1
0
mirror of https://github.com/facebookincubator/mvfst.git synced 2025-04-18 17:24:03 +03:00
mvfst/quic/client/QuicClientTransportLite.cpp
Aman Sharma 2f33a3681a Introduce a "BufHelpers" typealias
Summary: This introduces a more generic typealias so that we can, for instance, write `BufHelpers::createCombined` instead of `folly::IOBuf::createCombined`.

Reviewed By: jbeshay

Differential Revision: D73127508

fbshipit-source-id: d585790904efc8e9f92d79cbf766bafe0e84a69f
2025-04-17 11:57:01 -07:00

2064 lines
75 KiB
C++

/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
#include <quic/client/QuicClientTransportLite.h>
#include <folly/portability/Sockets.h>
#include <quic/QuicConstants.h>
#include <quic/api/LoopDetectorCallback.h>
#include <quic/api/QuicTransportFunctions.h>
#include <quic/client/handshake/ClientHandshakeFactory.h>
#include <quic/client/handshake/ClientTransportParametersExtension.h>
#include <quic/client/state/ClientStateMachine.h>
#include <quic/congestion_control/CongestionControllerFactory.h>
#include <quic/flowcontrol/QuicFlowController.h>
#include <quic/handshake/CryptoFactory.h>
#include <quic/happyeyeballs/QuicHappyEyeballsFunctions.h>
#include <quic/logging/QLoggerConstants.h>
#include <quic/loss/QuicLossFunctions.h>
#include <quic/state/AckHandlers.h>
#include <quic/state/DatagramHandlers.h>
#include <quic/state/QuicPacingFunctions.h>
#include <quic/state/SimpleFrameFunctions.h>
#include <quic/state/stream/StreamReceiveHandlers.h>
#include <quic/state/stream/StreamSendHandlers.h>
namespace fsp = folly::portability::sockets;
namespace {
constexpr socklen_t kAddrLen = sizeof(sockaddr_storage);
} // namespace
namespace quic {
QuicClientTransportLite::QuicClientTransportLite(
std::shared_ptr<QuicEventBase> evb,
std::unique_ptr<QuicAsyncUDPSocket> socket,
std::shared_ptr<ClientHandshakeFactory> handshakeFactory,
size_t connectionIdSize,
PacketNum startingPacketNum,
bool useConnectionEndWithErrorCallback)
: QuicClientTransportLite(
std::move(evb),
std::move(socket),
std::move(handshakeFactory),
connectionIdSize,
useConnectionEndWithErrorCallback) {
conn_->ackStates = AckStates(startingPacketNum);
}
QuicClientTransportLite::QuicClientTransportLite(
std::shared_ptr<QuicEventBase> evb,
std::unique_ptr<QuicAsyncUDPSocket> socket,
std::shared_ptr<ClientHandshakeFactory> handshakeFactory,
size_t connectionIdSize,
bool useConnectionEndWithErrorCallback)
: QuicTransportBaseLite(
evb,
std::move(socket),
useConnectionEndWithErrorCallback),
happyEyeballsConnAttemptDelayTimeout_(this) {
DCHECK(handshakeFactory);
auto tempConn =
std::make_unique<QuicClientConnectionState>(std::move(handshakeFactory));
clientConn_ = tempConn.get();
conn_.reset(tempConn.release());
auto srcConnId = connectionIdSize > 0
? ConnectionId::createRandom(connectionIdSize)
: ConnectionId(std::vector<uint8_t>());
conn_->clientConnectionId = srcConnId;
conn_->readCodec = std::make_unique<QuicReadCodec>(QuicNodeType::Client);
conn_->readCodec->setClientConnectionId(srcConnId);
conn_->selfConnectionIds.emplace_back(srcConnId, kInitialSequenceNumber);
clientConn_->initialDestinationConnectionId =
ConnectionId::createRandom(kMinInitialDestinationConnIdLength);
clientConn_->originalDestinationConnectionId =
clientConn_->initialDestinationConnectionId;
conn_->clientChosenDestConnectionId =
clientConn_->initialDestinationConnectionId;
VLOG(4) << "initial dcid: "
<< clientConn_->initialDestinationConnectionId->hex();
if (conn_->qLogger) {
conn_->qLogger->setDcid(conn_->clientChosenDestConnectionId);
}
conn_->readCodec->setCodecParameters(CodecParameters(
conn_->peerAckDelayExponent,
conn_->originalVersion.value(),
conn_->transportSettings.maybeAckReceiveTimestampsConfigSentToPeer,
conn_->transportSettings.advertisedExtendedAckFeatures));
VLOG(10) << "client created " << *conn_;
}
QuicClientTransportLite::~QuicClientTransportLite() {
VLOG(10) << "Destroyed connection to server=" << conn_->peerAddress;
// The caller probably doesn't need the conn callback after destroying the
// transport.
resetConnectionCallbacks();
// Close without draining.
closeImpl(
QuicError(
QuicErrorCode(LocalErrorCode::SHUTTING_DOWN),
std::string("Closing from client destructor")),
false /* drainConnection */);
// closeImpl may have been called earlier with drain = true, so force close.
closeUdpSocket();
if (clientConn_->happyEyeballsState.secondSocket) {
auto sock = std::move(clientConn_->happyEyeballsState.secondSocket);
sock->pauseRead();
sock->close();
}
}
folly::Expected<folly::Unit, QuicError>
QuicClientTransportLite::processUdpPacket(
const folly::SocketAddress& peer,
ReceivedUdpPacket&& udpPacket) {
// Process the arriving UDP packet, which may have coalesced QUIC packets.
{
BufQueue& udpData = udpPacket.buf;
if (!conn_->version) {
// We only check for version negotiation packets before the version
// is negotiated.
auto versionNegotiation =
conn_->readCodec->tryParsingVersionNegotiation(udpData);
if (versionNegotiation) {
VLOG(4) << "Got version negotiation packet from peer=" << peer
<< " versions=" << std::hex << versionNegotiation->versions
<< " " << *this;
return folly::makeUnexpected(QuicError(
LocalErrorCode::NEW_VERSION_NEGOTIATED,
"Received version negotiation packet"));
}
}
for (uint16_t processedPackets = 0;
!udpData.empty() && processedPackets < kMaxNumCoalescedPackets;
processedPackets++) {
auto res = processUdpPacketData(peer, udpPacket);
if (res.hasError()) {
return res;
}
}
VLOG_IF(4, !udpData.empty())
<< "Leaving " << udpData.chainLength()
<< " bytes unprocessed after attempting to process "
<< kMaxNumCoalescedPackets << " packets.";
}
// Process any deferred pending 1RTT and handshake packets if we have keys.
if (conn_->readCodec->getOneRttReadCipher() &&
!clientConn_->pendingOneRttData.empty()) {
for (auto& pendingPacket : clientConn_->pendingOneRttData) {
// The first loop should try to process any leftover data in the incoming
// buffer.
pendingPacket.udpPacket.buf.append(udpPacket.buf.move());
auto res =
processUdpPacketData(pendingPacket.peer, pendingPacket.udpPacket);
if (res.hasError()) {
return res;
}
}
clientConn_->pendingOneRttData.clear();
}
if (conn_->readCodec->getHandshakeReadCipher() &&
!clientConn_->pendingHandshakeData.empty()) {
for (auto& pendingPacket : clientConn_->pendingHandshakeData) {
// The first loop should try to process any leftover data in the incoming
// buffer.
pendingPacket.udpPacket.buf.append(udpPacket.buf.move());
auto res =
processUdpPacketData(pendingPacket.peer, pendingPacket.udpPacket);
if (res.hasError()) {
return res;
}
}
clientConn_->pendingHandshakeData.clear();
}
return folly::unit;
}
folly::Expected<folly::Unit, QuicError>
QuicClientTransportLite::processUdpPacketData(
const folly::SocketAddress& peer,
ReceivedUdpPacket& udpPacket) {
auto packetSize = udpPacket.buf.chainLength();
if (packetSize == 0) {
return folly::unit;
}
auto parsedPacket = conn_->readCodec->parsePacket(
udpPacket.buf, conn_->ackStates, conn_->clientConnectionId->size());
StatelessReset* statelessReset = parsedPacket.statelessReset();
if (statelessReset) {
const auto& token = clientConn_->statelessResetToken;
if (statelessReset->token == token) {
VLOG(4) << "Received Stateless Reset " << *this;
conn_->peerConnectionError = QuicError(
QuicErrorCode(LocalErrorCode::CONNECTION_RESET),
toString(LocalErrorCode::CONNECTION_RESET).str());
return folly::makeUnexpected(
QuicError(LocalErrorCode::NO_ERROR, "Stateless Reset Received"));
}
VLOG(4) << "Drop StatelessReset for bad connId or token " << *this;
// Don't treat this as a fatal error, just ignore the packet.
return folly::unit;
}
RetryPacket* retryPacket = parsedPacket.retryPacket();
if (retryPacket) {
if (conn_->qLogger) {
conn_->qLogger->addPacket(*retryPacket, packetSize, true);
}
// we reject retry packet if our initial has been processed or we've rx'd a
// prior retry packet; note that initialAckState is reset to nullptr only
// after we've confirmed handshake.
bool shouldRejectRetryPacket = !conn_->ackStates.initialAckState ||
conn_->ackStates.initialAckState->largestRecvdPacketNum.has_value() ||
!clientConn_->retryToken.empty();
if (shouldRejectRetryPacket) {
VLOG(4) << "Server incorrectly issued a retry packet; dropping retry "
<< *this;
// Not a fatal error, just ignore the packet.
return folly::unit;
}
const ConnectionId* originalDstConnId =
&(*clientConn_->originalDestinationConnectionId);
if (!clientConn_->clientHandshakeLayer->verifyRetryIntegrityTag(
*originalDstConnId, *retryPacket)) {
VLOG(4) << "The integrity tag in the retry packet was invalid. "
<< "Dropping bad retry packet. " << *this;
// Not a fatal error, just ignore the packet.
return folly::unit;
}
if (happyEyeballsEnabled_) {
happyEyeballsOnDataReceived(
*clientConn_, happyEyeballsConnAttemptDelayTimeout_, socket_, peer);
}
// Set the destination connection ID to be the value from the source
// connection id of the retry packet
clientConn_->initialDestinationConnectionId =
retryPacket->header.getSourceConnId();
auto released = static_cast<QuicClientConnectionState*>(conn_.release());
std::unique_ptr<QuicClientConnectionState> uniqueClient(released);
auto tempConn = undoAllClientStateForRetry(std::move(uniqueClient));
clientConn_ = tempConn.get();
conn_.reset(tempConn.release());
clientConn_->retryToken = retryPacket->header.getToken();
// TODO (amsharma): add a "RetryPacket" QLog event, and log it here.
// TODO (amsharma): verify the "original_connection_id" parameter
// upon receiving a subsequent initial from the server.
auto handshakeResult = startCryptoHandshake();
if (handshakeResult.hasError()) {
return folly::makeUnexpected(handshakeResult.error());
}
return folly::unit; // Retry processed successfully
}
auto cipherUnavailable = parsedPacket.cipherUnavailable();
if (cipherUnavailable && cipherUnavailable->packet &&
!cipherUnavailable->packet->empty() &&
(cipherUnavailable->protectionType == ProtectionType::KeyPhaseZero ||
cipherUnavailable->protectionType == ProtectionType::Handshake) &&
clientConn_->pendingOneRttData.size() +
clientConn_->pendingHandshakeData.size() <
clientConn_->transportSettings.maxPacketsToBuffer) {
auto& pendingData =
cipherUnavailable->protectionType == ProtectionType::KeyPhaseZero
? clientConn_->pendingOneRttData
: clientConn_->pendingHandshakeData;
pendingData.emplace_back(
ReceivedUdpPacket(
std::move(cipherUnavailable->packet),
udpPacket.timings,
udpPacket.tosValue),
peer);
if (conn_->qLogger) {
conn_->qLogger->addPacketBuffered(
cipherUnavailable->protectionType, packetSize);
}
// Packet buffered, not an error
return folly::unit;
}
auto codecError = parsedPacket.codecError();
if (codecError) {
return folly::makeUnexpected(QuicError(
*codecError->error.code.asTransportErrorCode(),
std::move(codecError->error.message)));
}
RegularQuicPacket* regularOptional = parsedPacket.regularPacket();
if (!regularOptional) {
VLOG(4) << "Packet parse error for " << *this;
QUIC_STATS(
statsCallback_, onPacketDropped, PacketDropReason::PARSE_ERROR_CLIENT);
if (conn_->qLogger) {
conn_->qLogger->addPacketDrop(packetSize, kParse);
}
// If this was a protocol violation, we would return a codec error instead.
// Ignore this case as something that caused a non-codec parse error.
return folly::unit;
}
if (regularOptional->frames.empty()) {
// This is either a packet that has no data (long-header parsed but no data
// found) or a regular packet with a short header and no frames. Both are
// protocol violations.
LOG(ERROR) << "Packet has no frames " << *this;
QUIC_STATS(
conn_->statsCallback,
onPacketDropped,
PacketDropReason::PROTOCOL_VIOLATION);
if (conn_->qLogger) {
conn_->qLogger->addPacketDrop(
packetSize,
PacketDropReason(PacketDropReason::PROTOCOL_VIOLATION)._to_string());
}
return folly::makeUnexpected(QuicError(
TransportErrorCode::PROTOCOL_VIOLATION, "Packet has no frames"));
}
if (happyEyeballsEnabled_) {
CHECK(socket_);
happyEyeballsOnDataReceived(
*clientConn_, happyEyeballsConnAttemptDelayTimeout_, socket_, peer);
}
LongHeader* longHeader = regularOptional->header.asLong();
ShortHeader* shortHeader = regularOptional->header.asShort();
auto protectionLevel = regularOptional->header.getProtectionType();
auto encryptionLevel = protectionTypeToEncryptionLevel(protectionLevel);
auto packetNum = regularOptional->header.getPacketSequenceNum();
auto pnSpace = regularOptional->header.getPacketNumberSpace();
bool isProtectedPacket = protectionLevel == ProtectionType::KeyPhaseZero ||
protectionLevel == ProtectionType::KeyPhaseOne;
auto& regularPacket = *regularOptional;
if (conn_->qLogger) {
conn_->qLogger->addPacket(regularPacket, packetSize);
}
if (!isProtectedPacket) {
for (auto& quicFrame : regularPacket.frames) {
auto isPadding = quicFrame.asPaddingFrame();
auto isAck = quicFrame.asReadAckFrame();
auto isClose = quicFrame.asConnectionCloseFrame();
auto isCrypto = quicFrame.asReadCryptoFrame();
auto isPing = quicFrame.asPingFrame();
// TODO: add path challenge and response
if (!isPadding && !isAck && !isClose && !isCrypto && !isPing) {
return folly::makeUnexpected(
QuicError(TransportErrorCode::PROTOCOL_VIOLATION, "Invalid frame"));
}
}
}
// We got a packet that was not the version negotiation packet, that means
// that the version is now bound to the new packet.
if (!conn_->version) {
conn_->version = conn_->originalVersion;
}
if (!conn_->serverConnectionId && longHeader) {
conn_->serverConnectionId = longHeader->getSourceConnId();
conn_->peerConnectionIds.emplace_back(
longHeader->getSourceConnId(), kInitialSequenceNumber);
conn_->readCodec->setServerConnectionId(*conn_->serverConnectionId);
}
// Error out if the connection id on the packet is not the one that is
// expected.
bool connidMatched = true;
if ((longHeader &&
longHeader->getDestinationConnId() != *conn_->clientConnectionId) ||
(shortHeader &&
shortHeader->getConnectionId() != *conn_->clientConnectionId)) {
connidMatched = false;
}
if (!connidMatched) {
return folly::makeUnexpected(QuicError(
TransportErrorCode::PROTOCOL_VIOLATION, "Invalid connection id"));
}
// Add the packet to the AckState associated with the packet number space.
auto& ackState = getAckState(*conn_, pnSpace);
uint64_t distanceFromExpectedPacketNum =
addPacketToAckState(*conn_, ackState, packetNum, udpPacket);
if (distanceFromExpectedPacketNum > 0) {
QUIC_STATS(conn_->statsCallback, onOutOfOrderPacketReceived);
}
bool pktHasRetransmittableData = false;
bool pktHasCryptoData = false;
AckedPacketVisitor ackedPacketVisitor =
[&](const OutstandingPacketWrapper& outstandingPacket) {
auto outstandingProtectionType =
outstandingPacket.packet.header.getProtectionType();
if (outstandingProtectionType == ProtectionType::KeyPhaseZero) {
// If we received an ack for data that we sent in 1-rtt from
// the server, we can assume that the server had successfully
// derived the 1-rtt keys and hence received the client
// finished message. We can mark the handshake as confirmed and
// drop the handshake cipher and outstanding packets after the
// processing loop.
conn_->handshakeLayer->handshakeConfirmed();
}
return maybeVerifyPendingKeyUpdate(
*conn_, outstandingPacket, regularPacket);
};
AckedFrameVisitor ackedFrameVisitor =
[&](const OutstandingPacketWrapper& outstandingPacket,
const QuicWriteFrame& packetFrame)
-> folly::Expected<folly::Unit, QuicError> {
auto outstandingProtectionType =
outstandingPacket.packet.header.getProtectionType();
switch (packetFrame.type()) {
case QuicWriteFrame::Type::WriteAckFrame: {
const WriteAckFrame& frame = *packetFrame.asWriteAckFrame();
DCHECK(!frame.ackBlocks.empty());
VLOG(4) << "Client received ack for largestAcked="
<< frame.ackBlocks.front().end << " " << *this;
commonAckVisitorForAckFrame(ackState, frame);
break;
}
case QuicWriteFrame::Type::RstStreamFrame: {
const RstStreamFrame& frame = *packetFrame.asRstStreamFrame();
VLOG(4) << "Client received ack for reset frame stream="
<< frame.streamId << " " << *this;
auto stream =
conn_->streamManager->getStream(frame.streamId).value_or(nullptr);
if (stream) {
return sendRstAckSMHandler(*stream, frame.reliableSize);
}
break;
}
case QuicWriteFrame::Type::WriteStreamFrame: {
const WriteStreamFrame& frame = *packetFrame.asWriteStreamFrame();
auto ackedStreamResult =
conn_->streamManager->getStream(frame.streamId);
if (ackedStreamResult.hasError()) {
return folly::makeUnexpected(ackedStreamResult.error());
}
auto& ackedStream = ackedStreamResult.value();
VLOG(4) << "Client got ack for stream=" << frame.streamId
<< " offset=" << frame.offset << " fin=" << frame.fin
<< " data=" << frame.len
<< " closed=" << (ackedStream == nullptr) << " " << *this;
if (ackedStream) {
return sendAckSMHandler(*ackedStream, frame);
}
break;
}
case QuicWriteFrame::Type::WriteCryptoFrame: {
const WriteCryptoFrame& frame = *packetFrame.asWriteCryptoFrame();
auto cryptoStream = getCryptoStream(
*conn_->cryptoState,
protectionTypeToEncryptionLevel(outstandingProtectionType));
processCryptoStreamAck(*cryptoStream, frame.offset, frame.len);
break;
}
case QuicWriteFrame::Type::PingFrame:
conn_->pendingEvents.cancelPingTimeout = true;
break;
case QuicWriteFrame::Type::QuicSimpleFrame:
default:
// ignore other frames.
break;
}
return folly::unit;
};
for (auto& quicFrame : regularPacket.frames) {
switch (quicFrame.type()) {
case QuicFrame::Type::ReadAckFrame: {
VLOG(10) << "Client received ack frame in packet=" << packetNum << " "
<< *this;
ReadAckFrame& ackFrame = *quicFrame.asReadAckFrame();
if (ackFrame.frameType == FrameType::ACK_EXTENDED &&
!conn_->transportSettings.advertisedExtendedAckFeatures) {
return folly::makeUnexpected(QuicError(
TransportErrorCode::PROTOCOL_VIOLATION,
"Received unexpected ACK_EXTENDED frame"));
} else if (
ackFrame.frameType == FrameType::ACK_RECEIVE_TIMESTAMPS &&
!conn_->transportSettings
.maybeAckReceiveTimestampsConfigSentToPeer) {
return folly::makeUnexpected(QuicError(
TransportErrorCode::PROTOCOL_VIOLATION,
"Received unexpected ACK_RECEIVE_TIMESTAMPS frame"));
}
auto result = processAckFrame(
*conn_,
pnSpace,
ackFrame,
ackedPacketVisitor,
ackedFrameVisitor,
markPacketLoss,
udpPacket.timings.receiveTimePoint);
if (result.hasError()) {
return folly::makeUnexpected(result.error());
}
conn_->lastProcessedAckEvents.emplace_back(std::move(result.value()));
break;
}
case QuicFrame::Type::RstStreamFrame: {
RstStreamFrame& frame = *quicFrame.asRstStreamFrame();
VLOG(10) << "Client received reset stream=" << frame.streamId << " "
<< *this;
if (frame.reliableSize.hasValue()) {
// We're not yet supporting the handling of RESET_STREAM_AT frames
return folly::makeUnexpected(QuicError(
TransportErrorCode::PROTOCOL_VIOLATION,
"Reliable resets not supported"));
}
pktHasRetransmittableData = true;
auto streamResult = conn_->streamManager->getStream(frame.streamId);
if (streamResult.hasError()) {
return folly::makeUnexpected(streamResult.error());
}
auto& stream = streamResult.value();
if (!stream) {
break;
}
auto rstResult = receiveRstStreamSMHandler(*stream, frame);
if (rstResult.hasError()) {
return folly::makeUnexpected(rstResult.error());
}
break;
}
case QuicFrame::Type::ReadCryptoFrame: {
pktHasRetransmittableData = true;
pktHasCryptoData = true;
ReadCryptoFrame& cryptoFrame = *quicFrame.asReadCryptoFrame();
VLOG(10) << "Client received crypto data offset=" << cryptoFrame.offset
<< " len=" << cryptoFrame.data->computeChainDataLength()
<< " packetNum=" << packetNum << " " << *this;
auto appendResult = appendDataToReadBuffer(
*getCryptoStream(*conn_->cryptoState, encryptionLevel),
StreamBuffer(
std::move(cryptoFrame.data), cryptoFrame.offset, false));
if (appendResult.hasError()) {
return folly::makeUnexpected(appendResult.error());
}
break;
}
case QuicFrame::Type::ReadStreamFrame: {
ReadStreamFrame& frame = *quicFrame.asReadStreamFrame();
VLOG(10) << "Client received stream data for stream=" << frame.streamId
<< " offset=" << frame.offset
<< " len=" << frame.data->computeChainDataLength()
<< " fin=" << frame.fin << " packetNum=" << packetNum << " "
<< *this;
auto streamResult = conn_->streamManager->getStream(frame.streamId);
if (streamResult.hasError()) {
return folly::makeUnexpected(streamResult.error());
}
auto& stream = streamResult.value();
pktHasRetransmittableData = true;
if (!stream) {
VLOG(10) << "Could not find stream=" << frame.streamId << " "
<< *conn_;
break;
}
auto readResult =
receiveReadStreamFrameSMHandler(*stream, std::move(frame));
if (readResult.hasError()) {
return folly::makeUnexpected(readResult.error());
}
break;
}
case QuicFrame::Type::ReadNewTokenFrame: {
ReadNewTokenFrame& newTokenFrame = *quicFrame.asReadNewTokenFrame();
std::string tokenStr = newTokenFrame.token->to<std::string>();
VLOG(10) << "client received new token token="
<< folly::hexlify(tokenStr);
if (newTokenCallback_) {
newTokenCallback_(std::move(tokenStr));
}
break;
}
case QuicFrame::Type::MaxDataFrame: {
MaxDataFrame& connWindowUpdate = *quicFrame.asMaxDataFrame();
VLOG(10) << "Client received max data offset="
<< connWindowUpdate.maximumData << " " << *this;
pktHasRetransmittableData = true;
handleConnWindowUpdate(*conn_, connWindowUpdate, packetNum);
break;
}
case QuicFrame::Type::MaxStreamDataFrame: {
MaxStreamDataFrame& streamWindowUpdate =
*quicFrame.asMaxStreamDataFrame();
VLOG(10) << "Client received max stream data stream="
<< streamWindowUpdate.streamId
<< " offset=" << streamWindowUpdate.maximumData << " "
<< *this;
if (isReceivingStream(conn_->nodeType, streamWindowUpdate.streamId)) {
return folly::makeUnexpected(QuicError(
TransportErrorCode::STREAM_STATE_ERROR,
"Received MaxStreamDataFrame for receiving stream."));
}
pktHasRetransmittableData = true;
auto streamResult =
conn_->streamManager->getStream(streamWindowUpdate.streamId);
if (streamResult.hasError()) {
return folly::makeUnexpected(streamResult.error());
}
auto& stream = streamResult.value();
if (stream) {
handleStreamWindowUpdate(
*stream, streamWindowUpdate.maximumData, packetNum);
}
break;
}
case QuicFrame::Type::DataBlockedFrame: {
VLOG(10) << "Client received blocked " << *this;
pktHasRetransmittableData = true;
handleConnBlocked(*conn_);
break;
}
case QuicFrame::Type::StreamDataBlockedFrame: {
// peer wishes to send data, but is unable to due to stream-level flow
// control
StreamDataBlockedFrame& blocked = *quicFrame.asStreamDataBlockedFrame();
VLOG(10) << "Client received blocked stream=" << blocked.streamId << " "
<< *this;
pktHasRetransmittableData = true;
auto streamResult = conn_->streamManager->getStream(blocked.streamId);
if (streamResult.hasError()) {
return folly::makeUnexpected(streamResult.error());
}
auto& stream = streamResult.value();
if (stream) {
handleStreamBlocked(*stream);
}
break;
}
case QuicFrame::Type::StreamsBlockedFrame: {
// peer wishes to open a stream, but is unable to due to the maximum
// stream limit set by us
StreamsBlockedFrame& blocked = *quicFrame.asStreamsBlockedFrame();
VLOG(10) << "Client received stream blocked limit="
<< blocked.streamLimit << " " << *this;
// TODO implement handler for it
break;
}
case QuicFrame::Type::ConnectionCloseFrame: {
ConnectionCloseFrame& connFrame = *quicFrame.asConnectionCloseFrame();
auto errMsg = folly::to<std::string>(
"Client closed by peer reason=", connFrame.reasonPhrase);
VLOG(4) << errMsg << " " << *this;
// we want to deliver app callbacks with the peer supplied error,
// but send a NO_ERROR to the peer.
if (conn_->qLogger) {
conn_->qLogger->addTransportStateUpdate(getPeerClose(errMsg));
}
conn_->peerConnectionError =
QuicError(QuicErrorCode(connFrame.errorCode), std::move(errMsg));
// We don't return an error here, as receiving a close triggers the
// peer connection error path instead of the local error path.
return folly::unit;
}
case QuicFrame::Type::PingFrame:
// Ping isn't retransmittable. But we would like to ack them early.
// So, make Ping frames count towards ack policy
pktHasRetransmittableData = true;
conn_->pendingEvents.notifyPingReceived = true;
break;
case QuicFrame::Type::PaddingFrame:
break;
case QuicFrame::Type::QuicSimpleFrame: {
QuicSimpleFrame& simpleFrame = *quicFrame.asQuicSimpleFrame();
pktHasRetransmittableData = true;
auto updateResult = updateSimpleFrameOnPacketReceived(
*conn_,
simpleFrame,
longHeader ? longHeader->getDestinationConnId()
: shortHeader->getConnectionId(),
false);
if (updateResult.hasError()) {
return folly::makeUnexpected(updateResult.error());
}
break;
}
case QuicFrame::Type::DatagramFrame: {
DatagramFrame& frame = *quicFrame.asDatagramFrame();
VLOG(10) << "Client received datagram data: " << "len=" << frame.length
<< " " << *this;
// Datagram isn't retransmittable. But we would like to ack them early.
// So, make Datagram frames count towards ack policy
pktHasRetransmittableData = true;
handleDatagram(*conn_, frame, udpPacket.timings.receiveTimePoint);
break;
}
case QuicFrame::Type::ImmediateAckFrame: {
if (!conn_->transportSettings.minAckDelay.has_value()) {
// We do not accept IMMEDIATE_ACK frames. This is a protocol
// violation.
return folly::makeUnexpected(QuicError(
TransportErrorCode::PROTOCOL_VIOLATION,
"Received IMMEDIATE_ACK frame without announcing min_ack_delay"));
}
// Send an ACK from any packet number space.
if (conn_->ackStates.initialAckState) {
conn_->ackStates.initialAckState->needsToSendAckImmediately = true;
}
if (conn_->ackStates.handshakeAckState) {
conn_->ackStates.handshakeAckState->needsToSendAckImmediately = true;
}
conn_->ackStates.appDataAckState.needsToSendAckImmediately = true;
break;
}
default:
break;
}
}
auto handshakeLayer = clientConn_->clientHandshakeLayer;
if (handshakeLayer->getPhase() == ClientHandshake::Phase::Established &&
hasInitialOrHandshakeCiphers(*conn_)) {
handshakeConfirmed(*conn_);
}
maybeScheduleAckForCongestionFeedback(udpPacket, ackState);
maybeHandleIncomingKeyUpdate(*conn_);
// Try reading bytes off of crypto, and performing a handshake.
auto cryptoData = readDataFromCryptoStream(
*getCryptoStream(*conn_->cryptoState, encryptionLevel));
if (cryptoData) {
bool hadOneRttKey = conn_->oneRttWriteCipher != nullptr;
handshakeLayer->doHandshake(std::move(cryptoData), encryptionLevel);
bool oneRttKeyDerivationTriggered = false;
if (!hadOneRttKey && conn_->oneRttWriteCipher) {
oneRttKeyDerivationTriggered = true;
updatePacingOnKeyEstablished(*conn_);
}
if (conn_->oneRttWriteCipher && conn_->readCodec->getOneRttReadCipher()) {
clientConn_->zeroRttWriteCipher.reset();
clientConn_->zeroRttWriteHeaderCipher.reset();
}
if (!clientConn_->zeroRttRejected.has_value()) {
clientConn_->zeroRttRejected = handshakeLayer->getZeroRttRejected();
if (clientConn_->zeroRttRejected.has_value() &&
*clientConn_->zeroRttRejected) {
if (conn_->qLogger) {
conn_->qLogger->addTransportStateUpdate(kZeroRttRejected);
}
QUIC_STATS(conn_->statsCallback, onZeroRttRejected);
handshakeLayer->removePsk(hostname_);
if (!handshakeLayer->getCanResendZeroRtt().value_or(false)) {
return folly::makeUnexpected(QuicError(
TransportErrorCode::TRANSPORT_PARAMETER_ERROR,
"Zero-rtt attempted but the early parameters do not match the handshake parameters"));
}
} else if (clientConn_->zeroRttRejected.has_value()) {
if (conn_->qLogger) {
conn_->qLogger->addTransportStateUpdate(kZeroRttAccepted);
}
QUIC_STATS(conn_->statsCallback, onZeroRttAccepted);
conn_->usedZeroRtt = true;
}
}
// We should get transport parameters if we've derived 1-rtt keys and 0-rtt
// was rejected, or we have derived 1-rtt keys and 0-rtt was never
// attempted.
if (oneRttKeyDerivationTriggered) {
const auto& serverParams = handshakeLayer->getServerTransportParams();
if (!serverParams) {
return folly::makeUnexpected(QuicError(
TransportErrorCode::TRANSPORT_PARAMETER_ERROR,
"No server transport params"));
}
if ((clientConn_->zeroRttRejected.has_value() &&
*clientConn_->zeroRttRejected) ||
!clientConn_->zeroRttRejected.has_value()) {
auto originalPeerMaxOffset =
conn_->flowControlState.peerAdvertisedMaxOffset;
auto originalPeerInitialStreamOffsetBidiLocal =
conn_->flowControlState
.peerAdvertisedInitialMaxStreamOffsetBidiLocal;
auto originalPeerInitialStreamOffsetBidiRemote =
conn_->flowControlState
.peerAdvertisedInitialMaxStreamOffsetBidiRemote;
auto originalPeerInitialStreamOffsetUni =
conn_->flowControlState.peerAdvertisedInitialMaxStreamOffsetUni;
VLOG(10) << "Client negotiated transport params " << *this;
auto maxStreamsBidi = getIntegerParameter(
TransportParameterId::initial_max_streams_bidi,
serverParams->parameters);
auto maxStreamsUni = getIntegerParameter(
TransportParameterId::initial_max_streams_uni,
serverParams->parameters);
auto processResult = processServerInitialParams(
*clientConn_, serverParams.value(), packetNum);
if (processResult.hasError()) {
return folly::makeUnexpected(processResult.error());
}
cacheServerInitialParams(
*clientConn_,
conn_->flowControlState.peerAdvertisedMaxOffset,
conn_->flowControlState
.peerAdvertisedInitialMaxStreamOffsetBidiLocal,
conn_->flowControlState
.peerAdvertisedInitialMaxStreamOffsetBidiRemote,
conn_->flowControlState.peerAdvertisedInitialMaxStreamOffsetUni,
maxStreamsBidi.value_or(0),
maxStreamsUni.value_or(0),
conn_->peerAdvertisedKnobFrameSupport,
conn_->maybePeerAckReceiveTimestampsConfig.has_value(),
conn_->maybePeerAckReceiveTimestampsConfig
? conn_->maybePeerAckReceiveTimestampsConfig
->maxReceiveTimestampsPerAck
: 0,
conn_->maybePeerAckReceiveTimestampsConfig
? conn_->maybePeerAckReceiveTimestampsConfig
->receiveTimestampsExponent
: 3,
conn_->peerAdvertisedReliableStreamResetSupport,
conn_->peerAdvertisedExtendedAckFeatures);
if (clientConn_->zeroRttRejected.has_value() &&
*clientConn_->zeroRttRejected) {
// verify that the new flow control parameters are >= the original
// transport parameters that were use. This is the easy case. If the
// flow control decreases then we are just screwed and we need to have
// the app retry the connection. The other parameters can be updated.
// TODO: implement undo transport state on retry.
if (originalPeerMaxOffset >
conn_->flowControlState.peerAdvertisedMaxOffset ||
originalPeerInitialStreamOffsetBidiLocal >
conn_->flowControlState
.peerAdvertisedInitialMaxStreamOffsetBidiLocal ||
originalPeerInitialStreamOffsetBidiRemote >
conn_->flowControlState
.peerAdvertisedInitialMaxStreamOffsetBidiRemote ||
originalPeerInitialStreamOffsetUni >
conn_->flowControlState
.peerAdvertisedInitialMaxStreamOffsetUni) {
return folly::makeUnexpected(QuicError(
TransportErrorCode::TRANSPORT_PARAMETER_ERROR,
"Rejection of zero rtt parameters unsupported"));
}
}
}
updateNegotiatedAckFeatures(*conn_);
// TODO This sucks, but manually update the max packet size until we fix
// 0-rtt transport parameters.
if (conn_->transportSettings.canIgnorePathMTU &&
clientConn_->zeroRttRejected.has_value() &&
!*clientConn_->zeroRttRejected) {
auto updatedPacketSize = getIntegerParameter(
TransportParameterId::max_packet_size, serverParams->parameters);
updatedPacketSize = std::max<uint64_t>(
updatedPacketSize.value_or(kDefaultUDPSendPacketLen),
kDefaultUDPSendPacketLen);
updatedPacketSize =
std::min<uint64_t>(*updatedPacketSize, kDefaultMaxUDPPayload);
conn_->udpSendPacketLen = *updatedPacketSize;
}
// TODO this is another bandaid. Explicitly set the stateless reset token
// or else conns that use 0-RTT won't be able to parse stateless resets.
if (!clientConn_->statelessResetToken) {
clientConn_->statelessResetToken =
getStatelessResetTokenParameter(serverParams->parameters);
}
if (clientConn_->statelessResetToken) {
conn_->readCodec->setStatelessResetToken(
clientConn_->statelessResetToken.value());
auto& cryptoFactory = handshakeLayer->getCryptoFactory();
conn_->readCodec->setCryptoEqual(
cryptoFactory.getCryptoEqualFunction());
}
}
if (clientConn_->zeroRttRejected.has_value() &&
*clientConn_->zeroRttRejected) {
// TODO: Make sure the alpn is the same, if not then do a full undo of the
// state.
clientConn_->zeroRttWriteCipher.reset();
clientConn_->zeroRttWriteHeaderCipher.reset();
auto result = markZeroRttPacketsLost(*conn_, markPacketLoss);
if (result.hasError()) {
return result;
}
}
}
updateAckSendStateOnRecvPacket(
*conn_,
ackState,
distanceFromExpectedPacketNum,
pktHasRetransmittableData,
pktHasCryptoData);
if (encryptionLevel == EncryptionLevel::Handshake &&
conn_->initialWriteCipher) {
conn_->initialWriteCipher.reset();
conn_->initialHeaderCipher.reset();
conn_->readCodec->setInitialReadCipher(nullptr);
conn_->readCodec->setInitialHeaderCipher(nullptr);
implicitAckCryptoStream(*conn_, EncryptionLevel::Initial);
}
return folly::unit;
}
folly::Expected<folly::Unit, QuicError> QuicClientTransportLite::onReadData(
const folly::SocketAddress& peer,
ReceivedUdpPacket&& udpPacket) {
if (closeState_ == CloseState::CLOSED) {
// If we are closed, then we shouldn't process new network data.
QUIC_STATS(
statsCallback_, onPacketDropped, PacketDropReason::CLIENT_STATE_CLOSED);
if (conn_->qLogger) {
conn_->qLogger->addPacketDrop(0, kAlreadyClosed);
}
return folly::unit;
}
bool waitingForFirstPacket = !hasReceivedUdpPackets(*conn_);
auto res = processUdpPacket(peer, std::move(udpPacket));
if (res.hasError()) {
return res;
}
if (connSetupCallback_ && waitingForFirstPacket &&
hasReceivedUdpPackets(*conn_)) {
connSetupCallback_->onFirstPeerPacketProcessed();
}
if (!transportReadyNotified_ && hasWriteCipher()) {
transportReadyNotified_ = true;
connSetupCallback_->onTransportReady();
// This is a new connection. Update QUIC Stats
QUIC_STATS(statsCallback_, onNewConnection);
}
// Checking connSetupCallback_ because application will start to write data
// in onTransportReady, if the write fails, QuicSocket can be closed
// and connSetupCallback_ is set nullptr.
if (connSetupCallback_ && !replaySafeNotified_ && conn_->oneRttWriteCipher) {
replaySafeNotified_ = true;
// We don't need this any more. Also unset it so that we don't allow random
// middleboxes to shutdown our connection once we have crypto keys.
socket_->setErrMessageCallback(nullptr);
connSetupCallback_->onReplaySafe();
}
maybeSendTransportKnobs();
return folly::unit;
}
QuicSocketLite::WriteResult QuicClientTransportLite::writeBufMeta(
StreamId /* id */,
const BufferMeta& /* data */,
bool /* eof */,
ByteEventCallback* /* cb */) {
return folly::makeUnexpected(LocalErrorCode::INVALID_OPERATION);
}
QuicSocketLite::WriteResult
QuicClientTransportLite::setDSRPacketizationRequestSender(
StreamId /* id */,
std::unique_ptr<DSRPacketizationRequestSender> /* sender */) {
return folly::makeUnexpected(LocalErrorCode::INVALID_OPERATION);
}
folly::Expected<folly::Unit, QuicError> QuicClientTransportLite::writeData() {
QuicVersion version = conn_->version.value_or(*conn_->originalVersion);
const ConnectionId& srcConnId = *conn_->clientConnectionId;
const ConnectionId& destConnId = conn_->serverConnectionId.value_or(
*clientConn_->initialDestinationConnectionId);
if (closeState_ == CloseState::CLOSED) {
auto rtt = clientConn_->lossState.srtt == 0us
? clientConn_->transportSettings.initialRtt
: clientConn_->lossState.srtt;
if (clientConn_->lastCloseSentTime &&
Clock::now() - *clientConn_->lastCloseSentTime < rtt) {
return folly::unit;
}
clientConn_->lastCloseSentTime = Clock::now();
if (clientConn_->clientHandshakeLayer->getPhase() ==
ClientHandshake::Phase::Established &&
conn_->oneRttWriteCipher) {
CHECK(conn_->oneRttWriteHeaderCipher);
writeShortClose(
*socket_,
*conn_,
destConnId,
conn_->localConnectionError,
*conn_->oneRttWriteCipher,
*conn_->oneRttWriteHeaderCipher);
}
if (conn_->handshakeWriteCipher) {
CHECK(conn_->handshakeWriteHeaderCipher);
writeLongClose(
*socket_,
*conn_,
srcConnId,
destConnId,
LongHeader::Types::Handshake,
conn_->localConnectionError,
*conn_->handshakeWriteCipher,
*conn_->handshakeWriteHeaderCipher,
version);
}
if (conn_->initialWriteCipher) {
CHECK(conn_->initialHeaderCipher);
writeLongClose(
*socket_,
*conn_,
srcConnId,
destConnId,
LongHeader::Types::Initial,
conn_->localConnectionError,
*conn_->initialWriteCipher,
*conn_->initialHeaderCipher,
version);
}
return folly::unit;
}
uint64_t packetLimit =
(isConnectionPaced(*conn_)
? conn_->pacer->updateAndGetWriteBatchSize(Clock::now())
: conn_->transportSettings.writeConnectionDataPacketsLimit);
// At the end of this function, clear out any probe packets credit we didn't
// use.
SCOPE_EXIT {
conn_->pendingEvents.numProbePackets = {};
maybeInitiateKeyUpdate(*conn_);
};
if (conn_->initialWriteCipher) {
const std::string& token = clientConn_->retryToken.empty()
? clientConn_->newToken
: clientConn_->retryToken;
auto result =
handleInitialWriteDataCommon(srcConnId, destConnId, packetLimit, token);
if (result.hasError()) {
return folly::makeUnexpected(result.error());
}
packetLimit -= result->packetsWritten;
if (!packetLimit && !conn_->pendingEvents.anyProbePackets()) {
return folly::unit;
}
}
if (conn_->handshakeWriteCipher) {
auto result =
handleHandshakeWriteDataCommon(srcConnId, destConnId, packetLimit);
if (result.hasError()) {
return folly::makeUnexpected(result.error());
}
packetLimit -= result->packetsWritten;
if (!packetLimit && !conn_->pendingEvents.anyProbePackets()) {
return folly::unit;
}
}
if (clientConn_->zeroRttWriteCipher && !conn_->oneRttWriteCipher) {
CHECK(clientConn_->zeroRttWriteHeaderCipher);
auto result = writeZeroRttDataToSocket(
*socket_,
*conn_,
srcConnId /* src */,
destConnId /* dst */,
*clientConn_->zeroRttWriteCipher,
*clientConn_->zeroRttWriteHeaderCipher,
version,
packetLimit);
if (result.hasError()) {
return folly::makeUnexpected(result.error());
}
packetLimit -= *result;
}
if (!packetLimit && !conn_->pendingEvents.anyProbePackets()) {
return folly::unit;
}
if (conn_->oneRttWriteCipher) {
CHECK(clientConn_->oneRttWriteHeaderCipher);
auto result = writeQuicDataExceptCryptoStreamToSocket(
*socket_,
*conn_,
srcConnId,
destConnId,
*conn_->oneRttWriteCipher,
*conn_->oneRttWriteHeaderCipher,
version,
packetLimit);
if (result.hasError()) {
return folly::makeUnexpected(result.error());
}
}
return folly::unit;
}
folly::Expected<folly::Unit, QuicError>
QuicClientTransportLite::startCryptoHandshake() {
auto self = this->shared_from_this();
setIdleTimer();
// We need to update the flow control settings every time we start a crypto
// handshake. This is so that we can reset the flow control settings when
// we go through version negotiation as well.
updateFlowControlStateWithSettings(
conn_->flowControlState, conn_->transportSettings);
auto handshakeLayer = clientConn_->clientHandshakeLayer;
auto& cryptoFactory = handshakeLayer->getCryptoFactory();
auto version = conn_->originalVersion.value();
conn_->initialWriteCipher = cryptoFactory.getClientInitialCipher(
*clientConn_->initialDestinationConnectionId, version);
conn_->readCodec->setInitialReadCipher(cryptoFactory.getServerInitialCipher(
*clientConn_->initialDestinationConnectionId, version));
conn_->readCodec->setInitialHeaderCipher(
cryptoFactory.makeServerInitialHeaderCipher(
*clientConn_->initialDestinationConnectionId, version));
conn_->initialHeaderCipher = cryptoFactory.makeClientInitialHeaderCipher(
*clientConn_->initialDestinationConnectionId, version);
customTransportParameters_ = getSupportedExtTransportParams(*conn_);
auto paramsExtension = std::make_shared<ClientTransportParametersExtension>(
conn_->originalVersion.value(),
conn_->transportSettings.advertisedInitialConnectionFlowControlWindow,
conn_->transportSettings
.advertisedInitialBidiLocalStreamFlowControlWindow,
conn_->transportSettings
.advertisedInitialBidiRemoteStreamFlowControlWindow,
conn_->transportSettings.advertisedInitialUniStreamFlowControlWindow,
conn_->transportSettings.advertisedInitialMaxStreamsBidi,
conn_->transportSettings.advertisedInitialMaxStreamsUni,
conn_->transportSettings.idleTimeout,
conn_->transportSettings.ackDelayExponent,
conn_->transportSettings.maxRecvPacketSize,
conn_->transportSettings.selfActiveConnectionIdLimit,
conn_->clientConnectionId.value(),
customTransportParameters_);
conn_->transportParametersEncoded = true;
if (!conn_->transportSettings.flowPriming.empty() &&
conn_->peerAddress.isInitialized()) {
auto flowPrimingBuf =
BufHelpers::copyBuffer(conn_->transportSettings.flowPriming);
iovec vec[kNumIovecBufferChains];
size_t iovec_len = fillIovec(flowPrimingBuf, vec);
socket_->write(conn_->peerAddress, vec, iovec_len);
}
handshakeLayer->connect(hostname_, std::move(paramsExtension));
auto writeResult = writeSocketData();
if (writeResult.hasError()) {
return folly::makeUnexpected(writeResult.error());
}
if (!transportReadyNotified_ && clientConn_->zeroRttWriteCipher) {
transportReadyNotified_ = true;
runOnEvbAsync([](auto self) {
auto clientPtr = dynamic_cast<QuicClientTransportLite*>(self.get());
if (clientPtr->connSetupCallback_) {
clientPtr->connSetupCallback_->onTransportReady();
}
});
}
return folly::unit;
}
bool QuicClientTransportLite::hasWriteCipher() const {
return clientConn_->oneRttWriteCipher || clientConn_->zeroRttWriteCipher;
}
bool QuicClientTransportLite::hasZeroRttWriteCipher() const {
return clientConn_->zeroRttWriteCipher != nullptr;
}
std::shared_ptr<QuicTransportBaseLite> QuicClientTransportLite::sharedGuard() {
return shared_from_this();
}
bool QuicClientTransportLite::isTLSResumed() const {
return clientConn_->clientHandshakeLayer->isTLSResumed();
}
void QuicClientTransportLite::errMessage(
[[maybe_unused]] const cmsghdr& cmsg) noexcept {
#ifdef FOLLY_HAVE_MSG_ERRQUEUE
if ((cmsg.cmsg_level == SOL_IP && cmsg.cmsg_type == IP_RECVERR) ||
(cmsg.cmsg_level == SOL_IPV6 && cmsg.cmsg_type == IPV6_RECVERR)) {
// Time to make some assumptions. We assume the first socket == IPv6, if it
// exists, and the second socket is IPv4. Then we basically do the same
// thing we would have done if we'd gotten a write error on that socket.
// If both sockets are not functional we close the connection.
auto& happyEyeballsState = clientConn_->happyEyeballsState;
if (!happyEyeballsState.finished) {
if (cmsg.cmsg_level == SOL_IPV6 &&
happyEyeballsState.shouldWriteToFirstSocket) {
happyEyeballsState.shouldWriteToFirstSocket = false;
socket_->pauseRead();
if (happyEyeballsState.connAttemptDelayTimeout &&
isTimeoutScheduled(happyEyeballsState.connAttemptDelayTimeout)) {
happyEyeballsState.connAttemptDelayTimeout->timeoutExpired();
cancelTimeout(happyEyeballsState.connAttemptDelayTimeout);
}
} else if (
cmsg.cmsg_level == SOL_IP &&
happyEyeballsState.shouldWriteToSecondSocket) {
happyEyeballsState.shouldWriteToSecondSocket = false;
happyEyeballsState.secondSocket->pauseRead();
}
}
const struct sock_extended_err* serr =
reinterpret_cast<const struct sock_extended_err*>(CMSG_DATA(&cmsg));
auto errStr = folly::errnoStr(serr->ee_errno);
if (!happyEyeballsState.shouldWriteToFirstSocket &&
!happyEyeballsState.shouldWriteToSecondSocket) {
runOnEvbAsync([errString = std::move(errStr)](auto self) mutable {
auto quicError = QuicError(
QuicErrorCode(LocalErrorCode::CONNECT_FAILED),
std::move(errString));
auto clientPtr = dynamic_cast<QuicClientTransportLite*>(self.get());
clientPtr->closeImpl(std::move(quicError), false, false);
});
}
}
#endif
}
void QuicClientTransportLite::onReadError(
const folly::AsyncSocketException& ex) noexcept {
if (closeState_ == CloseState::OPEN) {
// closeNow will skip draining the socket. onReadError doesn't gets
// triggered by retriable errors. If we are here, there is no point of
// draining the socket.
runOnEvbAsync([ex](auto self) {
auto clientPtr = dynamic_cast<QuicClientTransportLite*>(self.get());
clientPtr->closeNow(QuicError(
QuicErrorCode(LocalErrorCode::CONNECTION_ABANDONED),
std::string(ex.what())));
});
}
}
void QuicClientTransportLite::getReadBuffer(
void** /* buf */,
size_t* /* len */) noexcept {
folly::terminate_with<std::runtime_error>("getReadBuffer unsupported");
}
void QuicClientTransportLite::onDataAvailable(
const folly::SocketAddress& /* server */,
size_t /* len */,
bool /* truncated */,
OnDataAvailableParams /* params */) noexcept {
folly::terminate_with<std::runtime_error>("onDataAvailable unsupported");
}
bool QuicClientTransportLite::shouldOnlyNotify() {
return true;
}
void QuicClientTransportLite::recvMsg(
QuicAsyncUDPSocket& sock,
uint64_t readBufferSize,
int numPackets,
NetworkData& networkData,
Optional<folly::SocketAddress>& server,
size_t& totalData) {
for (int packetNum = 0; packetNum < numPackets; ++packetNum) {
// We create 1 buffer per packet so that it is not shared, this enables
// us to decrypt in place. If the fizz decrypt api could decrypt in-place
// even if shared, then we could allocate one giant IOBuf here.
Buf readBuffer = BufHelpers::createCombined(readBufferSize);
struct iovec vec;
vec.iov_base = readBuffer->writableData();
vec.iov_len = readBufferSize;
sockaddr* rawAddr{nullptr};
struct sockaddr_storage addrStorage {};
if (!server) {
rawAddr = reinterpret_cast<sockaddr*>(&addrStorage);
rawAddr->sa_family = sock.getLocalAddressFamily();
}
int flags = 0;
QuicAsyncUDPSocket::ReadCallback::OnDataAvailableParams params;
struct msghdr msg {};
msg.msg_name = rawAddr;
msg.msg_namelen = rawAddr ? kAddrLen : 0;
msg.msg_iov = &vec;
msg.msg_iovlen = 1;
#ifdef FOLLY_HAVE_MSG_ERRQUEUE
bool useGRO = sock.getGRO() > 0;
bool useTs = sock.getTimestamping() > 0;
bool recvTos = sock.getRecvTos();
bool checkCmsgs = useGRO || useTs || recvTos;
char control
[QuicAsyncUDPSocket::ReadCallback::OnDataAvailableParams::kCmsgSpace] =
{};
if (checkCmsgs) {
msg.msg_control = control;
msg.msg_controllen = sizeof(control);
// we need to consider MSG_TRUNC too
flags |= MSG_TRUNC;
}
#endif
ssize_t ret = sock.recvmsg(&msg, flags);
if (ret < 0) {
if (errno == EAGAIN || errno == EWOULDBLOCK) {
// If we got a retriable error, let us continue.
if (conn_->loopDetectorCallback) {
conn_->readDebugState.noReadReason = NoReadReason::RETRIABLE_ERROR;
}
break;
}
// If we got a non-retriable error, we might have received
// a packet that we could process, however let's just quit early.
sock.pauseRead();
if (conn_->loopDetectorCallback) {
conn_->readDebugState.noReadReason = NoReadReason::NONRETRIABLE_ERROR;
}
return onReadError(folly::AsyncSocketException(
folly::AsyncSocketException::INTERNAL_ERROR,
"::recvmsg() failed",
errno));
} else if (ret == 0) {
break;
}
#ifdef FOLLY_HAVE_MSG_ERRQUEUE
if (checkCmsgs) {
QuicAsyncUDPSocket::fromMsg(params, msg);
// truncated
if ((size_t)ret > readBufferSize) {
ret = readBufferSize;
if (params.gro > 0) {
ret = ret - ret % params.gro;
}
}
}
#endif
ReceivedUdpPacket::Timings timings;
if (params.ts.has_value()) {
timings.maybeSoftwareTs =
QuicAsyncUDPSocket::convertToSocketTimestampExt(*params.ts);
}
size_t bytesRead = size_t(ret);
totalData += bytesRead;
if (!server) {
server = folly::SocketAddress();
server->setFromSockaddr(rawAddr, kAddrLen);
}
VLOG(10) << "Got data from socket peer=" << *server << " len=" << bytesRead;
readBuffer->append(bytesRead);
if (params.gro > 0) {
size_t len = bytesRead;
size_t remaining = len;
size_t offset = 0;
size_t totalNumPackets = networkData.getPackets().size() +
((len + params.gro - 1) / params.gro);
networkData.reserve(totalNumPackets);
while (remaining) {
if (static_cast<int>(remaining) > params.gro) {
auto tmp = readBuffer->cloneOne();
// start at offset
tmp->trimStart(offset);
// the actual len is len - offset now
// leave gro bytes
tmp->trimEnd(len - offset - params.gro);
DCHECK_EQ(tmp->length(), params.gro);
offset += params.gro;
remaining -= params.gro;
networkData.addPacket(
ReceivedUdpPacket(std::move(tmp), timings, params.tos));
} else {
// do not clone the last packet
// start at offset, use all the remaining data
readBuffer->trimStart(offset);
DCHECK_EQ(readBuffer->length(), remaining);
remaining = 0;
networkData.addPacket(
ReceivedUdpPacket(std::move(readBuffer), timings, params.tos));
}
}
} else {
networkData.addPacket(
ReceivedUdpPacket(std::move(readBuffer), timings, params.tos));
}
maybeQlogDatagram(bytesRead);
}
trackDatagramsReceived(
networkData.getPackets().size(), networkData.getTotalData());
}
void QuicClientTransportLite::recvFrom(
QuicAsyncUDPSocket& sock,
uint64_t readBufferSize,
int numPackets,
NetworkData& networkData,
Optional<folly::SocketAddress>& server,
size_t& totalData) {
for (int packetNum = 0; packetNum < numPackets; ++packetNum) {
// We create 1 buffer per packet so that it is not shared, this enables
// us to decrypt in place. If the fizz decrypt api could decrypt in-place
// even if shared, then we could allocate one giant IOBuf here.
Buf readBuffer = BufHelpers::createCombined(readBufferSize);
sockaddr* rawAddr{nullptr};
struct sockaddr_storage addrStorage {};
if (!server) {
rawAddr = reinterpret_cast<sockaddr*>(&addrStorage);
rawAddr->sa_family = sock.getLocalAddressFamily();
}
ssize_t ret =
sock.recvfrom(readBuffer->writableData(), readBufferSize, &addrStorage);
if (ret < 0) {
if (errno == EAGAIN || errno == EWOULDBLOCK) {
// If we got a retriable error, let us continue.
if (conn_->loopDetectorCallback) {
conn_->readDebugState.noReadReason = NoReadReason::RETRIABLE_ERROR;
}
break;
}
// If we got a non-retriable error, we might have received
// a packet that we could process, however let's just quit early.
sock.pauseRead();
if (conn_->loopDetectorCallback) {
conn_->readDebugState.noReadReason = NoReadReason::NONRETRIABLE_ERROR;
}
return onReadError(folly::AsyncSocketException(
folly::AsyncSocketException::INTERNAL_ERROR,
"::recvmsg() failed",
errno));
} else if (ret == 0) {
break;
}
size_t bytesRead = size_t(ret);
totalData += bytesRead;
if (!server) {
server = folly::SocketAddress();
server->setFromSockaddr(rawAddr, kAddrLen);
}
VLOG(10) << "Got data from socket peer=" << *server << " len=" << bytesRead;
readBuffer->append(bytesRead);
networkData.addPacket(ReceivedUdpPacket(std::move(readBuffer)));
}
trackDatagramsReceived(
networkData.getPackets().size(), networkData.getTotalData());
}
void QuicClientTransportLite::recvMmsg(
QuicAsyncUDPSocket& sock,
uint64_t readBufferSize,
uint16_t numPackets,
NetworkData& networkData,
Optional<folly::SocketAddress>& server,
size_t& totalData) {
auto& msgs = recvmmsgStorage_.msgs;
int flags = 0;
#ifdef FOLLY_HAVE_MSG_ERRQUEUE
bool useGRO = sock.getGRO() > 0;
bool useTs = sock.getTimestamping() > 0;
bool recvTos = sock.getRecvTos();
bool checkCmsgs = useGRO || useTs || recvTos;
std::vector<std::array<
char,
QuicAsyncUDPSocket::ReadCallback::OnDataAvailableParams::kCmsgSpace>>
controlVec(checkCmsgs ? numPackets : 0);
// we need to consider MSG_TRUNC too
if (useGRO) {
flags |= MSG_TRUNC;
}
#endif
for (uint16_t i = 0; i < numPackets; ++i) {
auto& addr = recvmmsgStorage_.impl_[i].addr;
auto& readBuffer = recvmmsgStorage_.impl_[i].readBuffer;
auto& iovec = recvmmsgStorage_.impl_[i].iovec;
struct msghdr* msg = &msgs[i].msg_hdr;
if (!readBuffer) {
readBuffer = BufHelpers::createCombined(readBufferSize);
iovec.iov_base = readBuffer->writableData();
iovec.iov_len = readBufferSize;
msg->msg_iov = &iovec;
msg->msg_iovlen = 1;
}
CHECK(readBuffer != nullptr);
auto* rawAddr = reinterpret_cast<sockaddr*>(&addr);
rawAddr->sa_family = sock.address().getFamily();
msg->msg_name = rawAddr;
msg->msg_namelen = kAddrLen;
#ifdef FOLLY_HAVE_MSG_ERRQUEUE
if (checkCmsgs) {
::memset(controlVec[i].data(), 0, controlVec[i].size());
msg->msg_control = controlVec[i].data();
msg->msg_controllen = controlVec[i].size();
}
#endif
}
int numMsgsRecvd = sock.recvmmsg(msgs.data(), numPackets, flags, nullptr);
if (numMsgsRecvd < 0) {
if (errno == EAGAIN || errno == EWOULDBLOCK) {
// Exit, socket will notify us again when socket is readable.
if (conn_->loopDetectorCallback) {
conn_->readDebugState.noReadReason = NoReadReason::RETRIABLE_ERROR;
}
return;
}
// If we got a non-retriable error, we might have received
// a packet that we could process, however let's just quit early.
sock.pauseRead();
if (conn_->loopDetectorCallback) {
conn_->readDebugState.noReadReason = NoReadReason::NONRETRIABLE_ERROR;
}
return onReadError(folly::AsyncSocketException(
folly::AsyncSocketException::INTERNAL_ERROR,
"::recvmmsg() failed",
errno));
}
CHECK_LE(numMsgsRecvd, numPackets);
for (uint16_t i = 0; i < static_cast<uint16_t>(numMsgsRecvd); ++i) {
auto& addr = recvmmsgStorage_.impl_[i].addr;
auto& readBuffer = recvmmsgStorage_.impl_[i].readBuffer;
auto& msg = msgs[i];
size_t bytesRead = msg.msg_len;
if (bytesRead == 0) {
// Empty datagram, this is probably garbage matching our tuple, we
// should ignore such datagrams.
continue;
}
QuicAsyncUDPSocket::ReadCallback::OnDataAvailableParams params;
#ifdef FOLLY_HAVE_MSG_ERRQUEUE
if (checkCmsgs) {
QuicAsyncUDPSocket::fromMsg(params, msg.msg_hdr);
// truncated
if (bytesRead > readBufferSize) {
bytesRead = readBufferSize;
if (params.gro > 0) {
bytesRead = bytesRead - bytesRead % params.gro;
}
}
}
#endif
totalData += bytesRead;
if (!server) {
server.emplace(folly::SocketAddress());
auto* rawAddr = reinterpret_cast<sockaddr*>(&addr);
server->setFromSockaddr(rawAddr, kAddrLen);
}
ReceivedUdpPacket::Timings timings;
if (params.ts.has_value()) {
timings.maybeSoftwareTs =
QuicAsyncUDPSocket::convertToSocketTimestampExt(*params.ts);
}
VLOG(10) << "Got data from socket peer=" << *server << " len=" << bytesRead;
readBuffer->append(bytesRead);
if (params.gro > 0) {
size_t len = bytesRead;
size_t remaining = len;
size_t offset = 0;
size_t totalNumPackets = networkData.getPackets().size() +
((len + params.gro - 1) / params.gro);
networkData.reserve(totalNumPackets);
while (remaining) {
if (static_cast<int>(remaining) > params.gro) {
auto tmp = readBuffer->cloneOne();
// start at offset
tmp->trimStart(offset);
// the actual len is len - offset now
// leave gro bytes
tmp->trimEnd(len - offset - params.gro);
DCHECK_EQ(tmp->length(), params.gro);
offset += params.gro;
remaining -= params.gro;
networkData.addPacket(
ReceivedUdpPacket(std::move(tmp), timings, params.tos));
} else {
// do not clone the last packet
// start at offset, use all the remaining data
readBuffer->trimStart(offset);
DCHECK_EQ(readBuffer->length(), remaining);
remaining = 0;
networkData.addPacket(
ReceivedUdpPacket(std::move(readBuffer), timings, params.tos));
}
}
} else {
networkData.addPacket(
ReceivedUdpPacket(std::move(readBuffer), timings, params.tos));
}
maybeQlogDatagram(bytesRead);
}
trackDatagramsReceived(
networkData.getPackets().size(), networkData.getTotalData());
}
void QuicClientTransportLite::processPackets(
NetworkData&& networkData,
const Optional<folly::SocketAddress>& server) {
if (networkData.getPackets().empty()) {
// recvMmsg and recvMsg might have already set the reason and counter
if (conn_->loopDetectorCallback) {
if (conn_->readDebugState.noReadReason == NoReadReason::READ_OK) {
conn_->readDebugState.noReadReason = NoReadReason::EMPTY_DATA;
}
if (conn_->readDebugState.noReadReason != NoReadReason::READ_OK) {
conn_->loopDetectorCallback->onSuspiciousReadLoops(
++conn_->readDebugState.loopCount,
conn_->readDebugState.noReadReason);
}
}
return;
}
DCHECK(server.has_value());
// TODO: we can get better receive time accuracy than this, with
// SO_TIMESTAMP or SIOCGSTAMP.
auto packetReceiveTime = Clock::now();
networkData.setReceiveTimePoint(packetReceiveTime);
onNetworkData(*server, std::move(networkData));
}
void QuicClientTransportLite::readWithRecvmsgSinglePacketLoop(
QuicAsyncUDPSocket& sock,
uint64_t readBufferSize) {
size_t totalData = 0;
Optional<folly::SocketAddress> server;
for (size_t i = 0; i < conn_->transportSettings.maxRecvBatchSize; i++) {
auto networkDataSinglePacket = NetworkData();
networkDataSinglePacket.reserve(1);
recvMsg(
sock,
readBufferSize,
1 /* numPackets */,
networkDataSinglePacket,
server,
totalData);
if (!socket_) {
// Socket has been closed.
return;
}
if (networkDataSinglePacket.getPackets().size() == 0) {
break;
}
processPackets(std::move(networkDataSinglePacket), server);
if (!socket_) {
// Socket has been closed.
return;
}
}
// Call callbacks/updates manually because processPackets()/onNetworkData()
// will not schedule it when transportSettings.networkDataPerSocketRead is on.
processCallbacksAfterNetworkData();
checkForClosedStream();
updateReadLooper();
updateWriteLooper(true);
}
void QuicClientTransportLite::onNotifyDataAvailable(
QuicAsyncUDPSocket& sock) noexcept {
auto self = this->shared_from_this();
CHECK(conn_) << "trying to receive packets without a connection";
auto readBufferSize =
conn_->transportSettings.maxRecvPacketSize * numGROBuffers_;
const size_t readAllocSize =
conn_->transportSettings.readCoalescingSize > kDefaultUDPSendPacketLen
? conn_->transportSettings.readCoalescingSize
: readBufferSize;
readWithRecvmsgSinglePacketLoop(sock, readAllocSize);
}
void QuicClientTransportLite::
happyEyeballsConnAttemptDelayTimeoutExpired() noexcept {
// Declare 0-RTT data as lost so that they will be retransmitted over the
// second socket.
happyEyeballsStartSecondSocket(clientConn_->happyEyeballsState);
// If this gets called from the write path then we haven't added the packets
// to the outstanding packet list yet.
runOnEvbAsync([&](auto) {
auto result = markZeroRttPacketsLost(*conn_, markPacketLoss);
LOG_IF(ERROR, result.hasError()) << "Failed to mark 0-RTT packets as lost.";
});
}
void QuicClientTransportLite::start(
ConnectionSetupCallback* connSetupCb,
ConnectionCallback* connCb) {
if (happyEyeballsEnabled_) {
// TODO Supply v4 delay amount from somewhere when we want to tune this
startHappyEyeballs(
*clientConn_,
evb_.get(),
happyEyeballsCachedFamily_,
happyEyeballsConnAttemptDelayTimeout_,
happyEyeballsCachedFamily_ == AF_UNSPEC
? kHappyEyeballsV4Delay
: kHappyEyeballsConnAttemptDelayWithCache,
this,
this,
socketOptions_);
}
CHECK(conn_->peerAddress.isInitialized());
if (conn_->qLogger) {
conn_->qLogger->addTransportStateUpdate(kStart);
}
setConnectionSetupCallback(connSetupCb);
setConnectionCallback(connCb);
clientConn_->pendingOneRttData.reserve(
conn_->transportSettings.maxPacketsToBuffer);
try {
happyEyeballsSetUpSocket(
*socket_,
conn_->localAddress,
conn_->peerAddress,
conn_->transportSettings,
conn_->socketTos.value,
this,
this,
socketOptions_);
// adjust the GRO buffers
adjustGROBuffers();
auto handshakeResult = startCryptoHandshake();
if (handshakeResult.hasError()) {
runOnEvbAsync([error = handshakeResult.error()](auto self) {
auto clientPtr = dynamic_cast<QuicClientTransportLite*>(self.get());
clientPtr->closeImpl(error);
});
}
} catch (const QuicTransportException& ex) {
runOnEvbAsync([ex](auto self) {
auto clientPtr = dynamic_cast<QuicClientTransportLite*>(self.get());
clientPtr->closeImpl(
QuicError(QuicErrorCode(ex.errorCode()), std::string(ex.what())));
});
} catch (const QuicInternalException& ex) {
runOnEvbAsync([ex](auto self) {
auto clientPtr = dynamic_cast<QuicClientTransportLite*>(self.get());
clientPtr->closeImpl(
QuicError(QuicErrorCode(ex.errorCode()), std::string(ex.what())));
});
} catch (const std::exception& ex) {
LOG(ERROR) << "Connect failed " << ex.what();
runOnEvbAsync([ex](auto self) {
auto clientPtr = dynamic_cast<QuicClientTransportLite*>(self.get());
clientPtr->closeImpl(QuicError(
QuicErrorCode(TransportErrorCode::INTERNAL_ERROR),
std::string(ex.what())));
});
}
}
void QuicClientTransportLite::addNewPeerAddress(
folly::SocketAddress peerAddress) {
CHECK(peerAddress.isInitialized());
if (happyEyeballsEnabled_) {
conn_->udpSendPacketLen = std::min(
conn_->udpSendPacketLen,
(peerAddress.getFamily() == AF_INET6 ? kDefaultV6UDPSendPacketLen
: kDefaultV4UDPSendPacketLen));
happyEyeballsAddPeerAddress(*clientConn_, peerAddress);
return;
}
conn_->udpSendPacketLen = peerAddress.getFamily() == AF_INET6
? kDefaultV6UDPSendPacketLen
: kDefaultV4UDPSendPacketLen;
conn_->originalPeerAddress = peerAddress;
conn_->peerAddress = std::move(peerAddress);
}
void QuicClientTransportLite::setLocalAddress(
folly::SocketAddress localAddress) {
CHECK(localAddress.isInitialized());
conn_->localAddress = std::move(localAddress);
}
void QuicClientTransportLite::setHappyEyeballsEnabled(
bool happyEyeballsEnabled) {
happyEyeballsEnabled_ = happyEyeballsEnabled;
}
void QuicClientTransportLite::setHappyEyeballsCachedFamily(
sa_family_t cachedFamily) {
happyEyeballsCachedFamily_ = cachedFamily;
}
void QuicClientTransportLite::addNewSocket(
std::unique_ptr<QuicAsyncUDPSocket> socket) {
happyEyeballsAddSocket(*clientConn_, std::move(socket));
}
void QuicClientTransportLite::setHostname(const std::string& hostname) {
hostname_ = hostname;
}
void QuicClientTransportLite::setSelfOwning() {
selfOwning_ = shared_from_this();
}
void QuicClientTransportLite::adjustGROBuffers() {
if (socket_ && conn_) {
if (conn_->transportSettings.numGROBuffers_ > kDefaultNumGROBuffers) {
socket_->setGRO(true);
auto ret = socket_->getGRO();
if (ret > 0) {
numGROBuffers_ =
(conn_->transportSettings.numGROBuffers_ < kMaxNumGROBuffers)
? conn_->transportSettings.numGROBuffers_
: kMaxNumGROBuffers;
}
}
}
}
void QuicClientTransportLite::closeTransport() {
cancelTimeout(&happyEyeballsConnAttemptDelayTimeout_);
}
void QuicClientTransportLite::unbindConnection() {
selfOwning_ = nullptr;
}
void QuicClientTransportLite::setSupportedVersions(
const std::vector<QuicVersion>& versions) {
auto version = versions.at(0);
conn_->originalVersion = version;
auto params = conn_->readCodec->getCodecParameters();
params.version = conn_->originalVersion.value();
conn_->readCodec->setCodecParameters(params);
}
void QuicClientTransportLite::onNetworkSwitch(
std::unique_ptr<QuicAsyncUDPSocket> newSock) {
if (!conn_->oneRttWriteCipher) {
return;
}
if (socket_ && newSock) {
auto sock = std::move(socket_);
socket_ = nullptr;
sock->setErrMessageCallback(nullptr);
sock->pauseRead();
sock->close();
socket_ = std::move(newSock);
socket_->setAdditionalCmsgsFunc(
[&]() { return getAdditionalCmsgsForAsyncUDPSocket(); });
happyEyeballsSetUpSocket(
*socket_,
conn_->localAddress,
conn_->peerAddress,
conn_->transportSettings,
conn_->socketTos.value,
this,
this,
socketOptions_);
if (conn_->qLogger) {
conn_->qLogger->addConnectionMigrationUpdate(true);
}
// adjust the GRO buffers
adjustGROBuffers();
}
}
void QuicClientTransportLite::setTransportStatsCallback(
std::shared_ptr<QuicTransportStatsCallback> statsCallback) noexcept {
CHECK(conn_);
statsCallback_ = std::move(statsCallback);
if (statsCallback_) {
conn_->statsCallback = statsCallback_.get();
conn_->readCodec->setConnectionStatsCallback(statsCallback_.get());
} else {
conn_->statsCallback = nullptr;
}
}
void QuicClientTransportLite::maybeQlogDatagram(size_t len) {
if (conn_->qLogger) {
conn_->qLogger->addDatagramReceived(len);
}
}
void QuicClientTransportLite::trackDatagramsReceived(
uint32_t totalPackets,
uint32_t totalPacketLen) {
QUIC_STATS(statsCallback_, onPacketsReceived, totalPackets);
QUIC_STATS(statsCallback_, onRead, totalPacketLen);
}
void QuicClientTransportLite::maybeSendTransportKnobs() {
if (!transportKnobsSent_ && hasWriteCipher()) {
for (const auto& knob : conn_->transportSettings.knobs) {
auto res =
setKnob(knob.space, knob.id, BufHelpers::copyBuffer(knob.blob));
if (res.hasError()) {
if (res.error() != LocalErrorCode::KNOB_FRAME_UNSUPPORTED) {
LOG(ERROR) << "Unexpected error while sending knob frames";
}
// No point in keep trying if transport does not support knob frame
break;
}
}
transportKnobsSent_ = true;
}
}
Optional<std::vector<TransportParameter>>
QuicClientTransportLite::getPeerTransportParams() const {
if (clientConn_ && clientConn_->clientHandshakeLayer) {
auto maybeParams =
clientConn_->clientHandshakeLayer->getServerTransportParams();
if (maybeParams) {
return maybeParams->parameters;
}
}
return none;
}
void QuicClientTransportLite::setCongestionControl(CongestionControlType type) {
if (!conn_->congestionControllerFactory) {
// If you are hitting this, update your application to call
// setCongestionControllerFactory() on the transport and share one factory
// for all transports.
conn_->congestionControllerFactory =
std::make_shared<DefaultCongestionControllerFactory>();
LOG(WARNING)
<< "A congestion controller factory is not set. Using a default per-transport instance.";
}
QuicTransportBaseLite::setCongestionControl(type);
}
void QuicClientTransportLite::RecvmmsgStorage::resize(size_t numPackets) {
if (msgs.size() != numPackets) {
msgs.resize(numPackets);
impl_.resize(numPackets);
}
}
uint64_t QuicClientTransportLite::getNumAckFramesSent() const {
return conn_->numAckFramesSent;
}
uint64_t QuicClientTransportLite::getNumFlowControlFramesSent() const {
return conn_->numWindowUpdateFramesSent;
}
uint64_t QuicClientTransportLite::getNumPingFramesSent() const {
return conn_->numPingFramesSent;
}
uint64_t QuicClientTransportLite::getEagainOrEwouldblockCount() const {
return conn_->eagainOrEwouldblockCount;
}
uint64_t QuicClientTransportLite::getEnobufsCount() const {
return conn_->enobufsCount;
}
uint64_t QuicClientTransportLite::getPtoCount() const {
return conn_->lossState.ptoCount;
}
uint64_t QuicClientTransportLite::getPacketsSentCount() const {
return conn_->lossState.totalPacketsSent;
}
bool QuicClientTransportLite::canRead() const {
return socket_ && !socket_->isReadPaused();
}
std::optional<int32_t> QuicClientTransportLite::getHandshakeStatus() const {
return clientConn_->clientHandshakeLayer->getHandshakeStatus();
}
size_t QuicClientTransportLite::getInitialReadBufferSize() const {
return clientConn_->clientHandshakeLayer->getInitialReadBufferSize();
}
size_t QuicClientTransportLite::getHandshakeReadBufferSize() const {
return clientConn_->clientHandshakeLayer->getHandshakeReadBufferSize();
}
size_t QuicClientTransportLite::getAppDataReadBufferSize() const {
return clientConn_->clientHandshakeLayer->getAppDataReadBufferSize();
}
EncryptionLevel QuicClientTransportLite::getReadEncryptionLevel() const {
return clientConn_->clientHandshakeLayer->getReadRecordLayerEncryptionLevel();
}
bool QuicClientTransportLite::waitingForHandshakeData() const {
return clientConn_->clientHandshakeLayer->waitingForData();
}
const std::shared_ptr<const folly::AsyncTransportCertificate>
QuicClientTransportLite::getPeerCertificate() const {
const auto clientHandshakeLayer = clientConn_->clientHandshakeLayer;
if (clientHandshakeLayer) {
return clientHandshakeLayer->getPeerCertificate();
}
return nullptr;
}
} // namespace quic