mirror of
https://github.com/postgres/postgres.git
synced 2025-11-28 11:44:57 +03:00
This commit introduces three new functions for marking shared buffers as dirty by using the functions introduced in9660906dbd: * pg_buffercache_mark_dirty() for one shared buffer. - pg_buffercache_mark_dirt_relation() for all the shared buffers in a relation. * pg_buffercache_mark_dirty_all() for all the shared buffers in pool. The "_all" and "_relation" flavors are designed to address the inefficiency of repeatedly calling pg_buffercache_mark_dirty() for each individual buffer, which can be time-consuming when dealing with with large shared buffers pool. These functions are intended as developer tools and are available only to superusers. There is no need to bump the version of pg_buffercache,4b203d499chaving done this job in this release cycle. Author: Nazir Bilal Yavuz <byavuz81@gmail.com> Reviewed-by: Andres Freund <andres@anarazel.de> Reviewed-by: Aidar Imamov <a.imamov@postgrespro.ru> Reviewed-by: Amit Kapila <amit.kapila16@gmail.com> Reviewed-by: Joseph Koshakow <koshy44@gmail.com> Reviewed-by: Michael Paquier <michael@paquier.xyz> Reviewed-by: Yuhang Qiu <iamqyh@gmail.com> Reviewed-by: Xuneng Zhou <xunengzhou@gmail.com> Discussion: https://postgr.es/m/CAN55FZ0h_YoSqqutxV6DES1RW8ig6wcA8CR9rJk358YRMxZFmw@mail.gmail.com
951 lines
27 KiB
C
951 lines
27 KiB
C
/*-------------------------------------------------------------------------
|
|
*
|
|
* pg_buffercache_pages.c
|
|
* display some contents of the buffer cache
|
|
*
|
|
* contrib/pg_buffercache/pg_buffercache_pages.c
|
|
*-------------------------------------------------------------------------
|
|
*/
|
|
#include "postgres.h"
|
|
|
|
#include "access/htup_details.h"
|
|
#include "access/relation.h"
|
|
#include "catalog/pg_type.h"
|
|
#include "funcapi.h"
|
|
#include "port/pg_numa.h"
|
|
#include "storage/buf_internals.h"
|
|
#include "storage/bufmgr.h"
|
|
#include "utils/rel.h"
|
|
|
|
|
|
#define NUM_BUFFERCACHE_PAGES_MIN_ELEM 8
|
|
#define NUM_BUFFERCACHE_PAGES_ELEM 9
|
|
#define NUM_BUFFERCACHE_SUMMARY_ELEM 5
|
|
#define NUM_BUFFERCACHE_USAGE_COUNTS_ELEM 4
|
|
#define NUM_BUFFERCACHE_EVICT_ELEM 2
|
|
#define NUM_BUFFERCACHE_EVICT_RELATION_ELEM 3
|
|
#define NUM_BUFFERCACHE_EVICT_ALL_ELEM 3
|
|
#define NUM_BUFFERCACHE_MARK_DIRTY_ELEM 2
|
|
#define NUM_BUFFERCACHE_MARK_DIRTY_RELATION_ELEM 3
|
|
#define NUM_BUFFERCACHE_MARK_DIRTY_ALL_ELEM 3
|
|
|
|
#define NUM_BUFFERCACHE_OS_PAGES_ELEM 3
|
|
|
|
PG_MODULE_MAGIC_EXT(
|
|
.name = "pg_buffercache",
|
|
.version = PG_VERSION
|
|
);
|
|
|
|
/*
|
|
* Record structure holding the to be exposed cache data.
|
|
*/
|
|
typedef struct
|
|
{
|
|
uint32 bufferid;
|
|
RelFileNumber relfilenumber;
|
|
Oid reltablespace;
|
|
Oid reldatabase;
|
|
ForkNumber forknum;
|
|
BlockNumber blocknum;
|
|
bool isvalid;
|
|
bool isdirty;
|
|
uint16 usagecount;
|
|
|
|
/*
|
|
* An int32 is sufficiently large, as MAX_BACKENDS prevents a buffer from
|
|
* being pinned by too many backends and each backend will only pin once
|
|
* because of bufmgr.c's PrivateRefCount infrastructure.
|
|
*/
|
|
int32 pinning_backends;
|
|
} BufferCachePagesRec;
|
|
|
|
|
|
/*
|
|
* Function context for data persisting over repeated calls.
|
|
*/
|
|
typedef struct
|
|
{
|
|
TupleDesc tupdesc;
|
|
BufferCachePagesRec *record;
|
|
} BufferCachePagesContext;
|
|
|
|
/*
|
|
* Record structure holding the to be exposed cache data for OS pages. This
|
|
* structure is used by pg_buffercache_os_pages(), where NUMA information may
|
|
* or may not be included.
|
|
*/
|
|
typedef struct
|
|
{
|
|
uint32 bufferid;
|
|
int64 page_num;
|
|
int32 numa_node;
|
|
} BufferCacheOsPagesRec;
|
|
|
|
/*
|
|
* Function context for data persisting over repeated calls.
|
|
*/
|
|
typedef struct
|
|
{
|
|
TupleDesc tupdesc;
|
|
bool include_numa;
|
|
BufferCacheOsPagesRec *record;
|
|
} BufferCacheOsPagesContext;
|
|
|
|
|
|
/*
|
|
* Function returning data from the shared buffer cache - buffer number,
|
|
* relation node/tablespace/database/blocknum and dirty indicator.
|
|
*/
|
|
PG_FUNCTION_INFO_V1(pg_buffercache_pages);
|
|
PG_FUNCTION_INFO_V1(pg_buffercache_os_pages);
|
|
PG_FUNCTION_INFO_V1(pg_buffercache_numa_pages);
|
|
PG_FUNCTION_INFO_V1(pg_buffercache_summary);
|
|
PG_FUNCTION_INFO_V1(pg_buffercache_usage_counts);
|
|
PG_FUNCTION_INFO_V1(pg_buffercache_evict);
|
|
PG_FUNCTION_INFO_V1(pg_buffercache_evict_relation);
|
|
PG_FUNCTION_INFO_V1(pg_buffercache_evict_all);
|
|
PG_FUNCTION_INFO_V1(pg_buffercache_mark_dirty);
|
|
PG_FUNCTION_INFO_V1(pg_buffercache_mark_dirty_relation);
|
|
PG_FUNCTION_INFO_V1(pg_buffercache_mark_dirty_all);
|
|
|
|
|
|
/* Only need to touch memory once per backend process lifetime */
|
|
static bool firstNumaTouch = true;
|
|
|
|
|
|
Datum
|
|
pg_buffercache_pages(PG_FUNCTION_ARGS)
|
|
{
|
|
FuncCallContext *funcctx;
|
|
Datum result;
|
|
MemoryContext oldcontext;
|
|
BufferCachePagesContext *fctx; /* User function context. */
|
|
TupleDesc tupledesc;
|
|
TupleDesc expected_tupledesc;
|
|
HeapTuple tuple;
|
|
|
|
if (SRF_IS_FIRSTCALL())
|
|
{
|
|
int i;
|
|
|
|
funcctx = SRF_FIRSTCALL_INIT();
|
|
|
|
/* Switch context when allocating stuff to be used in later calls */
|
|
oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx);
|
|
|
|
/* Create a user function context for cross-call persistence */
|
|
fctx = (BufferCachePagesContext *) palloc(sizeof(BufferCachePagesContext));
|
|
|
|
/*
|
|
* To smoothly support upgrades from version 1.0 of this extension
|
|
* transparently handle the (non-)existence of the pinning_backends
|
|
* column. We unfortunately have to get the result type for that... -
|
|
* we can't use the result type determined by the function definition
|
|
* without potentially crashing when somebody uses the old (or even
|
|
* wrong) function definition though.
|
|
*/
|
|
if (get_call_result_type(fcinfo, NULL, &expected_tupledesc) != TYPEFUNC_COMPOSITE)
|
|
elog(ERROR, "return type must be a row type");
|
|
|
|
if (expected_tupledesc->natts < NUM_BUFFERCACHE_PAGES_MIN_ELEM ||
|
|
expected_tupledesc->natts > NUM_BUFFERCACHE_PAGES_ELEM)
|
|
elog(ERROR, "incorrect number of output arguments");
|
|
|
|
/* Construct a tuple descriptor for the result rows. */
|
|
tupledesc = CreateTemplateTupleDesc(expected_tupledesc->natts);
|
|
TupleDescInitEntry(tupledesc, (AttrNumber) 1, "bufferid",
|
|
INT4OID, -1, 0);
|
|
TupleDescInitEntry(tupledesc, (AttrNumber) 2, "relfilenode",
|
|
OIDOID, -1, 0);
|
|
TupleDescInitEntry(tupledesc, (AttrNumber) 3, "reltablespace",
|
|
OIDOID, -1, 0);
|
|
TupleDescInitEntry(tupledesc, (AttrNumber) 4, "reldatabase",
|
|
OIDOID, -1, 0);
|
|
TupleDescInitEntry(tupledesc, (AttrNumber) 5, "relforknumber",
|
|
INT2OID, -1, 0);
|
|
TupleDescInitEntry(tupledesc, (AttrNumber) 6, "relblocknumber",
|
|
INT8OID, -1, 0);
|
|
TupleDescInitEntry(tupledesc, (AttrNumber) 7, "isdirty",
|
|
BOOLOID, -1, 0);
|
|
TupleDescInitEntry(tupledesc, (AttrNumber) 8, "usage_count",
|
|
INT2OID, -1, 0);
|
|
|
|
if (expected_tupledesc->natts == NUM_BUFFERCACHE_PAGES_ELEM)
|
|
TupleDescInitEntry(tupledesc, (AttrNumber) 9, "pinning_backends",
|
|
INT4OID, -1, 0);
|
|
|
|
fctx->tupdesc = BlessTupleDesc(tupledesc);
|
|
|
|
/* Allocate NBuffers worth of BufferCachePagesRec records. */
|
|
fctx->record = (BufferCachePagesRec *)
|
|
MemoryContextAllocHuge(CurrentMemoryContext,
|
|
sizeof(BufferCachePagesRec) * NBuffers);
|
|
|
|
/* Set max calls and remember the user function context. */
|
|
funcctx->max_calls = NBuffers;
|
|
funcctx->user_fctx = fctx;
|
|
|
|
/* Return to original context when allocating transient memory */
|
|
MemoryContextSwitchTo(oldcontext);
|
|
|
|
/*
|
|
* Scan through all the buffers, saving the relevant fields in the
|
|
* fctx->record structure.
|
|
*
|
|
* We don't hold the partition locks, so we don't get a consistent
|
|
* snapshot across all buffers, but we do grab the buffer header
|
|
* locks, so the information of each buffer is self-consistent.
|
|
*/
|
|
for (i = 0; i < NBuffers; i++)
|
|
{
|
|
BufferDesc *bufHdr;
|
|
uint32 buf_state;
|
|
|
|
CHECK_FOR_INTERRUPTS();
|
|
|
|
bufHdr = GetBufferDescriptor(i);
|
|
/* Lock each buffer header before inspecting. */
|
|
buf_state = LockBufHdr(bufHdr);
|
|
|
|
fctx->record[i].bufferid = BufferDescriptorGetBuffer(bufHdr);
|
|
fctx->record[i].relfilenumber = BufTagGetRelNumber(&bufHdr->tag);
|
|
fctx->record[i].reltablespace = bufHdr->tag.spcOid;
|
|
fctx->record[i].reldatabase = bufHdr->tag.dbOid;
|
|
fctx->record[i].forknum = BufTagGetForkNum(&bufHdr->tag);
|
|
fctx->record[i].blocknum = bufHdr->tag.blockNum;
|
|
fctx->record[i].usagecount = BUF_STATE_GET_USAGECOUNT(buf_state);
|
|
fctx->record[i].pinning_backends = BUF_STATE_GET_REFCOUNT(buf_state);
|
|
|
|
if (buf_state & BM_DIRTY)
|
|
fctx->record[i].isdirty = true;
|
|
else
|
|
fctx->record[i].isdirty = false;
|
|
|
|
/* Note if the buffer is valid, and has storage created */
|
|
if ((buf_state & BM_VALID) && (buf_state & BM_TAG_VALID))
|
|
fctx->record[i].isvalid = true;
|
|
else
|
|
fctx->record[i].isvalid = false;
|
|
|
|
UnlockBufHdr(bufHdr);
|
|
}
|
|
}
|
|
|
|
funcctx = SRF_PERCALL_SETUP();
|
|
|
|
/* Get the saved state */
|
|
fctx = funcctx->user_fctx;
|
|
|
|
if (funcctx->call_cntr < funcctx->max_calls)
|
|
{
|
|
uint32 i = funcctx->call_cntr;
|
|
Datum values[NUM_BUFFERCACHE_PAGES_ELEM];
|
|
bool nulls[NUM_BUFFERCACHE_PAGES_ELEM];
|
|
|
|
values[0] = Int32GetDatum(fctx->record[i].bufferid);
|
|
nulls[0] = false;
|
|
|
|
/*
|
|
* Set all fields except the bufferid to null if the buffer is unused
|
|
* or not valid.
|
|
*/
|
|
if (fctx->record[i].blocknum == InvalidBlockNumber ||
|
|
fctx->record[i].isvalid == false)
|
|
{
|
|
nulls[1] = true;
|
|
nulls[2] = true;
|
|
nulls[3] = true;
|
|
nulls[4] = true;
|
|
nulls[5] = true;
|
|
nulls[6] = true;
|
|
nulls[7] = true;
|
|
/* unused for v1.0 callers, but the array is always long enough */
|
|
nulls[8] = true;
|
|
}
|
|
else
|
|
{
|
|
values[1] = ObjectIdGetDatum(fctx->record[i].relfilenumber);
|
|
nulls[1] = false;
|
|
values[2] = ObjectIdGetDatum(fctx->record[i].reltablespace);
|
|
nulls[2] = false;
|
|
values[3] = ObjectIdGetDatum(fctx->record[i].reldatabase);
|
|
nulls[3] = false;
|
|
values[4] = Int16GetDatum(fctx->record[i].forknum);
|
|
nulls[4] = false;
|
|
values[5] = Int64GetDatum((int64) fctx->record[i].blocknum);
|
|
nulls[5] = false;
|
|
values[6] = BoolGetDatum(fctx->record[i].isdirty);
|
|
nulls[6] = false;
|
|
values[7] = Int16GetDatum(fctx->record[i].usagecount);
|
|
nulls[7] = false;
|
|
/* unused for v1.0 callers, but the array is always long enough */
|
|
values[8] = Int32GetDatum(fctx->record[i].pinning_backends);
|
|
nulls[8] = false;
|
|
}
|
|
|
|
/* Build and return the tuple. */
|
|
tuple = heap_form_tuple(fctx->tupdesc, values, nulls);
|
|
result = HeapTupleGetDatum(tuple);
|
|
|
|
SRF_RETURN_NEXT(funcctx, result);
|
|
}
|
|
else
|
|
SRF_RETURN_DONE(funcctx);
|
|
}
|
|
|
|
/*
|
|
* Inquire about OS pages mappings for shared buffers, with NUMA information,
|
|
* optionally.
|
|
*
|
|
* When "include_numa" is false, this routines ignores everything related
|
|
* to NUMA (returned as NULL values), returning mapping information between
|
|
* shared buffers and OS pages.
|
|
*
|
|
* When "include_numa" is true, NUMA is initialized and numa_node values
|
|
* are generated. In order to get reliable results we also need to touch
|
|
* memory pages, so that the inquiry about NUMA memory node does not return
|
|
* -2, indicating unmapped/unallocated pages.
|
|
*
|
|
* Buffers may be smaller or larger than OS memory pages. For each buffer we
|
|
* return one entry for each memory page used by the buffer (if the buffer is
|
|
* smaller, it only uses a part of one memory page).
|
|
*
|
|
* We expect both sizes (for buffers and memory pages) to be a power-of-2, so
|
|
* one is always a multiple of the other.
|
|
*
|
|
*/
|
|
static Datum
|
|
pg_buffercache_os_pages_internal(FunctionCallInfo fcinfo, bool include_numa)
|
|
{
|
|
FuncCallContext *funcctx;
|
|
MemoryContext oldcontext;
|
|
BufferCacheOsPagesContext *fctx; /* User function context. */
|
|
TupleDesc tupledesc;
|
|
TupleDesc expected_tupledesc;
|
|
HeapTuple tuple;
|
|
Datum result;
|
|
|
|
if (SRF_IS_FIRSTCALL())
|
|
{
|
|
int i,
|
|
idx;
|
|
Size os_page_size;
|
|
int pages_per_buffer;
|
|
int *os_page_status = NULL;
|
|
uint64 os_page_count = 0;
|
|
int max_entries;
|
|
char *startptr,
|
|
*endptr;
|
|
|
|
/* If NUMA information is requested, initialize NUMA support. */
|
|
if (include_numa && pg_numa_init() == -1)
|
|
elog(ERROR, "libnuma initialization failed or NUMA is not supported on this platform");
|
|
|
|
/*
|
|
* The database block size and OS memory page size are unlikely to be
|
|
* the same. The block size is 1-32KB, the memory page size depends on
|
|
* platform. On x86 it's usually 4KB, on ARM it's 4KB or 64KB, but
|
|
* there are also features like THP etc. Moreover, we don't quite know
|
|
* how the pages and buffers "align" in memory - the buffers may be
|
|
* shifted in some way, using more memory pages than necessary.
|
|
*
|
|
* So we need to be careful about mapping buffers to memory pages. We
|
|
* calculate the maximum number of pages a buffer might use, so that
|
|
* we allocate enough space for the entries. And then we count the
|
|
* actual number of entries as we scan the buffers.
|
|
*
|
|
* This information is needed before calling move_pages() for NUMA
|
|
* node id inquiry.
|
|
*/
|
|
os_page_size = pg_get_shmem_pagesize();
|
|
|
|
/*
|
|
* The pages and block size is expected to be 2^k, so one divides the
|
|
* other (we don't know in which direction). This does not say
|
|
* anything about relative alignment of pages/buffers.
|
|
*/
|
|
Assert((os_page_size % BLCKSZ == 0) || (BLCKSZ % os_page_size == 0));
|
|
|
|
if (include_numa)
|
|
{
|
|
void **os_page_ptrs = NULL;
|
|
|
|
/*
|
|
* How many addresses we are going to query? Simply get the page
|
|
* for the first buffer, and first page after the last buffer, and
|
|
* count the pages from that.
|
|
*/
|
|
startptr = (char *) TYPEALIGN_DOWN(os_page_size,
|
|
BufferGetBlock(1));
|
|
endptr = (char *) TYPEALIGN(os_page_size,
|
|
(char *) BufferGetBlock(NBuffers) + BLCKSZ);
|
|
os_page_count = (endptr - startptr) / os_page_size;
|
|
|
|
/* Used to determine the NUMA node for all OS pages at once */
|
|
os_page_ptrs = palloc0(sizeof(void *) * os_page_count);
|
|
os_page_status = palloc(sizeof(uint64) * os_page_count);
|
|
|
|
/*
|
|
* Fill pointers for all the memory pages. This loop stores and
|
|
* touches (if needed) addresses into os_page_ptrs[] as input to
|
|
* one big move_pages(2) inquiry system call, as done in
|
|
* pg_numa_query_pages().
|
|
*/
|
|
idx = 0;
|
|
for (char *ptr = startptr; ptr < endptr; ptr += os_page_size)
|
|
{
|
|
os_page_ptrs[idx++] = ptr;
|
|
|
|
/* Only need to touch memory once per backend process lifetime */
|
|
if (firstNumaTouch)
|
|
pg_numa_touch_mem_if_required(ptr);
|
|
}
|
|
|
|
Assert(idx == os_page_count);
|
|
|
|
elog(DEBUG1, "NUMA: NBuffers=%d os_page_count=" UINT64_FORMAT " "
|
|
"os_page_size=%zu", NBuffers, os_page_count, os_page_size);
|
|
|
|
/*
|
|
* If we ever get 0xff back from kernel inquiry, then we probably
|
|
* have bug in our buffers to OS page mapping code here.
|
|
*/
|
|
memset(os_page_status, 0xff, sizeof(int) * os_page_count);
|
|
|
|
/* Query NUMA status for all the pointers */
|
|
if (pg_numa_query_pages(0, os_page_count, os_page_ptrs, os_page_status) == -1)
|
|
elog(ERROR, "failed NUMA pages inquiry: %m");
|
|
}
|
|
|
|
/* Initialize the multi-call context, load entries about buffers */
|
|
|
|
funcctx = SRF_FIRSTCALL_INIT();
|
|
|
|
/* Switch context when allocating stuff to be used in later calls */
|
|
oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx);
|
|
|
|
/* Create a user function context for cross-call persistence */
|
|
fctx = (BufferCacheOsPagesContext *) palloc(sizeof(BufferCacheOsPagesContext));
|
|
|
|
if (get_call_result_type(fcinfo, NULL, &expected_tupledesc) != TYPEFUNC_COMPOSITE)
|
|
elog(ERROR, "return type must be a row type");
|
|
|
|
if (expected_tupledesc->natts != NUM_BUFFERCACHE_OS_PAGES_ELEM)
|
|
elog(ERROR, "incorrect number of output arguments");
|
|
|
|
/* Construct a tuple descriptor for the result rows. */
|
|
tupledesc = CreateTemplateTupleDesc(expected_tupledesc->natts);
|
|
TupleDescInitEntry(tupledesc, (AttrNumber) 1, "bufferid",
|
|
INT4OID, -1, 0);
|
|
TupleDescInitEntry(tupledesc, (AttrNumber) 2, "os_page_num",
|
|
INT8OID, -1, 0);
|
|
TupleDescInitEntry(tupledesc, (AttrNumber) 3, "numa_node",
|
|
INT4OID, -1, 0);
|
|
|
|
fctx->tupdesc = BlessTupleDesc(tupledesc);
|
|
fctx->include_numa = include_numa;
|
|
|
|
/*
|
|
* Each buffer needs at least one entry, but it might be offset in
|
|
* some way, and use one extra entry. So we allocate space for the
|
|
* maximum number of entries we might need, and then count the exact
|
|
* number as we're walking buffers. That way we can do it in one pass,
|
|
* without reallocating memory.
|
|
*/
|
|
pages_per_buffer = Max(1, BLCKSZ / os_page_size) + 1;
|
|
max_entries = NBuffers * pages_per_buffer;
|
|
|
|
/* Allocate entries for BufferCacheOsPagesRec records. */
|
|
fctx->record = (BufferCacheOsPagesRec *)
|
|
MemoryContextAllocHuge(CurrentMemoryContext,
|
|
sizeof(BufferCacheOsPagesRec) * max_entries);
|
|
|
|
/* Return to original context when allocating transient memory */
|
|
MemoryContextSwitchTo(oldcontext);
|
|
|
|
if (include_numa && firstNumaTouch)
|
|
elog(DEBUG1, "NUMA: page-faulting the buffercache for proper NUMA readouts");
|
|
|
|
/*
|
|
* Scan through all the buffers, saving the relevant fields in the
|
|
* fctx->record structure.
|
|
*
|
|
* We don't hold the partition locks, so we don't get a consistent
|
|
* snapshot across all buffers, but we do grab the buffer header
|
|
* locks, so the information of each buffer is self-consistent.
|
|
*/
|
|
startptr = (char *) TYPEALIGN_DOWN(os_page_size, (char *) BufferGetBlock(1));
|
|
idx = 0;
|
|
for (i = 0; i < NBuffers; i++)
|
|
{
|
|
char *buffptr = (char *) BufferGetBlock(i + 1);
|
|
BufferDesc *bufHdr;
|
|
uint32 bufferid;
|
|
int32 page_num;
|
|
char *startptr_buff,
|
|
*endptr_buff;
|
|
|
|
CHECK_FOR_INTERRUPTS();
|
|
|
|
bufHdr = GetBufferDescriptor(i);
|
|
|
|
/* Lock each buffer header before inspecting. */
|
|
LockBufHdr(bufHdr);
|
|
bufferid = BufferDescriptorGetBuffer(bufHdr);
|
|
UnlockBufHdr(bufHdr);
|
|
|
|
/* start of the first page of this buffer */
|
|
startptr_buff = (char *) TYPEALIGN_DOWN(os_page_size, buffptr);
|
|
|
|
/* end of the buffer (no need to align to memory page) */
|
|
endptr_buff = buffptr + BLCKSZ;
|
|
|
|
Assert(startptr_buff < endptr_buff);
|
|
|
|
/* calculate ID of the first page for this buffer */
|
|
page_num = (startptr_buff - startptr) / os_page_size;
|
|
|
|
/* Add an entry for each OS page overlapping with this buffer. */
|
|
for (char *ptr = startptr_buff; ptr < endptr_buff; ptr += os_page_size)
|
|
{
|
|
fctx->record[idx].bufferid = bufferid;
|
|
fctx->record[idx].page_num = page_num;
|
|
fctx->record[idx].numa_node = include_numa ? os_page_status[page_num] : -1;
|
|
|
|
/* advance to the next entry/page */
|
|
++idx;
|
|
++page_num;
|
|
}
|
|
}
|
|
|
|
Assert(idx <= max_entries);
|
|
|
|
if (include_numa)
|
|
Assert(idx >= os_page_count);
|
|
|
|
/* Set max calls and remember the user function context. */
|
|
funcctx->max_calls = idx;
|
|
funcctx->user_fctx = fctx;
|
|
|
|
/* Remember this backend touched the pages (only relevant for NUMA) */
|
|
if (include_numa)
|
|
firstNumaTouch = false;
|
|
}
|
|
|
|
funcctx = SRF_PERCALL_SETUP();
|
|
|
|
/* Get the saved state */
|
|
fctx = funcctx->user_fctx;
|
|
|
|
if (funcctx->call_cntr < funcctx->max_calls)
|
|
{
|
|
uint32 i = funcctx->call_cntr;
|
|
Datum values[NUM_BUFFERCACHE_OS_PAGES_ELEM];
|
|
bool nulls[NUM_BUFFERCACHE_OS_PAGES_ELEM];
|
|
|
|
values[0] = Int32GetDatum(fctx->record[i].bufferid);
|
|
nulls[0] = false;
|
|
|
|
values[1] = Int64GetDatum(fctx->record[i].page_num);
|
|
nulls[1] = false;
|
|
|
|
if (fctx->include_numa)
|
|
{
|
|
values[2] = Int32GetDatum(fctx->record[i].numa_node);
|
|
nulls[2] = false;
|
|
}
|
|
else
|
|
{
|
|
values[2] = (Datum) 0;
|
|
nulls[2] = true;
|
|
}
|
|
|
|
/* Build and return the tuple. */
|
|
tuple = heap_form_tuple(fctx->tupdesc, values, nulls);
|
|
result = HeapTupleGetDatum(tuple);
|
|
|
|
SRF_RETURN_NEXT(funcctx, result);
|
|
}
|
|
else
|
|
SRF_RETURN_DONE(funcctx);
|
|
}
|
|
|
|
/*
|
|
* pg_buffercache_os_pages
|
|
*
|
|
* Retrieve information about OS pages, with or without NUMA information.
|
|
*/
|
|
Datum
|
|
pg_buffercache_os_pages(PG_FUNCTION_ARGS)
|
|
{
|
|
bool include_numa;
|
|
|
|
/* Get the boolean parameter that controls the NUMA behavior. */
|
|
include_numa = PG_GETARG_BOOL(0);
|
|
|
|
return pg_buffercache_os_pages_internal(fcinfo, include_numa);
|
|
}
|
|
|
|
/* Backward-compatible wrapper for v1.6. */
|
|
Datum
|
|
pg_buffercache_numa_pages(PG_FUNCTION_ARGS)
|
|
{
|
|
/* Call internal function with include_numa=true */
|
|
return pg_buffercache_os_pages_internal(fcinfo, true);
|
|
}
|
|
|
|
Datum
|
|
pg_buffercache_summary(PG_FUNCTION_ARGS)
|
|
{
|
|
Datum result;
|
|
TupleDesc tupledesc;
|
|
HeapTuple tuple;
|
|
Datum values[NUM_BUFFERCACHE_SUMMARY_ELEM];
|
|
bool nulls[NUM_BUFFERCACHE_SUMMARY_ELEM];
|
|
|
|
int32 buffers_used = 0;
|
|
int32 buffers_unused = 0;
|
|
int32 buffers_dirty = 0;
|
|
int32 buffers_pinned = 0;
|
|
int64 usagecount_total = 0;
|
|
|
|
if (get_call_result_type(fcinfo, NULL, &tupledesc) != TYPEFUNC_COMPOSITE)
|
|
elog(ERROR, "return type must be a row type");
|
|
|
|
for (int i = 0; i < NBuffers; i++)
|
|
{
|
|
BufferDesc *bufHdr;
|
|
uint32 buf_state;
|
|
|
|
CHECK_FOR_INTERRUPTS();
|
|
|
|
/*
|
|
* This function summarizes the state of all headers. Locking the
|
|
* buffer headers wouldn't provide an improved result as the state of
|
|
* the buffer can still change after we release the lock and it'd
|
|
* noticeably increase the cost of the function.
|
|
*/
|
|
bufHdr = GetBufferDescriptor(i);
|
|
buf_state = pg_atomic_read_u32(&bufHdr->state);
|
|
|
|
if (buf_state & BM_VALID)
|
|
{
|
|
buffers_used++;
|
|
usagecount_total += BUF_STATE_GET_USAGECOUNT(buf_state);
|
|
|
|
if (buf_state & BM_DIRTY)
|
|
buffers_dirty++;
|
|
}
|
|
else
|
|
buffers_unused++;
|
|
|
|
if (BUF_STATE_GET_REFCOUNT(buf_state) > 0)
|
|
buffers_pinned++;
|
|
}
|
|
|
|
memset(nulls, 0, sizeof(nulls));
|
|
values[0] = Int32GetDatum(buffers_used);
|
|
values[1] = Int32GetDatum(buffers_unused);
|
|
values[2] = Int32GetDatum(buffers_dirty);
|
|
values[3] = Int32GetDatum(buffers_pinned);
|
|
|
|
if (buffers_used != 0)
|
|
values[4] = Float8GetDatum((double) usagecount_total / buffers_used);
|
|
else
|
|
nulls[4] = true;
|
|
|
|
/* Build and return the tuple. */
|
|
tuple = heap_form_tuple(tupledesc, values, nulls);
|
|
result = HeapTupleGetDatum(tuple);
|
|
|
|
PG_RETURN_DATUM(result);
|
|
}
|
|
|
|
Datum
|
|
pg_buffercache_usage_counts(PG_FUNCTION_ARGS)
|
|
{
|
|
ReturnSetInfo *rsinfo = (ReturnSetInfo *) fcinfo->resultinfo;
|
|
int usage_counts[BM_MAX_USAGE_COUNT + 1] = {0};
|
|
int dirty[BM_MAX_USAGE_COUNT + 1] = {0};
|
|
int pinned[BM_MAX_USAGE_COUNT + 1] = {0};
|
|
Datum values[NUM_BUFFERCACHE_USAGE_COUNTS_ELEM];
|
|
bool nulls[NUM_BUFFERCACHE_USAGE_COUNTS_ELEM] = {0};
|
|
|
|
InitMaterializedSRF(fcinfo, 0);
|
|
|
|
for (int i = 0; i < NBuffers; i++)
|
|
{
|
|
BufferDesc *bufHdr = GetBufferDescriptor(i);
|
|
uint32 buf_state = pg_atomic_read_u32(&bufHdr->state);
|
|
int usage_count;
|
|
|
|
CHECK_FOR_INTERRUPTS();
|
|
|
|
usage_count = BUF_STATE_GET_USAGECOUNT(buf_state);
|
|
usage_counts[usage_count]++;
|
|
|
|
if (buf_state & BM_DIRTY)
|
|
dirty[usage_count]++;
|
|
|
|
if (BUF_STATE_GET_REFCOUNT(buf_state) > 0)
|
|
pinned[usage_count]++;
|
|
}
|
|
|
|
for (int i = 0; i < BM_MAX_USAGE_COUNT + 1; i++)
|
|
{
|
|
values[0] = Int32GetDatum(i);
|
|
values[1] = Int32GetDatum(usage_counts[i]);
|
|
values[2] = Int32GetDatum(dirty[i]);
|
|
values[3] = Int32GetDatum(pinned[i]);
|
|
|
|
tuplestore_putvalues(rsinfo->setResult, rsinfo->setDesc, values, nulls);
|
|
}
|
|
|
|
return (Datum) 0;
|
|
}
|
|
|
|
/*
|
|
* Helper function to check if the user has superuser privileges.
|
|
*/
|
|
static void
|
|
pg_buffercache_superuser_check(char *func_name)
|
|
{
|
|
if (!superuser())
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INSUFFICIENT_PRIVILEGE),
|
|
errmsg("must be superuser to use %s()",
|
|
func_name)));
|
|
}
|
|
|
|
/*
|
|
* Try to evict a shared buffer.
|
|
*/
|
|
Datum
|
|
pg_buffercache_evict(PG_FUNCTION_ARGS)
|
|
{
|
|
Datum result;
|
|
TupleDesc tupledesc;
|
|
HeapTuple tuple;
|
|
Datum values[NUM_BUFFERCACHE_EVICT_ELEM];
|
|
bool nulls[NUM_BUFFERCACHE_EVICT_ELEM] = {0};
|
|
|
|
Buffer buf = PG_GETARG_INT32(0);
|
|
bool buffer_flushed;
|
|
|
|
if (get_call_result_type(fcinfo, NULL, &tupledesc) != TYPEFUNC_COMPOSITE)
|
|
elog(ERROR, "return type must be a row type");
|
|
|
|
pg_buffercache_superuser_check("pg_buffercache_evict");
|
|
|
|
if (buf < 1 || buf > NBuffers)
|
|
elog(ERROR, "bad buffer ID: %d", buf);
|
|
|
|
values[0] = BoolGetDatum(EvictUnpinnedBuffer(buf, &buffer_flushed));
|
|
values[1] = BoolGetDatum(buffer_flushed);
|
|
|
|
tuple = heap_form_tuple(tupledesc, values, nulls);
|
|
result = HeapTupleGetDatum(tuple);
|
|
|
|
PG_RETURN_DATUM(result);
|
|
}
|
|
|
|
/*
|
|
* Try to evict specified relation.
|
|
*/
|
|
Datum
|
|
pg_buffercache_evict_relation(PG_FUNCTION_ARGS)
|
|
{
|
|
Datum result;
|
|
TupleDesc tupledesc;
|
|
HeapTuple tuple;
|
|
Datum values[NUM_BUFFERCACHE_EVICT_RELATION_ELEM];
|
|
bool nulls[NUM_BUFFERCACHE_EVICT_RELATION_ELEM] = {0};
|
|
|
|
Oid relOid;
|
|
Relation rel;
|
|
|
|
int32 buffers_evicted = 0;
|
|
int32 buffers_flushed = 0;
|
|
int32 buffers_skipped = 0;
|
|
|
|
if (get_call_result_type(fcinfo, NULL, &tupledesc) != TYPEFUNC_COMPOSITE)
|
|
elog(ERROR, "return type must be a row type");
|
|
|
|
pg_buffercache_superuser_check("pg_buffercache_evict_relation");
|
|
|
|
relOid = PG_GETARG_OID(0);
|
|
|
|
rel = relation_open(relOid, AccessShareLock);
|
|
|
|
if (RelationUsesLocalBuffers(rel))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
|
|
errmsg("relation uses local buffers, %s() is intended to be used for shared buffers only",
|
|
"pg_buffercache_evict_relation")));
|
|
|
|
EvictRelUnpinnedBuffers(rel, &buffers_evicted, &buffers_flushed,
|
|
&buffers_skipped);
|
|
|
|
relation_close(rel, AccessShareLock);
|
|
|
|
values[0] = Int32GetDatum(buffers_evicted);
|
|
values[1] = Int32GetDatum(buffers_flushed);
|
|
values[2] = Int32GetDatum(buffers_skipped);
|
|
|
|
tuple = heap_form_tuple(tupledesc, values, nulls);
|
|
result = HeapTupleGetDatum(tuple);
|
|
|
|
PG_RETURN_DATUM(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* Try to evict all shared buffers.
|
|
*/
|
|
Datum
|
|
pg_buffercache_evict_all(PG_FUNCTION_ARGS)
|
|
{
|
|
Datum result;
|
|
TupleDesc tupledesc;
|
|
HeapTuple tuple;
|
|
Datum values[NUM_BUFFERCACHE_EVICT_ALL_ELEM];
|
|
bool nulls[NUM_BUFFERCACHE_EVICT_ALL_ELEM] = {0};
|
|
|
|
int32 buffers_evicted = 0;
|
|
int32 buffers_flushed = 0;
|
|
int32 buffers_skipped = 0;
|
|
|
|
if (get_call_result_type(fcinfo, NULL, &tupledesc) != TYPEFUNC_COMPOSITE)
|
|
elog(ERROR, "return type must be a row type");
|
|
|
|
pg_buffercache_superuser_check("pg_buffercache_evict_all");
|
|
|
|
EvictAllUnpinnedBuffers(&buffers_evicted, &buffers_flushed,
|
|
&buffers_skipped);
|
|
|
|
values[0] = Int32GetDatum(buffers_evicted);
|
|
values[1] = Int32GetDatum(buffers_flushed);
|
|
values[2] = Int32GetDatum(buffers_skipped);
|
|
|
|
tuple = heap_form_tuple(tupledesc, values, nulls);
|
|
result = HeapTupleGetDatum(tuple);
|
|
|
|
PG_RETURN_DATUM(result);
|
|
}
|
|
|
|
/*
|
|
* Try to mark a shared buffer as dirty.
|
|
*/
|
|
Datum
|
|
pg_buffercache_mark_dirty(PG_FUNCTION_ARGS)
|
|
{
|
|
|
|
Datum result;
|
|
TupleDesc tupledesc;
|
|
HeapTuple tuple;
|
|
Datum values[NUM_BUFFERCACHE_MARK_DIRTY_ELEM];
|
|
bool nulls[NUM_BUFFERCACHE_MARK_DIRTY_ELEM] = {0};
|
|
|
|
Buffer buf = PG_GETARG_INT32(0);
|
|
bool buffer_already_dirty;
|
|
|
|
if (get_call_result_type(fcinfo, NULL, &tupledesc) != TYPEFUNC_COMPOSITE)
|
|
elog(ERROR, "return type must be a row type");
|
|
|
|
pg_buffercache_superuser_check("pg_buffercache_mark_dirty");
|
|
|
|
if (buf < 1 || buf > NBuffers)
|
|
elog(ERROR, "bad buffer ID: %d", buf);
|
|
|
|
values[0] = BoolGetDatum(MarkDirtyUnpinnedBuffer(buf, &buffer_already_dirty));
|
|
values[1] = BoolGetDatum(buffer_already_dirty);
|
|
|
|
tuple = heap_form_tuple(tupledesc, values, nulls);
|
|
result = HeapTupleGetDatum(tuple);
|
|
|
|
PG_RETURN_DATUM(result);
|
|
}
|
|
|
|
/*
|
|
* Try to mark all the shared buffers of a relation as dirty.
|
|
*/
|
|
Datum
|
|
pg_buffercache_mark_dirty_relation(PG_FUNCTION_ARGS)
|
|
{
|
|
Datum result;
|
|
TupleDesc tupledesc;
|
|
HeapTuple tuple;
|
|
Datum values[NUM_BUFFERCACHE_MARK_DIRTY_RELATION_ELEM];
|
|
bool nulls[NUM_BUFFERCACHE_MARK_DIRTY_RELATION_ELEM] = {0};
|
|
|
|
Oid relOid;
|
|
Relation rel;
|
|
|
|
int32 buffers_already_dirty = 0;
|
|
int32 buffers_dirtied = 0;
|
|
int32 buffers_skipped = 0;
|
|
|
|
if (get_call_result_type(fcinfo, NULL, &tupledesc) != TYPEFUNC_COMPOSITE)
|
|
elog(ERROR, "return type must be a row type");
|
|
|
|
pg_buffercache_superuser_check("pg_buffercache_mark_dirty_relation");
|
|
|
|
relOid = PG_GETARG_OID(0);
|
|
|
|
rel = relation_open(relOid, AccessShareLock);
|
|
|
|
if (RelationUsesLocalBuffers(rel))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
|
|
errmsg("relation uses local buffers, %s() is intended to be used for shared buffers only",
|
|
"pg_buffercache_mark_dirty_relation")));
|
|
|
|
MarkDirtyRelUnpinnedBuffers(rel, &buffers_dirtied, &buffers_already_dirty,
|
|
&buffers_skipped);
|
|
|
|
relation_close(rel, AccessShareLock);
|
|
|
|
values[0] = Int32GetDatum(buffers_dirtied);
|
|
values[1] = Int32GetDatum(buffers_already_dirty);
|
|
values[2] = Int32GetDatum(buffers_skipped);
|
|
|
|
tuple = heap_form_tuple(tupledesc, values, nulls);
|
|
result = HeapTupleGetDatum(tuple);
|
|
|
|
PG_RETURN_DATUM(result);
|
|
}
|
|
|
|
/*
|
|
* Try to mark all the shared buffers as dirty.
|
|
*/
|
|
Datum
|
|
pg_buffercache_mark_dirty_all(PG_FUNCTION_ARGS)
|
|
{
|
|
Datum result;
|
|
TupleDesc tupledesc;
|
|
HeapTuple tuple;
|
|
Datum values[NUM_BUFFERCACHE_MARK_DIRTY_ALL_ELEM];
|
|
bool nulls[NUM_BUFFERCACHE_MARK_DIRTY_ALL_ELEM] = {0};
|
|
|
|
int32 buffers_already_dirty = 0;
|
|
int32 buffers_dirtied = 0;
|
|
int32 buffers_skipped = 0;
|
|
|
|
if (get_call_result_type(fcinfo, NULL, &tupledesc) != TYPEFUNC_COMPOSITE)
|
|
elog(ERROR, "return type must be a row type");
|
|
|
|
pg_buffercache_superuser_check("pg_buffercache_mark_dirty_all");
|
|
|
|
MarkDirtyAllUnpinnedBuffers(&buffers_dirtied, &buffers_already_dirty,
|
|
&buffers_skipped);
|
|
|
|
values[0] = Int32GetDatum(buffers_dirtied);
|
|
values[1] = Int32GetDatum(buffers_already_dirty);
|
|
values[2] = Int32GetDatum(buffers_skipped);
|
|
|
|
tuple = heap_form_tuple(tupledesc, values, nulls);
|
|
result = HeapTupleGetDatum(tuple);
|
|
|
|
PG_RETURN_DATUM(result);
|
|
}
|