The idea of EvalPlanQual is that we replace the query's scan of the
result relation with a single injected tuple, and see if we get a
tuple out, thereby implying that the injected tuple still passes the
query quals. (In join cases, other relations in the query are still
scanned normally.) This logic was not updated when commit 86dc90056
made it possible for a single DML query plan to have multiple result
relations, when the query target relation has inheritance or partition
children. We replaced the output for the current result relation
successfully, but other result relations were still scanned normally;
thus, if any other result relation contained a tuple satisfying the
quals, we'd think the EPQ check passed, even if it did not pass for
the injected tuple itself. This would lead to update or delete
actions getting performed when they should have been skipped due to
a conflicting concurrent update in READ COMMITTED isolation mode.
Fix by blocking all sibling result relations from emitting tuples
during an EvalPlanQual recheck. In the back branches, the fix is
complicated a bit by the need to not change the size of struct
EPQState (else we'd have ABI-breaking changes in offsets in
struct ModifyTableState). Like the back-patches of 3f7836ff6
and 4b3e37993, add a separately palloc'd struct to avoid that.
The logic is the same as in HEAD otherwise.
This is only a live bug back to v14 where 86dc90056 came in.
However, I chose to back-patch the test cases further, on the
grounds that this whole area is none too well tested. I skipped
doing so in v11 though because none of the test applied cleanly,
and it didn't quite seem worth extra work for a branch with only
six months to live.
Per report from Ante Krešić (via Aleksander Alekseev)
Discussion: https://postgr.es/m/CAJ7c6TMBTN3rcz4=AjYhLPD_w3FFT0Wq_C15jxCDn8U4tZnH1g@mail.gmail.com
In ad0bda5d24ea I changed the EvalPlanQual machinery to store
substitution tuples in slot, instead of using plain HeapTuples. The
main motivation for that was that using HeapTuples will be inefficient
for future tableams. But it turns out that that conversion was buggy
for non-locking rowmarks - the wrong tuple descriptor was used to
create the slot.
As a secondary issue 5db6df0c0 changed ExecLockRows() to begin EPQ
earlier, to allow to fetch the locked rows directly into the EPQ
slots, instead of having to copy tuples around. Unfortunately, as Tom
complained, that forces some expensive initialization to happen
earlier.
As a third issue, the test coverage for EPQ was clearly insufficient.
Fixing the first issue is unfortunately not trivial: Non-locked row
marks were fetched at the start of EPQ, and we don't have the type
information for the rowmarks available at that point. While we could
change that, it's not easy. It might be worthwhile to change that at
some point, but to fix this bug, it seems better to delay fetching
non-locking rowmarks when they're actually needed, rather than
eagerly. They're referenced at most once, and in cases where EPQ
fails, might never be referenced. Fetching them when needed also
increases locality a bit.
To be able to fetch rowmarks during execution, rather than
initialization, we need to be able to access the active EPQState, as
that contains necessary data. To do so move EPQ related data from
EState to EPQState, and, only for EStates creates as part of EPQ,
reference the associated EPQState from EState.
To fix the second issue, change EPQ initialization to allow use of
EvalPlanQualSlot() to be used before EvalPlanQualBegin() (but
obviously still requiring EvalPlanQualInit() to have been done).
As these changes made struct EState harder to understand, e.g. by
adding multiple EStates, significantly reorder the members, and add a
lot more comments.
Also add a few more EPQ tests, including one that fails for the first
issue above. More is needed.
Reported-By: yi huang
Author: Andres Freund
Reviewed-By: Tom Lane
Discussion:
https://postgr.es/m/CAHU7rYZo_C4ULsAx_LAj8az9zqgrD8WDd4hTegDTMM1LMqrBsg@mail.gmail.comhttps://postgr.es/m/24530.1562686693@sss.pgh.pa.us
Backpatch: 12-, where the EPQ changes were introduced
This addresses a couple of issues in the code:
- Typos and inconsistencies in comments and function declarations.
- Removal of unreferenced function declarations.
- Removal of unnecessary compile flags.
- A cleanup error in regressplans.sh.
Author: Alexander Lakhin
Discussion: https://postgr.es/m/0c991fdf-2670-1997-c027-772a420c4604@gmail.com
This is still using the 2.0 version of pg_bsd_indent.
I thought it would be good to commit this separately,
so as to document the differences between 2.0 and 2.1 behavior.
Discussion: https://postgr.es/m/16296.1558103386@sss.pgh.pa.us
For the upcoming pluggable table access methods it's quite
inconvenient to store tuples as HeapTuples, as that'd require
converting tuples from a their native format into HeapTuples. Instead
use slots to manage epq tuples.
To fit into that scheme, change the foreign data wrapper callback
RefetchForeignRow, to store the tuple in a slot. Insist on using the
caller provided slot, so it conveniently can be stored in the
corresponding EPQ slot. As there is no in core user of
RefetchForeignRow, that change was done blindly, but we plan to test
that soon.
To avoid duplicating that work for row locks, move row locks to just
directly use the EPQ slots - it previously temporarily stored tuples
in LockRowsState.lr_curtuples, but that doesn't seem beneficial, given
we'd possibly end up with a significant number of additional slots.
The behaviour of es_epqTupleSet[rti -1] is now checked by
es_epqTupleSlot[rti -1] != NULL, as that is distinguishable from a
slot containing an empty tuple.
Author: Andres Freund, Haribabu Kommi, Ashutosh Bapat
Discussion: https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de
This commit completes the work prepared in 1a0586de36, splitting the
old TupleTableSlot implementation (which could store buffer, heap,
minimal and virtual slots) into four different slot types. As
described in the aforementioned commit, this is done with the goal of
making tuple table slots extensible, to allow for pluggable table
access methods.
To achieve runtime extensibility for TupleTableSlots, operations on
slots that can differ between types of slots are performed using the
TupleTableSlotOps struct provided at slot creation time. That
includes information from the size of TupleTableSlot struct to be
allocated, initialization, deforming etc. See the struct's definition
for more detailed information about callbacks TupleTableSlotOps.
I decided to rename TTSOpsBufferTuple to TTSOpsBufferHeapTuple and
ExecCopySlotTuple to ExecCopySlotHeapTuple, as that seems more
consistent with other naming introduced in recent patches.
There's plenty optimization potential in the slot implementation, but
according to benchmarking the state after this commit has similar
performance characteristics to before this set of changes, which seems
sufficient.
There's a few changes in execReplication.c that currently need to poke
through the slot abstraction, that'll be repaired once the pluggable
storage patchset provides the necessary infrastructure.
Author: Andres Freund and Ashutosh Bapat, with changes by Amit Khandekar
Discussion: https://postgr.es/m/20181105210039.hh4vvi4vwoq5ba2q@alap3.anarazel.de
Upcoming changes introduce further types of tuple table slots, in
preparation of making table storage pluggable. New storage methods
will have different representation of tuples, therefore the slot
accessor should refer explicitly to heap tuples.
Instead of just renaming the functions, split it into one function
that accepts heap tuples not residing in buffers, and one accepting
ones in buffers. Previously one function was used for both, but that
was a bit awkward already, and splitting will allow us to represent
slot types for tuples in buffers and normal memory separately.
This is split out from the patch introducing abstract slots, as this
largely consists out of mechanical changes.
Author: Ashutosh Bapat
Reviewed-By: Andres Freund
Discussion: https://postgr.es/m/20180220224318.gw4oe5jadhpmcdnm@alap3.anarazel.de
In a case where we have multiple relation-scan nodes in a cursor plan,
such as a scan of an inheritance tree, it's possible to fetch from a
given scan node, then rewind the cursor and fetch some row from an
earlier scan node. In such a case, execCurrent.c mistakenly thought
that the later scan node was still active, because ExecReScan hadn't
done anything to make it look not-active. We'd get some sort of
failure in the case of a SeqScan node, because the node's scan tuple
slot would be pointing at a HeapTuple whose t_self gets reset to
invalid by heapam.c. But it seems possible that for other relation
scan node types we'd actually return a valid tuple TID to the caller,
resulting in updating or deleting a tuple that shouldn't have been
considered current. To fix, forcibly clear the ScanTupleSlot in
ExecScanReScan.
Another issue here, which seems only latent at the moment but could
easily become a live bug in future, is that rewinding a cursor does
not necessarily lead to *immediately* applying ExecReScan to every
scan-level node in the plan tree. Upper-level nodes will think that
they can postpone that call if their child node is already marked
with chgParam flags. I don't see a way for that to happen today in
a plan tree that's simple enough for execCurrent.c's search_plan_tree
to understand, but that's one heck of a fragile assumption. So, add
some logic in search_plan_tree to detect chgParam flags being set on
nodes that it descended to/through, and assume that that means we
should consider lower scan nodes to be logically reset even if their
ReScan call hasn't actually happened yet.
Per bug #15395 from Matvey Arye. This has been broken for a long time,
so back-patch to all supported branches.
Discussion: https://postgr.es/m/153764171023.14986.280404050547008575@wrigleys.postgresql.org
The reason for doing so is that it will allow expression evaluation to
optimize based on the underlying tupledesc. In particular it will
allow to JIT tuple deforming together with the expression itself.
For that expression initialization needs to be moved after the
relevant slots are initialized - mostly unproblematic, except in the
case of nodeWorktablescan.c.
After doing so there's no need for ExecAssignResultType() and
ExecAssignResultTypeFromTL() anymore, as all former callers have been
converted to create a slot with a fixed descriptor.
When creating a slot with a fixed descriptor, tts_values/isnull can be
allocated together with the main slot, reducing allocation overhead
and increasing cache density a bit.
Author: Andres Freund
Discussion: https://postgr.es/m/20171206093717.vqdxe5icqttpxs3p@alap3.anarazel.de
It's most often the case that the target list for the Gather (Merge)
node matches the target list supplied by the underlying plan node;
when this is so, we can avoid the overhead of projecting.
This depends on commit f455e1125e2588d4cd4fc663c6a10da4e003a3b5 for
proper functioning.
Idea by Andres Freund. Patch by me. Review by Amit Kapila.
Discussion: http://postgr.es/m/CA+TgmoZ0ZL=cesZFq8c9NnfK6bqy-wwUd3_74iYGodYrSoQ7Fw@mail.gmail.com
During the development of d47cfef711 the CFI()s in ExecScan() were
moved back and forth, ending up in the wrong place. Thus queries that
largely spend their time in ExecScan(), and have neither projection
nor a qual, can't be cancelled in a timely manner.
Reported-By: Jeff Janes
Author: Andres Freund
Discussion: https://postgr.es/m/CAMkU=1weDXp8eLLPt9SO1LEUsJYYK9cScaGhLKpuN+WbYo9b5g@mail.gmail.com
Backpatch: 10, as d47cfef711
This is a mechanical change in preparation for a later commit that
will change the layout of TupleDesc. Introducing a macro to abstract
the details of where attributes are stored will allow us to change
that in separate step and revise it in future.
Author: Thomas Munro, editorialized by Andres Freund
Reviewed-By: Andres Freund
Discussion: https://postgr.es/m/CAEepm=0ZtQ-SpsgCyzzYpsXS6e=kZWqk3g5Ygn3MDV7A8dabUA@mail.gmail.com
This replaces the old, recursive tree-walk based evaluation, with
non-recursive, opcode dispatch based, expression evaluation.
Projection is now implemented as part of expression evaluation.
This both leads to significant performance improvements, and makes
future just-in-time compilation of expressions easier.
The speed gains primarily come from:
- non-recursive implementation reduces stack usage / overhead
- simple sub-expressions are implemented with a single jump, without
function calls
- sharing some state between different sub-expressions
- reduced amount of indirect/hard to predict memory accesses by laying
out operation metadata sequentially; including the avoidance of
nearly all of the previously used linked lists
- more code has been moved to expression initialization, avoiding
constant re-checks at evaluation time
Future just-in-time compilation (JIT) has become easier, as
demonstrated by released patches intended to be merged in a later
release, for primarily two reasons: Firstly, due to a stricter split
between expression initialization and evaluation, less code has to be
handled by the JIT. Secondly, due to the non-recursive nature of the
generated "instructions", less performance-critical code-paths can
easily be shared between interpreted and compiled evaluation.
The new framework allows for significant future optimizations. E.g.:
- basic infrastructure for to later reduce the per executor-startup
overhead of expression evaluation, by caching state in prepared
statements. That'd be helpful in OLTPish scenarios where
initialization overhead is measurable.
- optimizing the generated "code". A number of proposals for potential
work has already been made.
- optimizing the interpreter. Similarly a number of proposals have
been made here too.
The move of logic into the expression initialization step leads to some
backward-incompatible changes:
- Function permission checks are now done during expression
initialization, whereas previously they were done during
execution. In edge cases this can lead to errors being raised that
previously wouldn't have been, e.g. a NULL array being coerced to a
different array type previously didn't perform checks.
- The set of domain constraints to be checked, is now evaluated once
during expression initialization, previously it was re-built
every time a domain check was evaluated. For normal queries this
doesn't change much, but e.g. for plpgsql functions, which caches
ExprStates, the old set could stick around longer. The behavior
around might still change.
Author: Andres Freund, with significant changes by Tom Lane,
changes by Heikki Linnakangas
Reviewed-By: Tom Lane, Heikki Linnakangas
Discussion: https://postgr.es/m/20161206034955.bh33paeralxbtluv@alap3.anarazel.de
Since 69f4b9c plain expression evaluation (and thus normal projection)
can't return sets of tuples anymore. Thus remove code dealing with
that possibility.
This will require adjustments in external code using
ExecEvalExpr()/ExecProject() - that should neither be hard nor very
common.
Author: Andres Freund and Tom Lane
Discussion: https://postgr.es/m/20160822214023.aaxz5l4igypowyri@alap3.anarazel.de
Commit e7cb7ee14555cc9c5773e2c102efd6371f6f2005 provided basic
infrastructure for allowing a foreign data wrapper or custom scan
provider to replace a join of one or more tables with a scan.
However, this infrastructure failed to take into account the need
for possible EvalPlanQual rechecks, and ExecScanFetch would fail
an assertion (or just overwrite memory) if such a check was attempted
for a plan containing a pushed-down join. To fix, adjust the EPQ
machinery to skip some processing steps when scanrelid == 0, making
those the responsibility of scan's recheck method, which also has
the responsibility in this case of correctly populating the relevant
slot.
To allow foreign scans to gain control in the right place to make
use of this new facility, add a new, optional RecheckForeignScan
method. Also, allow a foreign scan to have a child plan, which can
be used to correctly populate the slot (or perhaps for something
else, but this is the only use currently envisioned).
KaiGai Kohei, reviewed by Robert Haas, Etsuro Fujita, and Kyotaro
Horiguchi.
Commit e7cb7ee14555cc9c5773e2c102efd6371f6f2005 included some design
decisions that seem pretty questionable to me, and there was quite a lot
of stuff not to like about the documentation and comments. Clean up
as follows:
* Consider foreign joins only between foreign tables on the same server,
rather than between any two foreign tables with the same underlying FDW
handler function. In most if not all cases, the FDW would simply have had
to apply the same-server restriction itself (far more expensively, both for
lack of caching and because it would be repeated for each combination of
input sub-joins), or else risk nasty bugs. Anyone who's really intent on
doing something outside this restriction can always use the
set_join_pathlist_hook.
* Rename fdw_ps_tlist/custom_ps_tlist to fdw_scan_tlist/custom_scan_tlist
to better reflect what they're for, and allow these custom scan tlists
to be used even for base relations.
* Change make_foreignscan() API to include passing the fdw_scan_tlist
value, since the FDW is required to set that. Backwards compatibility
doesn't seem like an adequate reason to expect FDWs to set it in some
ad-hoc extra step, and anyway existing FDWs can just pass NIL.
* Change the API of path-generating subroutines of add_paths_to_joinrel,
and in particular that of GetForeignJoinPaths and set_join_pathlist_hook,
so that various less-used parameters are passed in a struct rather than
as separate parameter-list entries. The objective here is to reduce the
probability that future additions to those parameter lists will result in
source-level API breaks for users of these hooks. It's possible that this
is even a small win for the core code, since most CPU architectures can't
pass more than half a dozen parameters efficiently anyway. I kept root,
joinrel, outerrel, innerrel, and jointype as separate parameters to reduce
code churn in joinpath.c --- in particular, putting jointype into the
struct would have been problematic because of the subroutines' habit of
changing their local copies of that variable.
* Avoid ad-hocery in ExecAssignScanProjectionInfo. It was probably all
right for it to know about IndexOnlyScan, but if the list is to grow
we should refactor the knowledge out to the callers.
* Restore nodeForeignscan.c's previous use of the relcache to avoid
extra GetFdwRoutine lookups for base-relation scans.
* Lots of cleanup of documentation and missed comments. Re-order some
code additions into more logical places.
Foreign data wrappers can use this capability for so-called "join
pushdown"; that is, instead of executing two separate foreign scans
and then joining the results locally, they can generate a path which
performs the join on the remote server and then is scanned locally.
This commit does not extend postgres_fdw to take advantage of this
capability; it just provides the infrastructure.
Custom scan providers can use this in a similar way. Previously,
it was only possible for a custom scan provider to scan a single
relation. Now, it can scan an entire join tree, provided of course
that it knows how to produce the same results that the join would
have produced if executed normally.
KaiGai Kohei, reviewed by Shigeru Hanada, Ashutosh Bapat, and me.
This commit changes index-only scans so that data is read directly from the
index tuple without first generating a faux heap tuple. The only immediate
benefit is that indexes on system columns (such as OID) can be used in
index-only scans, but this is necessary infrastructure if we are ever to
support index-only scans on expression indexes. The executor is now ready
for that, though the planner still needs substantial work to recognize
the possibility.
To do this, Vars in index-only plan nodes have to refer to index columns
not heap columns. I introduced a new special varno, INDEX_VAR, to mark
such Vars to avoid confusion. (In passing, this commit renames the two
existing special varnos to OUTER_VAR and INNER_VAR.) This allows
ruleutils.c to handle them with logic similar to what we use for subplan
reference Vars.
Since index-only scans are now fundamentally different from regular
indexscans so far as their expression subtrees are concerned, I also chose
to change them to have their own plan node type (and hence, their own
executor source file).
This provides information about the numbers of tuples that were visited
but not returned by table scans, as well as the numbers of join tuples
that were considered and discarded within a join plan node.
There is still some discussion going on about the best way to report counts
for outer-join situations, but I think most of what's in the patch would
not change if we revise that, so I'm going to go ahead and commit it as-is.
Documentation changes to follow (they weren't in the submitted patch
either).
Marko Tiikkaja, reviewed by Marc Cousin, somewhat revised by Tom
there's no quals or projections. Currently this only matters for foreign
scans, as none of the other scan nodes litter the per-tuple memory context
when there's no quals or projections.
a lot of strange behaviors that occurred in join cases. We now identify the
"current" row for every joined relation in UPDATE, DELETE, and SELECT FOR
UPDATE/SHARE queries. If an EvalPlanQual recheck is necessary, we jam the
appropriate row into each scan node in the rechecking plan, forcing it to emit
only that one row. The former behavior could rescan the whole of each joined
relation for each recheck, which was terrible for performance, and what's much
worse could result in duplicated output tuples.
Also, the original implementation of EvalPlanQual could not re-use the recheck
execution tree --- it had to go through a full executor init and shutdown for
every row to be tested. To avoid this overhead, I've associated a special
runtime Param with each LockRows or ModifyTable plan node, and arranged to
make every scan node below such a node depend on that Param. Thus, by
signaling a change in that Param, the EPQ machinery can just rescan the
already-built test plan.
This patch also adds a prohibition on set-returning functions in the
targetlist of SELECT FOR UPDATE/SHARE. This is needed to avoid the
duplicate-output-tuple problem. It seems fairly reasonable since the
other restrictions on SELECT FOR UPDATE are meant to ensure that there
is a unique correspondence between source tuples and result tuples,
which an output SRF destroys as much as anything else does.
made query plan. Use of ALTER COLUMN TYPE creates a hazard for cached
query plans: they could contain Vars that claim a column has a different
type than it now has. Fix this by checking during plan startup that Vars
at relation scan level match the current relation tuple descriptor. Since
at that point we already have at least AccessShareLock, we can be sure the
column type will not change underneath us later in the query. However,
since a backend's locks do not conflict against itself, there is still a
hole for an attacker to exploit: he could try to execute ALTER COLUMN TYPE
while a query is in progress in the current backend. Seal that hole by
rejecting ALTER TABLE whenever the target relation is already open in
the current backend.
This is a significant security hole: not only can one trivially crash the
backend, but with appropriate misuse of pass-by-reference datatypes it is
possible to read out arbitrary locations in the server process's memory,
which could allow retrieving database content the user should not be able
to see. Our thanks to Jeff Trout for the initial report.
Security: CVE-2007-0556
involving unions of types having typmods. Variants of the failure are known
to occur in 8.1 and up; not sure if it's possible in 8.0 and 7.4, but since
the code exists that far back, I'll just patch 'em all. Per report from
Brian Hurt.
aren't doing anything useful (ie, neither selection nor projection).
Also, extend to SubqueryScan the hacks already in place to avoid
unnecessary ExecProject calls when the result would just be the same
tuple the subquery already delivered. This saves some overhead in
UNION and other set operations, as well as avoiding overhead for
unflatten-able subqueries. Per example from Sokolov Yura.
of tuples when passing data up through multiple plan nodes. A slot can now
hold either a normal "physical" HeapTuple, or a "virtual" tuple consisting
of Datum/isnull arrays. Upper plan levels can usually just copy the Datum
arrays, avoiding heap_formtuple() and possible subsequent nocachegetattr()
calls to extract the data again. This work extends Atsushi Ogawa's earlier
patch, which provided the key idea of adding Datum arrays to TupleTableSlots.
(I believe however that something like this was foreseen way back in Berkeley
days --- see the old comment on ExecProject.) A test case involving many
levels of join of fairly wide tables (about 80 columns altogether) showed
about 3x overall speedup, though simple queries will probably not be
helped very much.
I have also duplicated some code in heaptuple.c in order to provide versions
of heap_formtuple and friends that use "bool" arrays to indicate null
attributes, instead of the old convention of "char" arrays containing either
'n' or ' '. This provides a better match to the convention used by
ExecEvalExpr. While I have not made a concerted effort to get rid of uses
of the old routines, I think they should be deprecated and eventually removed.
Also performed an initial run through of upgrading our Copyright date to
extend to 2005 ... first run here was very simple ... change everything
where: grep 1996-2004 && the word 'Copyright' ... scanned through the
generated list with 'less' first, and after, to make sure that I only
picked up the right entries ...