1
0
mirror of https://github.com/postgres/postgres.git synced 2025-05-05 09:19:17 +03:00
Tom Lane f8320cc72d Fix misbehavior of EvalPlanQual checks with multiple result relations.
The idea of EvalPlanQual is that we replace the query's scan of the
result relation with a single injected tuple, and see if we get a
tuple out, thereby implying that the injected tuple still passes the
query quals.  (In join cases, other relations in the query are still
scanned normally.)  This logic was not updated when commit 86dc90056
made it possible for a single DML query plan to have multiple result
relations, when the query target relation has inheritance or partition
children.  We replaced the output for the current result relation
successfully, but other result relations were still scanned normally;
thus, if any other result relation contained a tuple satisfying the
quals, we'd think the EPQ check passed, even if it did not pass for
the injected tuple itself.  This would lead to update or delete
actions getting performed when they should have been skipped due to
a conflicting concurrent update in READ COMMITTED isolation mode.

Fix by blocking all sibling result relations from emitting tuples
during an EvalPlanQual recheck.  In the back branches, the fix is
complicated a bit by the need to not change the size of struct
EPQState (else we'd have ABI-breaking changes in offsets in
struct ModifyTableState).  Like the back-patches of 3f7836ff6
and 4b3e37993, add a separately palloc'd struct to avoid that.
The logic is the same as in HEAD otherwise.

This is only a live bug back to v14 where 86dc90056 came in.
However, I chose to back-patch the test cases further, on the
grounds that this whole area is none too well tested.  I skipped
doing so in v11 though because none of the test applied cleanly,
and it didn't quite seem worth extra work for a branch with only
six months to live.

Per report from Ante Krešić (via Aleksander Alekseev)

Discussion: https://postgr.es/m/CAJ7c6TMBTN3rcz4=AjYhLPD_w3FFT0Wq_C15jxCDn8U4tZnH1g@mail.gmail.com
2023-05-19 14:26:34 -04:00

347 lines
9.2 KiB
C

/*-------------------------------------------------------------------------
*
* execScan.c
* This code provides support for generalized relation scans. ExecScan
* is passed a node and a pointer to a function to "do the right thing"
* and return a tuple from the relation. ExecScan then does the tedious
* stuff - checking the qualification and projecting the tuple
* appropriately.
*
* Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* src/backend/executor/execScan.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "executor/executor.h"
#include "miscadmin.h"
#include "utils/memutils.h"
/*
* ExecScanFetch -- check interrupts & fetch next potential tuple
*
* This routine is concerned with substituting a test tuple if we are
* inside an EvalPlanQual recheck. If we aren't, just execute
* the access method's next-tuple routine.
*/
static inline TupleTableSlot *
ExecScanFetch(ScanState *node,
ExecScanAccessMtd accessMtd,
ExecScanRecheckMtd recheckMtd)
{
EState *estate = node->ps.state;
CHECK_FOR_INTERRUPTS();
if (estate->es_epq_active != NULL)
{
EPQState *epqstate = estate->es_epq_active;
/*
* We are inside an EvalPlanQual recheck. Return the test tuple if
* one is available, after rechecking any access-method-specific
* conditions.
*/
Index scanrelid = ((Scan *) node->ps.plan)->scanrelid;
if (scanrelid == 0)
{
/*
* This is a ForeignScan or CustomScan which has pushed down a
* join to the remote side. The recheck method is responsible not
* only for rechecking the scan/join quals but also for storing
* the correct tuple in the slot.
*/
TupleTableSlot *slot = node->ss_ScanTupleSlot;
if (!(*recheckMtd) (node, slot))
ExecClearTuple(slot); /* would not be returned by scan */
return slot;
}
else if (epqstate->relsubs_done[scanrelid - 1])
{
/*
* Return empty slot, as either there is no EPQ tuple for this rel
* or we already returned it.
*/
TupleTableSlot *slot = node->ss_ScanTupleSlot;
return ExecClearTuple(slot);
}
else if (epqstate->relsubs_slot[scanrelid - 1] != NULL)
{
/*
* Return replacement tuple provided by the EPQ caller.
*/
TupleTableSlot *slot = epqstate->relsubs_slot[scanrelid - 1];
Assert(epqstate->relsubs_rowmark[scanrelid - 1] == NULL);
/* Mark to remember that we shouldn't return it again */
epqstate->relsubs_done[scanrelid - 1] = true;
/* Return empty slot if we haven't got a test tuple */
if (TupIsNull(slot))
return NULL;
/* Check if it meets the access-method conditions */
if (!(*recheckMtd) (node, slot))
return ExecClearTuple(slot); /* would not be returned by
* scan */
return slot;
}
else if (epqstate->relsubs_rowmark[scanrelid - 1] != NULL)
{
/*
* Fetch and return replacement tuple using a non-locking rowmark.
*/
TupleTableSlot *slot = node->ss_ScanTupleSlot;
/* Mark to remember that we shouldn't return more */
epqstate->relsubs_done[scanrelid - 1] = true;
if (!EvalPlanQualFetchRowMark(epqstate, scanrelid, slot))
return NULL;
/* Return empty slot if we haven't got a test tuple */
if (TupIsNull(slot))
return NULL;
/* Check if it meets the access-method conditions */
if (!(*recheckMtd) (node, slot))
return ExecClearTuple(slot); /* would not be returned by
* scan */
return slot;
}
}
/*
* Run the node-type-specific access method function to get the next tuple
*/
return (*accessMtd) (node);
}
/* ----------------------------------------------------------------
* ExecScan
*
* Scans the relation using the 'access method' indicated and
* returns the next qualifying tuple.
* The access method returns the next tuple and ExecScan() is
* responsible for checking the tuple returned against the qual-clause.
*
* A 'recheck method' must also be provided that can check an
* arbitrary tuple of the relation against any qual conditions
* that are implemented internal to the access method.
*
* Conditions:
* -- the "cursor" maintained by the AMI is positioned at the tuple
* returned previously.
*
* Initial States:
* -- the relation indicated is opened for scanning so that the
* "cursor" is positioned before the first qualifying tuple.
* ----------------------------------------------------------------
*/
TupleTableSlot *
ExecScan(ScanState *node,
ExecScanAccessMtd accessMtd, /* function returning a tuple */
ExecScanRecheckMtd recheckMtd)
{
ExprContext *econtext;
ExprState *qual;
ProjectionInfo *projInfo;
/*
* Fetch data from node
*/
qual = node->ps.qual;
projInfo = node->ps.ps_ProjInfo;
econtext = node->ps.ps_ExprContext;
/* interrupt checks are in ExecScanFetch */
/*
* If we have neither a qual to check nor a projection to do, just skip
* all the overhead and return the raw scan tuple.
*/
if (!qual && !projInfo)
{
ResetExprContext(econtext);
return ExecScanFetch(node, accessMtd, recheckMtd);
}
/*
* Reset per-tuple memory context to free any expression evaluation
* storage allocated in the previous tuple cycle.
*/
ResetExprContext(econtext);
/*
* get a tuple from the access method. Loop until we obtain a tuple that
* passes the qualification.
*/
for (;;)
{
TupleTableSlot *slot;
slot = ExecScanFetch(node, accessMtd, recheckMtd);
/*
* if the slot returned by the accessMtd contains NULL, then it means
* there is nothing more to scan so we just return an empty slot,
* being careful to use the projection result slot so it has correct
* tupleDesc.
*/
if (TupIsNull(slot))
{
if (projInfo)
return ExecClearTuple(projInfo->pi_state.resultslot);
else
return slot;
}
/*
* place the current tuple into the expr context
*/
econtext->ecxt_scantuple = slot;
/*
* check that the current tuple satisfies the qual-clause
*
* check for non-null qual here to avoid a function call to ExecQual()
* when the qual is null ... saves only a few cycles, but they add up
* ...
*/
if (qual == NULL || ExecQual(qual, econtext))
{
/*
* Found a satisfactory scan tuple.
*/
if (projInfo)
{
/*
* Form a projection tuple, store it in the result tuple slot
* and return it.
*/
return ExecProject(projInfo);
}
else
{
/*
* Here, we aren't projecting, so just return scan tuple.
*/
return slot;
}
}
else
InstrCountFiltered1(node, 1);
/*
* Tuple fails qual, so free per-tuple memory and try again.
*/
ResetExprContext(econtext);
}
}
/*
* ExecAssignScanProjectionInfo
* Set up projection info for a scan node, if necessary.
*
* We can avoid a projection step if the requested tlist exactly matches
* the underlying tuple type. If so, we just set ps_ProjInfo to NULL.
* Note that this case occurs not only for simple "SELECT * FROM ...", but
* also in most cases where there are joins or other processing nodes above
* the scan node, because the planner will preferentially generate a matching
* tlist.
*
* The scan slot's descriptor must have been set already.
*/
void
ExecAssignScanProjectionInfo(ScanState *node)
{
Scan *scan = (Scan *) node->ps.plan;
TupleDesc tupdesc = node->ss_ScanTupleSlot->tts_tupleDescriptor;
ExecConditionalAssignProjectionInfo(&node->ps, tupdesc, scan->scanrelid);
}
/*
* ExecAssignScanProjectionInfoWithVarno
* As above, but caller can specify varno expected in Vars in the tlist.
*/
void
ExecAssignScanProjectionInfoWithVarno(ScanState *node, Index varno)
{
TupleDesc tupdesc = node->ss_ScanTupleSlot->tts_tupleDescriptor;
ExecConditionalAssignProjectionInfo(&node->ps, tupdesc, varno);
}
/*
* ExecScanReScan
*
* This must be called within the ReScan function of any plan node type
* that uses ExecScan().
*/
void
ExecScanReScan(ScanState *node)
{
EState *estate = node->ps.state;
/*
* We must clear the scan tuple so that observers (e.g., execCurrent.c)
* can tell that this plan node is not positioned on a tuple.
*/
ExecClearTuple(node->ss_ScanTupleSlot);
/*
* Rescan EvalPlanQual tuple(s) if we're inside an EvalPlanQual recheck.
* But don't lose the "blocked" status of blocked target relations.
*/
if (estate->es_epq_active != NULL)
{
EPQState *epqstate = estate->es_epq_active;
Index scanrelid = ((Scan *) node->ps.plan)->scanrelid;
if (scanrelid > 0)
epqstate->relsubs_done[scanrelid - 1] =
epqstate->epqExtra->relsubs_blocked[scanrelid - 1];
else
{
Bitmapset *relids;
int rtindex = -1;
/*
* If an FDW or custom scan provider has replaced the join with a
* scan, there are multiple RTIs; reset the epqScanDone flag for
* all of them.
*/
if (IsA(node->ps.plan, ForeignScan))
relids = ((ForeignScan *) node->ps.plan)->fs_relids;
else if (IsA(node->ps.plan, CustomScan))
relids = ((CustomScan *) node->ps.plan)->custom_relids;
else
elog(ERROR, "unexpected scan node: %d",
(int) nodeTag(node->ps.plan));
while ((rtindex = bms_next_member(relids, rtindex)) >= 0)
{
Assert(rtindex > 0);
epqstate->relsubs_done[rtindex - 1] =
epqstate->epqExtra->relsubs_blocked[rtindex - 1];
}
}
}
}