mirror of
https://github.com/postgres/postgres.git
synced 2025-11-06 07:49:08 +03:00
In the corner case where a function returning RECORD has been simplified to a RECORD constant or an inlined ROW() expression, ExecInitFunctionScan failed to cross-check the function's result rowtype against the coldeflist provided by the calling query. That happened because get_expr_result_type is able to extract a tupdesc from such expressions, which led ExecInitFunctionScan to ignore the coldeflist. (Instead, it used the extracted tupdesc to check the function's output, which of course always succeeds.) I have not been able to demonstrate any really serious consequences from this, because if some column of the result is of the wrong type and is directly referenced by a Var of the calling query, CheckVarSlotCompatibility will catch it. However, we definitely do fail to report the case where the function returns more columns than the coldeflist expects, and in the converse case where it returns fewer columns, we get an assert failure (but, seemingly, no worse results in non-assert builds). To fix, always build the expected tupdesc from the coldeflist if there is one, and consult get_expr_result_type only when there isn't one. Also remove the failing Assert, even though it is no longer reached after this fix. It doesn't seem to be adding anything useful, since later checking will deal with cases with the wrong number of columns. The only other place I could find that is doing something similar is inline_set_returning_function. There's no live bug there because we cannot be looking at a Const or RowExpr, but for consistency change that code to agree with ExecInitFunctionScan. Per report from PetSerAl. After some debate I've concluded that this should be back-patched. There is a small risk that somebody has been relying on such a case not throwing an error, but I judge this outweighed by the risk that I've missed some way in which the failure to cross-check has worse consequences than sketched above. Discussion: https://postgr.es/m/CAKygsHSerA1eXsJHR9wft3Gn3wfHQ5RfP8XHBzF70_qcrrRvEg@mail.gmail.com
630 lines
17 KiB
C
630 lines
17 KiB
C
/*-------------------------------------------------------------------------
|
|
*
|
|
* nodeFunctionscan.c
|
|
* Support routines for scanning RangeFunctions (functions in rangetable).
|
|
*
|
|
* Portions Copyright (c) 1996-2022, PostgreSQL Global Development Group
|
|
* Portions Copyright (c) 1994, Regents of the University of California
|
|
*
|
|
*
|
|
* IDENTIFICATION
|
|
* src/backend/executor/nodeFunctionscan.c
|
|
*
|
|
*-------------------------------------------------------------------------
|
|
*/
|
|
/*
|
|
* INTERFACE ROUTINES
|
|
* ExecFunctionScan scans a function.
|
|
* ExecFunctionNext retrieve next tuple in sequential order.
|
|
* ExecInitFunctionScan creates and initializes a functionscan node.
|
|
* ExecEndFunctionScan releases any storage allocated.
|
|
* ExecReScanFunctionScan rescans the function
|
|
*/
|
|
#include "postgres.h"
|
|
|
|
#include "catalog/pg_type.h"
|
|
#include "executor/nodeFunctionscan.h"
|
|
#include "funcapi.h"
|
|
#include "nodes/nodeFuncs.h"
|
|
#include "utils/builtins.h"
|
|
#include "utils/memutils.h"
|
|
|
|
|
|
/*
|
|
* Runtime data for each function being scanned.
|
|
*/
|
|
typedef struct FunctionScanPerFuncState
|
|
{
|
|
SetExprState *setexpr; /* state of the expression being evaluated */
|
|
TupleDesc tupdesc; /* desc of the function result type */
|
|
int colcount; /* expected number of result columns */
|
|
Tuplestorestate *tstore; /* holds the function result set */
|
|
int64 rowcount; /* # of rows in result set, -1 if not known */
|
|
TupleTableSlot *func_slot; /* function result slot (or NULL) */
|
|
} FunctionScanPerFuncState;
|
|
|
|
static TupleTableSlot *FunctionNext(FunctionScanState *node);
|
|
|
|
|
|
/* ----------------------------------------------------------------
|
|
* Scan Support
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
/* ----------------------------------------------------------------
|
|
* FunctionNext
|
|
*
|
|
* This is a workhorse for ExecFunctionScan
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
static TupleTableSlot *
|
|
FunctionNext(FunctionScanState *node)
|
|
{
|
|
EState *estate;
|
|
ScanDirection direction;
|
|
TupleTableSlot *scanslot;
|
|
bool alldone;
|
|
int64 oldpos;
|
|
int funcno;
|
|
int att;
|
|
|
|
/*
|
|
* get information from the estate and scan state
|
|
*/
|
|
estate = node->ss.ps.state;
|
|
direction = estate->es_direction;
|
|
scanslot = node->ss.ss_ScanTupleSlot;
|
|
|
|
if (node->simple)
|
|
{
|
|
/*
|
|
* Fast path for the trivial case: the function return type and scan
|
|
* result type are the same, so we fetch the function result straight
|
|
* into the scan result slot. No need to update ordinality or
|
|
* rowcounts either.
|
|
*/
|
|
Tuplestorestate *tstore = node->funcstates[0].tstore;
|
|
|
|
/*
|
|
* If first time through, read all tuples from function and put them
|
|
* in a tuplestore. Subsequent calls just fetch tuples from
|
|
* tuplestore.
|
|
*/
|
|
if (tstore == NULL)
|
|
{
|
|
node->funcstates[0].tstore = tstore =
|
|
ExecMakeTableFunctionResult(node->funcstates[0].setexpr,
|
|
node->ss.ps.ps_ExprContext,
|
|
node->argcontext,
|
|
node->funcstates[0].tupdesc,
|
|
node->eflags & EXEC_FLAG_BACKWARD);
|
|
|
|
/*
|
|
* paranoia - cope if the function, which may have constructed the
|
|
* tuplestore itself, didn't leave it pointing at the start. This
|
|
* call is fast, so the overhead shouldn't be an issue.
|
|
*/
|
|
tuplestore_rescan(tstore);
|
|
}
|
|
|
|
/*
|
|
* Get the next tuple from tuplestore.
|
|
*/
|
|
(void) tuplestore_gettupleslot(tstore,
|
|
ScanDirectionIsForward(direction),
|
|
false,
|
|
scanslot);
|
|
return scanslot;
|
|
}
|
|
|
|
/*
|
|
* Increment or decrement ordinal counter before checking for end-of-data,
|
|
* so that we can move off either end of the result by 1 (and no more than
|
|
* 1) without losing correct count. See PortalRunSelect for why we can
|
|
* assume that we won't be called repeatedly in the end-of-data state.
|
|
*/
|
|
oldpos = node->ordinal;
|
|
if (ScanDirectionIsForward(direction))
|
|
node->ordinal++;
|
|
else
|
|
node->ordinal--;
|
|
|
|
/*
|
|
* Main loop over functions.
|
|
*
|
|
* We fetch the function results into func_slots (which match the function
|
|
* return types), and then copy the values to scanslot (which matches the
|
|
* scan result type), setting the ordinal column (if any) as well.
|
|
*/
|
|
ExecClearTuple(scanslot);
|
|
att = 0;
|
|
alldone = true;
|
|
for (funcno = 0; funcno < node->nfuncs; funcno++)
|
|
{
|
|
FunctionScanPerFuncState *fs = &node->funcstates[funcno];
|
|
int i;
|
|
|
|
/*
|
|
* If first time through, read all tuples from function and put them
|
|
* in a tuplestore. Subsequent calls just fetch tuples from
|
|
* tuplestore.
|
|
*/
|
|
if (fs->tstore == NULL)
|
|
{
|
|
fs->tstore =
|
|
ExecMakeTableFunctionResult(fs->setexpr,
|
|
node->ss.ps.ps_ExprContext,
|
|
node->argcontext,
|
|
fs->tupdesc,
|
|
node->eflags & EXEC_FLAG_BACKWARD);
|
|
|
|
/*
|
|
* paranoia - cope if the function, which may have constructed the
|
|
* tuplestore itself, didn't leave it pointing at the start. This
|
|
* call is fast, so the overhead shouldn't be an issue.
|
|
*/
|
|
tuplestore_rescan(fs->tstore);
|
|
}
|
|
|
|
/*
|
|
* Get the next tuple from tuplestore.
|
|
*
|
|
* If we have a rowcount for the function, and we know the previous
|
|
* read position was out of bounds, don't try the read. This allows
|
|
* backward scan to work when there are mixed row counts present.
|
|
*/
|
|
if (fs->rowcount != -1 && fs->rowcount < oldpos)
|
|
ExecClearTuple(fs->func_slot);
|
|
else
|
|
(void) tuplestore_gettupleslot(fs->tstore,
|
|
ScanDirectionIsForward(direction),
|
|
false,
|
|
fs->func_slot);
|
|
|
|
if (TupIsNull(fs->func_slot))
|
|
{
|
|
/*
|
|
* If we ran out of data for this function in the forward
|
|
* direction then we now know how many rows it returned. We need
|
|
* to know this in order to handle backwards scans. The row count
|
|
* we store is actually 1+ the actual number, because we have to
|
|
* position the tuplestore 1 off its end sometimes.
|
|
*/
|
|
if (ScanDirectionIsForward(direction) && fs->rowcount == -1)
|
|
fs->rowcount = node->ordinal;
|
|
|
|
/*
|
|
* populate the result cols with nulls
|
|
*/
|
|
for (i = 0; i < fs->colcount; i++)
|
|
{
|
|
scanslot->tts_values[att] = (Datum) 0;
|
|
scanslot->tts_isnull[att] = true;
|
|
att++;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* we have a result, so just copy it to the result cols.
|
|
*/
|
|
slot_getallattrs(fs->func_slot);
|
|
|
|
for (i = 0; i < fs->colcount; i++)
|
|
{
|
|
scanslot->tts_values[att] = fs->func_slot->tts_values[i];
|
|
scanslot->tts_isnull[att] = fs->func_slot->tts_isnull[i];
|
|
att++;
|
|
}
|
|
|
|
/*
|
|
* We're not done until every function result is exhausted; we pad
|
|
* the shorter results with nulls until then.
|
|
*/
|
|
alldone = false;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* ordinal col is always last, per spec.
|
|
*/
|
|
if (node->ordinality)
|
|
{
|
|
scanslot->tts_values[att] = Int64GetDatumFast(node->ordinal);
|
|
scanslot->tts_isnull[att] = false;
|
|
}
|
|
|
|
/*
|
|
* If alldone, we just return the previously-cleared scanslot. Otherwise,
|
|
* finish creating the virtual tuple.
|
|
*/
|
|
if (!alldone)
|
|
ExecStoreVirtualTuple(scanslot);
|
|
|
|
return scanslot;
|
|
}
|
|
|
|
/*
|
|
* FunctionRecheck -- access method routine to recheck a tuple in EvalPlanQual
|
|
*/
|
|
static bool
|
|
FunctionRecheck(FunctionScanState *node, TupleTableSlot *slot)
|
|
{
|
|
/* nothing to check */
|
|
return true;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecFunctionScan(node)
|
|
*
|
|
* Scans the function sequentially and returns the next qualifying
|
|
* tuple.
|
|
* We call the ExecScan() routine and pass it the appropriate
|
|
* access method functions.
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
static TupleTableSlot *
|
|
ExecFunctionScan(PlanState *pstate)
|
|
{
|
|
FunctionScanState *node = castNode(FunctionScanState, pstate);
|
|
|
|
return ExecScan(&node->ss,
|
|
(ExecScanAccessMtd) FunctionNext,
|
|
(ExecScanRecheckMtd) FunctionRecheck);
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecInitFunctionScan
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
FunctionScanState *
|
|
ExecInitFunctionScan(FunctionScan *node, EState *estate, int eflags)
|
|
{
|
|
FunctionScanState *scanstate;
|
|
int nfuncs = list_length(node->functions);
|
|
TupleDesc scan_tupdesc;
|
|
int i,
|
|
natts;
|
|
ListCell *lc;
|
|
|
|
/* check for unsupported flags */
|
|
Assert(!(eflags & EXEC_FLAG_MARK));
|
|
|
|
/*
|
|
* FunctionScan should not have any children.
|
|
*/
|
|
Assert(outerPlan(node) == NULL);
|
|
Assert(innerPlan(node) == NULL);
|
|
|
|
/*
|
|
* create new ScanState for node
|
|
*/
|
|
scanstate = makeNode(FunctionScanState);
|
|
scanstate->ss.ps.plan = (Plan *) node;
|
|
scanstate->ss.ps.state = estate;
|
|
scanstate->ss.ps.ExecProcNode = ExecFunctionScan;
|
|
scanstate->eflags = eflags;
|
|
|
|
/*
|
|
* are we adding an ordinality column?
|
|
*/
|
|
scanstate->ordinality = node->funcordinality;
|
|
|
|
scanstate->nfuncs = nfuncs;
|
|
if (nfuncs == 1 && !node->funcordinality)
|
|
scanstate->simple = true;
|
|
else
|
|
scanstate->simple = false;
|
|
|
|
/*
|
|
* Ordinal 0 represents the "before the first row" position.
|
|
*
|
|
* We need to track ordinal position even when not adding an ordinality
|
|
* column to the result, in order to handle backwards scanning properly
|
|
* with multiple functions with different result sizes. (We can't position
|
|
* any individual function's tuplestore any more than 1 place beyond its
|
|
* end, so when scanning backwards, we need to know when to start
|
|
* including the function in the scan again.)
|
|
*/
|
|
scanstate->ordinal = 0;
|
|
|
|
/*
|
|
* Miscellaneous initialization
|
|
*
|
|
* create expression context for node
|
|
*/
|
|
ExecAssignExprContext(estate, &scanstate->ss.ps);
|
|
|
|
scanstate->funcstates = palloc(nfuncs * sizeof(FunctionScanPerFuncState));
|
|
|
|
natts = 0;
|
|
i = 0;
|
|
foreach(lc, node->functions)
|
|
{
|
|
RangeTblFunction *rtfunc = (RangeTblFunction *) lfirst(lc);
|
|
Node *funcexpr = rtfunc->funcexpr;
|
|
int colcount = rtfunc->funccolcount;
|
|
FunctionScanPerFuncState *fs = &scanstate->funcstates[i];
|
|
TupleDesc tupdesc;
|
|
|
|
fs->setexpr =
|
|
ExecInitTableFunctionResult((Expr *) funcexpr,
|
|
scanstate->ss.ps.ps_ExprContext,
|
|
&scanstate->ss.ps);
|
|
|
|
/*
|
|
* Don't allocate the tuplestores; the actual calls to the functions
|
|
* do that. NULL means that we have not called the function yet (or
|
|
* need to call it again after a rescan).
|
|
*/
|
|
fs->tstore = NULL;
|
|
fs->rowcount = -1;
|
|
|
|
/*
|
|
* Now build a tupdesc showing the result type we expect from the
|
|
* function. If we have a coldeflist then that takes priority (note
|
|
* the parser enforces that there is one if the function's nominal
|
|
* output type is RECORD). Otherwise use get_expr_result_type.
|
|
*
|
|
* Note that if the function returns a named composite type, that may
|
|
* now contain more or different columns than it did when the plan was
|
|
* made. For both that and the RECORD case, we need to check tuple
|
|
* compatibility. ExecMakeTableFunctionResult handles some of this,
|
|
* and CheckVarSlotCompatibility provides a backstop.
|
|
*/
|
|
if (rtfunc->funccolnames != NIL)
|
|
{
|
|
tupdesc = BuildDescFromLists(rtfunc->funccolnames,
|
|
rtfunc->funccoltypes,
|
|
rtfunc->funccoltypmods,
|
|
rtfunc->funccolcollations);
|
|
|
|
/*
|
|
* For RECORD results, make sure a typmod has been assigned. (The
|
|
* function should do this for itself, but let's cover things in
|
|
* case it doesn't.)
|
|
*/
|
|
BlessTupleDesc(tupdesc);
|
|
}
|
|
else
|
|
{
|
|
TypeFuncClass functypclass;
|
|
Oid funcrettype;
|
|
|
|
functypclass = get_expr_result_type(funcexpr,
|
|
&funcrettype,
|
|
&tupdesc);
|
|
|
|
if (functypclass == TYPEFUNC_COMPOSITE ||
|
|
functypclass == TYPEFUNC_COMPOSITE_DOMAIN)
|
|
{
|
|
/* Composite data type, e.g. a table's row type */
|
|
Assert(tupdesc);
|
|
/* Must copy it out of typcache for safety */
|
|
tupdesc = CreateTupleDescCopy(tupdesc);
|
|
}
|
|
else if (functypclass == TYPEFUNC_SCALAR)
|
|
{
|
|
/* Base data type, i.e. scalar */
|
|
tupdesc = CreateTemplateTupleDesc(1);
|
|
TupleDescInitEntry(tupdesc,
|
|
(AttrNumber) 1,
|
|
NULL, /* don't care about the name here */
|
|
funcrettype,
|
|
-1,
|
|
0);
|
|
TupleDescInitEntryCollation(tupdesc,
|
|
(AttrNumber) 1,
|
|
exprCollation(funcexpr));
|
|
}
|
|
else
|
|
{
|
|
/* crummy error message, but parser should have caught this */
|
|
elog(ERROR, "function in FROM has unsupported return type");
|
|
}
|
|
}
|
|
|
|
fs->tupdesc = tupdesc;
|
|
fs->colcount = colcount;
|
|
|
|
/*
|
|
* We only need separate slots for the function results if we are
|
|
* doing ordinality or multiple functions; otherwise, we'll fetch
|
|
* function results directly into the scan slot.
|
|
*/
|
|
if (!scanstate->simple)
|
|
{
|
|
fs->func_slot = ExecInitExtraTupleSlot(estate, fs->tupdesc,
|
|
&TTSOpsMinimalTuple);
|
|
}
|
|
else
|
|
fs->func_slot = NULL;
|
|
|
|
natts += colcount;
|
|
i++;
|
|
}
|
|
|
|
/*
|
|
* Create the combined TupleDesc
|
|
*
|
|
* If there is just one function without ordinality, the scan result
|
|
* tupdesc is the same as the function result tupdesc --- except that we
|
|
* may stuff new names into it below, so drop any rowtype label.
|
|
*/
|
|
if (scanstate->simple)
|
|
{
|
|
scan_tupdesc = CreateTupleDescCopy(scanstate->funcstates[0].tupdesc);
|
|
scan_tupdesc->tdtypeid = RECORDOID;
|
|
scan_tupdesc->tdtypmod = -1;
|
|
}
|
|
else
|
|
{
|
|
AttrNumber attno = 0;
|
|
|
|
if (node->funcordinality)
|
|
natts++;
|
|
|
|
scan_tupdesc = CreateTemplateTupleDesc(natts);
|
|
|
|
for (i = 0; i < nfuncs; i++)
|
|
{
|
|
TupleDesc tupdesc = scanstate->funcstates[i].tupdesc;
|
|
int colcount = scanstate->funcstates[i].colcount;
|
|
int j;
|
|
|
|
for (j = 1; j <= colcount; j++)
|
|
TupleDescCopyEntry(scan_tupdesc, ++attno, tupdesc, j);
|
|
}
|
|
|
|
/* If doing ordinality, add a column of type "bigint" at the end */
|
|
if (node->funcordinality)
|
|
{
|
|
TupleDescInitEntry(scan_tupdesc,
|
|
++attno,
|
|
NULL, /* don't care about the name here */
|
|
INT8OID,
|
|
-1,
|
|
0);
|
|
}
|
|
|
|
Assert(attno == natts);
|
|
}
|
|
|
|
/*
|
|
* Initialize scan slot and type.
|
|
*/
|
|
ExecInitScanTupleSlot(estate, &scanstate->ss, scan_tupdesc,
|
|
&TTSOpsMinimalTuple);
|
|
|
|
/*
|
|
* Initialize result slot, type and projection.
|
|
*/
|
|
ExecInitResultTypeTL(&scanstate->ss.ps);
|
|
ExecAssignScanProjectionInfo(&scanstate->ss);
|
|
|
|
/*
|
|
* initialize child expressions
|
|
*/
|
|
scanstate->ss.ps.qual =
|
|
ExecInitQual(node->scan.plan.qual, (PlanState *) scanstate);
|
|
|
|
/*
|
|
* Create a memory context that ExecMakeTableFunctionResult can use to
|
|
* evaluate function arguments in. We can't use the per-tuple context for
|
|
* this because it gets reset too often; but we don't want to leak
|
|
* evaluation results into the query-lifespan context either. We just
|
|
* need one context, because we evaluate each function separately.
|
|
*/
|
|
scanstate->argcontext = AllocSetContextCreate(CurrentMemoryContext,
|
|
"Table function arguments",
|
|
ALLOCSET_DEFAULT_SIZES);
|
|
|
|
return scanstate;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecEndFunctionScan
|
|
*
|
|
* frees any storage allocated through C routines.
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
void
|
|
ExecEndFunctionScan(FunctionScanState *node)
|
|
{
|
|
int i;
|
|
|
|
/*
|
|
* Free the exprcontext
|
|
*/
|
|
ExecFreeExprContext(&node->ss.ps);
|
|
|
|
/*
|
|
* clean out the tuple table
|
|
*/
|
|
if (node->ss.ps.ps_ResultTupleSlot)
|
|
ExecClearTuple(node->ss.ps.ps_ResultTupleSlot);
|
|
ExecClearTuple(node->ss.ss_ScanTupleSlot);
|
|
|
|
/*
|
|
* Release slots and tuplestore resources
|
|
*/
|
|
for (i = 0; i < node->nfuncs; i++)
|
|
{
|
|
FunctionScanPerFuncState *fs = &node->funcstates[i];
|
|
|
|
if (fs->func_slot)
|
|
ExecClearTuple(fs->func_slot);
|
|
|
|
if (fs->tstore != NULL)
|
|
{
|
|
tuplestore_end(node->funcstates[i].tstore);
|
|
fs->tstore = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecReScanFunctionScan
|
|
*
|
|
* Rescans the relation.
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
void
|
|
ExecReScanFunctionScan(FunctionScanState *node)
|
|
{
|
|
FunctionScan *scan = (FunctionScan *) node->ss.ps.plan;
|
|
int i;
|
|
Bitmapset *chgparam = node->ss.ps.chgParam;
|
|
|
|
if (node->ss.ps.ps_ResultTupleSlot)
|
|
ExecClearTuple(node->ss.ps.ps_ResultTupleSlot);
|
|
for (i = 0; i < node->nfuncs; i++)
|
|
{
|
|
FunctionScanPerFuncState *fs = &node->funcstates[i];
|
|
|
|
if (fs->func_slot)
|
|
ExecClearTuple(fs->func_slot);
|
|
}
|
|
|
|
ExecScanReScan(&node->ss);
|
|
|
|
/*
|
|
* Here we have a choice whether to drop the tuplestores (and recompute
|
|
* the function outputs) or just rescan them. We must recompute if an
|
|
* expression contains changed parameters, else we rescan.
|
|
*
|
|
* XXX maybe we should recompute if the function is volatile? But in
|
|
* general the executor doesn't conditionalize its actions on that.
|
|
*/
|
|
if (chgparam)
|
|
{
|
|
ListCell *lc;
|
|
|
|
i = 0;
|
|
foreach(lc, scan->functions)
|
|
{
|
|
RangeTblFunction *rtfunc = (RangeTblFunction *) lfirst(lc);
|
|
|
|
if (bms_overlap(chgparam, rtfunc->funcparams))
|
|
{
|
|
if (node->funcstates[i].tstore != NULL)
|
|
{
|
|
tuplestore_end(node->funcstates[i].tstore);
|
|
node->funcstates[i].tstore = NULL;
|
|
}
|
|
node->funcstates[i].rowcount = -1;
|
|
}
|
|
i++;
|
|
}
|
|
}
|
|
|
|
/* Reset ordinality counter */
|
|
node->ordinal = 0;
|
|
|
|
/* Make sure we rewind any remaining tuplestores */
|
|
for (i = 0; i < node->nfuncs; i++)
|
|
{
|
|
if (node->funcstates[i].tstore != NULL)
|
|
tuplestore_rescan(node->funcstates[i].tstore);
|
|
}
|
|
}
|