not set. Using a default per-transport instance.";
}
QuicTransportBase::setCongestionControl(type);
}
} // namespace quic