1
0
mirror of https://github.com/postgres/postgres.git synced 2025-11-10 17:42:29 +03:00
Files
postgres/src/backend/access/nbtree/nbtree.c
Peter Geoghegan 8523492d4e Remove tupgone special case from vacuumlazy.c.
Retry the call to heap_prune_page() in rare cases where there is
disagreement between the heap_prune_page() call and the call to
HeapTupleSatisfiesVacuum() that immediately follows.  Disagreement is
possible when a concurrently-aborted transaction makes a tuple DEAD
during the tiny window between each step.  This was the only case where
a tuple considered DEAD by VACUUM still had storage following pruning.
VACUUM's definition of dead tuples is now uniformly simple and
unambiguous: dead tuples from each page are always LP_DEAD line pointers
that were encountered just after we performed pruning (and just before
we considered freezing remaining items with tuple storage).

Eliminating the tupgone=true special case enables INDEX_CLEANUP=off
style skipping of index vacuuming that takes place based on flexible,
dynamic criteria.  The INDEX_CLEANUP=off case had to know about skipping
indexes up-front before now, due to a subtle interaction with the
special case (see commit dd695979) -- this was a special case unto
itself.  Now there are no special cases.  And so now it won't matter
when or how we decide to skip index vacuuming: it won't affect how
pruning behaves, and it won't be affected by any of the implementation
details of pruning or freezing.

Also remove XLOG_HEAP2_CLEANUP_INFO records.  These are no longer
necessary because we now rely entirely on heap pruning taking care of
recovery conflicts.  There is no longer any need to generate recovery
conflicts for DEAD tuples that pruning just missed.  This also means
that heap vacuuming now uses exactly the same strategy for recovery
conflicts as index vacuuming always has: REDO routines never need to
process a latestRemovedXid from the WAL record, since earlier REDO of
the WAL record from pruning is sufficient in all cases.  The generic
XLOG_HEAP2_CLEAN record type is now split into two new record types to
reflect this new division (these are called XLOG_HEAP2_PRUNE and
XLOG_HEAP2_VACUUM).

Also stop acquiring a super-exclusive lock for heap pages when they're
vacuumed during VACUUM's second heap pass.  A regular exclusive lock is
enough.  This is correct because heap page vacuuming is now strictly a
matter of setting the LP_DEAD line pointers to LP_UNUSED.  No other
backend can have a pointer to a tuple located in a pinned buffer that
can be invalidated by a concurrent heap page vacuum operation.

Heap vacuuming can now be thought of as conceptually similar to index
vacuuming and conceptually dissimilar to heap pruning.  Heap pruning now
has sole responsibility for anything involving the logical contents of
the database (e.g., managing transaction status information, recovery
conflicts, considering what to do with HOT chains).  Index vacuuming and
heap vacuuming are now only concerned with recycling garbage items from
physical data structures that back the logical database.

Bump XLOG_PAGE_MAGIC due to pruning and heap page vacuum WAL record
changes.

Credit for the idea of retrying pruning a page to avoid the tupgone case
goes to Andres Freund.

Author: Peter Geoghegan <pg@bowt.ie>
Reviewed-By: Andres Freund <andres@anarazel.de>
Reviewed-By: Masahiko Sawada <sawada.mshk@gmail.com>
Discussion: https://postgr.es/m/CAH2-WznneCXTzuFmcwx_EyRQgfsfJAAsu+CsqRFmFXCAar=nJw@mail.gmail.com
2021-04-06 08:49:22 -07:00

1447 lines
44 KiB
C

/*-------------------------------------------------------------------------
*
* nbtree.c
* Implementation of Lehman and Yao's btree management algorithm for
* Postgres.
*
* NOTES
* This file contains only the public interface routines.
*
*
* Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
* src/backend/access/nbtree/nbtree.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "access/nbtree.h"
#include "access/nbtxlog.h"
#include "access/relscan.h"
#include "access/xlog.h"
#include "commands/progress.h"
#include "commands/vacuum.h"
#include "miscadmin.h"
#include "nodes/execnodes.h"
#include "pgstat.h"
#include "postmaster/autovacuum.h"
#include "storage/condition_variable.h"
#include "storage/indexfsm.h"
#include "storage/ipc.h"
#include "storage/lmgr.h"
#include "storage/smgr.h"
#include "utils/builtins.h"
#include "utils/index_selfuncs.h"
#include "utils/memutils.h"
/*
* BTPARALLEL_NOT_INITIALIZED indicates that the scan has not started.
*
* BTPARALLEL_ADVANCING indicates that some process is advancing the scan to
* a new page; others must wait.
*
* BTPARALLEL_IDLE indicates that no backend is currently advancing the scan
* to a new page; some process can start doing that.
*
* BTPARALLEL_DONE indicates that the scan is complete (including error exit).
* We reach this state once for every distinct combination of array keys.
*/
typedef enum
{
BTPARALLEL_NOT_INITIALIZED,
BTPARALLEL_ADVANCING,
BTPARALLEL_IDLE,
BTPARALLEL_DONE
} BTPS_State;
/*
* BTParallelScanDescData contains btree specific shared information required
* for parallel scan.
*/
typedef struct BTParallelScanDescData
{
BlockNumber btps_scanPage; /* latest or next page to be scanned */
BTPS_State btps_pageStatus; /* indicates whether next page is
* available for scan. see above for
* possible states of parallel scan. */
int btps_arrayKeyCount; /* count indicating number of array scan
* keys processed by parallel scan */
slock_t btps_mutex; /* protects above variables */
ConditionVariable btps_cv; /* used to synchronize parallel scan */
} BTParallelScanDescData;
typedef struct BTParallelScanDescData *BTParallelScanDesc;
static void btvacuumscan(IndexVacuumInfo *info, IndexBulkDeleteResult *stats,
IndexBulkDeleteCallback callback, void *callback_state,
BTCycleId cycleid);
static void btvacuumpage(BTVacState *vstate, BlockNumber scanblkno);
static BTVacuumPosting btreevacuumposting(BTVacState *vstate,
IndexTuple posting,
OffsetNumber updatedoffset,
int *nremaining);
/*
* Btree handler function: return IndexAmRoutine with access method parameters
* and callbacks.
*/
Datum
bthandler(PG_FUNCTION_ARGS)
{
IndexAmRoutine *amroutine = makeNode(IndexAmRoutine);
amroutine->amstrategies = BTMaxStrategyNumber;
amroutine->amsupport = BTNProcs;
amroutine->amoptsprocnum = BTOPTIONS_PROC;
amroutine->amcanorder = true;
amroutine->amcanorderbyop = false;
amroutine->amcanbackward = true;
amroutine->amcanunique = true;
amroutine->amcanmulticol = true;
amroutine->amoptionalkey = true;
amroutine->amsearcharray = true;
amroutine->amsearchnulls = true;
amroutine->amstorage = false;
amroutine->amclusterable = true;
amroutine->ampredlocks = true;
amroutine->amcanparallel = true;
amroutine->amcaninclude = true;
amroutine->amusemaintenanceworkmem = false;
amroutine->amparallelvacuumoptions =
VACUUM_OPTION_PARALLEL_BULKDEL | VACUUM_OPTION_PARALLEL_COND_CLEANUP;
amroutine->amkeytype = InvalidOid;
amroutine->ambuild = btbuild;
amroutine->ambuildempty = btbuildempty;
amroutine->aminsert = btinsert;
amroutine->ambulkdelete = btbulkdelete;
amroutine->amvacuumcleanup = btvacuumcleanup;
amroutine->amcanreturn = btcanreturn;
amroutine->amcostestimate = btcostestimate;
amroutine->amoptions = btoptions;
amroutine->amproperty = btproperty;
amroutine->ambuildphasename = btbuildphasename;
amroutine->amvalidate = btvalidate;
amroutine->amadjustmembers = btadjustmembers;
amroutine->ambeginscan = btbeginscan;
amroutine->amrescan = btrescan;
amroutine->amgettuple = btgettuple;
amroutine->amgetbitmap = btgetbitmap;
amroutine->amendscan = btendscan;
amroutine->ammarkpos = btmarkpos;
amroutine->amrestrpos = btrestrpos;
amroutine->amestimateparallelscan = btestimateparallelscan;
amroutine->aminitparallelscan = btinitparallelscan;
amroutine->amparallelrescan = btparallelrescan;
PG_RETURN_POINTER(amroutine);
}
/*
* btbuildempty() -- build an empty btree index in the initialization fork
*/
void
btbuildempty(Relation index)
{
Page metapage;
/* Construct metapage. */
metapage = (Page) palloc(BLCKSZ);
_bt_initmetapage(metapage, P_NONE, 0, _bt_allequalimage(index, false));
/*
* Write the page and log it. It might seem that an immediate sync would
* be sufficient to guarantee that the file exists on disk, but recovery
* itself might remove it while replaying, for example, an
* XLOG_DBASE_CREATE or XLOG_TBLSPC_CREATE record. Therefore, we need
* this even when wal_level=minimal.
*/
PageSetChecksumInplace(metapage, BTREE_METAPAGE);
smgrwrite(index->rd_smgr, INIT_FORKNUM, BTREE_METAPAGE,
(char *) metapage, true);
log_newpage(&index->rd_smgr->smgr_rnode.node, INIT_FORKNUM,
BTREE_METAPAGE, metapage, true);
/*
* An immediate sync is required even if we xlog'd the page, because the
* write did not go through shared_buffers and therefore a concurrent
* checkpoint may have moved the redo pointer past our xlog record.
*/
smgrimmedsync(index->rd_smgr, INIT_FORKNUM);
}
/*
* btinsert() -- insert an index tuple into a btree.
*
* Descend the tree recursively, find the appropriate location for our
* new tuple, and put it there.
*/
bool
btinsert(Relation rel, Datum *values, bool *isnull,
ItemPointer ht_ctid, Relation heapRel,
IndexUniqueCheck checkUnique,
bool indexUnchanged,
IndexInfo *indexInfo)
{
bool result;
IndexTuple itup;
/* generate an index tuple */
itup = index_form_tuple(RelationGetDescr(rel), values, isnull);
itup->t_tid = *ht_ctid;
result = _bt_doinsert(rel, itup, checkUnique, indexUnchanged, heapRel);
pfree(itup);
return result;
}
/*
* btgettuple() -- Get the next tuple in the scan.
*/
bool
btgettuple(IndexScanDesc scan, ScanDirection dir)
{
BTScanOpaque so = (BTScanOpaque) scan->opaque;
bool res;
/* btree indexes are never lossy */
scan->xs_recheck = false;
/*
* If we have any array keys, initialize them during first call for a
* scan. We can't do this in btrescan because we don't know the scan
* direction at that time.
*/
if (so->numArrayKeys && !BTScanPosIsValid(so->currPos))
{
/* punt if we have any unsatisfiable array keys */
if (so->numArrayKeys < 0)
return false;
_bt_start_array_keys(scan, dir);
}
/* This loop handles advancing to the next array elements, if any */
do
{
/*
* If we've already initialized this scan, we can just advance it in
* the appropriate direction. If we haven't done so yet, we call
* _bt_first() to get the first item in the scan.
*/
if (!BTScanPosIsValid(so->currPos))
res = _bt_first(scan, dir);
else
{
/*
* Check to see if we should kill the previously-fetched tuple.
*/
if (scan->kill_prior_tuple)
{
/*
* Yes, remember it for later. (We'll deal with all such
* tuples at once right before leaving the index page.) The
* test for numKilled overrun is not just paranoia: if the
* caller reverses direction in the indexscan then the same
* item might get entered multiple times. It's not worth
* trying to optimize that, so we don't detect it, but instead
* just forget any excess entries.
*/
if (so->killedItems == NULL)
so->killedItems = (int *)
palloc(MaxTIDsPerBTreePage * sizeof(int));
if (so->numKilled < MaxTIDsPerBTreePage)
so->killedItems[so->numKilled++] = so->currPos.itemIndex;
}
/*
* Now continue the scan.
*/
res = _bt_next(scan, dir);
}
/* If we have a tuple, return it ... */
if (res)
break;
/* ... otherwise see if we have more array keys to deal with */
} while (so->numArrayKeys && _bt_advance_array_keys(scan, dir));
return res;
}
/*
* btgetbitmap() -- gets all matching tuples, and adds them to a bitmap
*/
int64
btgetbitmap(IndexScanDesc scan, TIDBitmap *tbm)
{
BTScanOpaque so = (BTScanOpaque) scan->opaque;
int64 ntids = 0;
ItemPointer heapTid;
/*
* If we have any array keys, initialize them.
*/
if (so->numArrayKeys)
{
/* punt if we have any unsatisfiable array keys */
if (so->numArrayKeys < 0)
return ntids;
_bt_start_array_keys(scan, ForwardScanDirection);
}
/* This loop handles advancing to the next array elements, if any */
do
{
/* Fetch the first page & tuple */
if (_bt_first(scan, ForwardScanDirection))
{
/* Save tuple ID, and continue scanning */
heapTid = &scan->xs_heaptid;
tbm_add_tuples(tbm, heapTid, 1, false);
ntids++;
for (;;)
{
/*
* Advance to next tuple within page. This is the same as the
* easy case in _bt_next().
*/
if (++so->currPos.itemIndex > so->currPos.lastItem)
{
/* let _bt_next do the heavy lifting */
if (!_bt_next(scan, ForwardScanDirection))
break;
}
/* Save tuple ID, and continue scanning */
heapTid = &so->currPos.items[so->currPos.itemIndex].heapTid;
tbm_add_tuples(tbm, heapTid, 1, false);
ntids++;
}
}
/* Now see if we have more array keys to deal with */
} while (so->numArrayKeys && _bt_advance_array_keys(scan, ForwardScanDirection));
return ntids;
}
/*
* btbeginscan() -- start a scan on a btree index
*/
IndexScanDesc
btbeginscan(Relation rel, int nkeys, int norderbys)
{
IndexScanDesc scan;
BTScanOpaque so;
/* no order by operators allowed */
Assert(norderbys == 0);
/* get the scan */
scan = RelationGetIndexScan(rel, nkeys, norderbys);
/* allocate private workspace */
so = (BTScanOpaque) palloc(sizeof(BTScanOpaqueData));
BTScanPosInvalidate(so->currPos);
BTScanPosInvalidate(so->markPos);
if (scan->numberOfKeys > 0)
so->keyData = (ScanKey) palloc(scan->numberOfKeys * sizeof(ScanKeyData));
else
so->keyData = NULL;
so->arrayKeyData = NULL; /* assume no array keys for now */
so->numArrayKeys = 0;
so->arrayKeys = NULL;
so->arrayContext = NULL;
so->killedItems = NULL; /* until needed */
so->numKilled = 0;
/*
* We don't know yet whether the scan will be index-only, so we do not
* allocate the tuple workspace arrays until btrescan. However, we set up
* scan->xs_itupdesc whether we'll need it or not, since that's so cheap.
*/
so->currTuples = so->markTuples = NULL;
scan->xs_itupdesc = RelationGetDescr(rel);
scan->opaque = so;
return scan;
}
/*
* btrescan() -- rescan an index relation
*/
void
btrescan(IndexScanDesc scan, ScanKey scankey, int nscankeys,
ScanKey orderbys, int norderbys)
{
BTScanOpaque so = (BTScanOpaque) scan->opaque;
/* we aren't holding any read locks, but gotta drop the pins */
if (BTScanPosIsValid(so->currPos))
{
/* Before leaving current page, deal with any killed items */
if (so->numKilled > 0)
_bt_killitems(scan);
BTScanPosUnpinIfPinned(so->currPos);
BTScanPosInvalidate(so->currPos);
}
so->markItemIndex = -1;
so->arrayKeyCount = 0;
BTScanPosUnpinIfPinned(so->markPos);
BTScanPosInvalidate(so->markPos);
/*
* Allocate tuple workspace arrays, if needed for an index-only scan and
* not already done in a previous rescan call. To save on palloc
* overhead, both workspaces are allocated as one palloc block; only this
* function and btendscan know that.
*
* NOTE: this data structure also makes it safe to return data from a
* "name" column, even though btree name_ops uses an underlying storage
* datatype of cstring. The risk there is that "name" is supposed to be
* padded to NAMEDATALEN, but the actual index tuple is probably shorter.
* However, since we only return data out of tuples sitting in the
* currTuples array, a fetch of NAMEDATALEN bytes can at worst pull some
* data out of the markTuples array --- running off the end of memory for
* a SIGSEGV is not possible. Yeah, this is ugly as sin, but it beats
* adding special-case treatment for name_ops elsewhere.
*/
if (scan->xs_want_itup && so->currTuples == NULL)
{
so->currTuples = (char *) palloc(BLCKSZ * 2);
so->markTuples = so->currTuples + BLCKSZ;
}
/*
* Reset the scan keys
*/
if (scankey && scan->numberOfKeys > 0)
memmove(scan->keyData,
scankey,
scan->numberOfKeys * sizeof(ScanKeyData));
so->numberOfKeys = 0; /* until _bt_preprocess_keys sets it */
/* If any keys are SK_SEARCHARRAY type, set up array-key info */
_bt_preprocess_array_keys(scan);
}
/*
* btendscan() -- close down a scan
*/
void
btendscan(IndexScanDesc scan)
{
BTScanOpaque so = (BTScanOpaque) scan->opaque;
/* we aren't holding any read locks, but gotta drop the pins */
if (BTScanPosIsValid(so->currPos))
{
/* Before leaving current page, deal with any killed items */
if (so->numKilled > 0)
_bt_killitems(scan);
BTScanPosUnpinIfPinned(so->currPos);
}
so->markItemIndex = -1;
BTScanPosUnpinIfPinned(so->markPos);
/* No need to invalidate positions, the RAM is about to be freed. */
/* Release storage */
if (so->keyData != NULL)
pfree(so->keyData);
/* so->arrayKeyData and so->arrayKeys are in arrayContext */
if (so->arrayContext != NULL)
MemoryContextDelete(so->arrayContext);
if (so->killedItems != NULL)
pfree(so->killedItems);
if (so->currTuples != NULL)
pfree(so->currTuples);
/* so->markTuples should not be pfree'd, see btrescan */
pfree(so);
}
/*
* btmarkpos() -- save current scan position
*/
void
btmarkpos(IndexScanDesc scan)
{
BTScanOpaque so = (BTScanOpaque) scan->opaque;
/* There may be an old mark with a pin (but no lock). */
BTScanPosUnpinIfPinned(so->markPos);
/*
* Just record the current itemIndex. If we later step to next page
* before releasing the marked position, _bt_steppage makes a full copy of
* the currPos struct in markPos. If (as often happens) the mark is moved
* before we leave the page, we don't have to do that work.
*/
if (BTScanPosIsValid(so->currPos))
so->markItemIndex = so->currPos.itemIndex;
else
{
BTScanPosInvalidate(so->markPos);
so->markItemIndex = -1;
}
/* Also record the current positions of any array keys */
if (so->numArrayKeys)
_bt_mark_array_keys(scan);
}
/*
* btrestrpos() -- restore scan to last saved position
*/
void
btrestrpos(IndexScanDesc scan)
{
BTScanOpaque so = (BTScanOpaque) scan->opaque;
/* Restore the marked positions of any array keys */
if (so->numArrayKeys)
_bt_restore_array_keys(scan);
if (so->markItemIndex >= 0)
{
/*
* The scan has never moved to a new page since the last mark. Just
* restore the itemIndex.
*
* NB: In this case we can't count on anything in so->markPos to be
* accurate.
*/
so->currPos.itemIndex = so->markItemIndex;
}
else
{
/*
* The scan moved to a new page after last mark or restore, and we are
* now restoring to the marked page. We aren't holding any read
* locks, but if we're still holding the pin for the current position,
* we must drop it.
*/
if (BTScanPosIsValid(so->currPos))
{
/* Before leaving current page, deal with any killed items */
if (so->numKilled > 0)
_bt_killitems(scan);
BTScanPosUnpinIfPinned(so->currPos);
}
if (BTScanPosIsValid(so->markPos))
{
/* bump pin on mark buffer for assignment to current buffer */
if (BTScanPosIsPinned(so->markPos))
IncrBufferRefCount(so->markPos.buf);
memcpy(&so->currPos, &so->markPos,
offsetof(BTScanPosData, items[1]) +
so->markPos.lastItem * sizeof(BTScanPosItem));
if (so->currTuples)
memcpy(so->currTuples, so->markTuples,
so->markPos.nextTupleOffset);
}
else
BTScanPosInvalidate(so->currPos);
}
}
/*
* btestimateparallelscan -- estimate storage for BTParallelScanDescData
*/
Size
btestimateparallelscan(void)
{
return sizeof(BTParallelScanDescData);
}
/*
* btinitparallelscan -- initialize BTParallelScanDesc for parallel btree scan
*/
void
btinitparallelscan(void *target)
{
BTParallelScanDesc bt_target = (BTParallelScanDesc) target;
SpinLockInit(&bt_target->btps_mutex);
bt_target->btps_scanPage = InvalidBlockNumber;
bt_target->btps_pageStatus = BTPARALLEL_NOT_INITIALIZED;
bt_target->btps_arrayKeyCount = 0;
ConditionVariableInit(&bt_target->btps_cv);
}
/*
* btparallelrescan() -- reset parallel scan
*/
void
btparallelrescan(IndexScanDesc scan)
{
BTParallelScanDesc btscan;
ParallelIndexScanDesc parallel_scan = scan->parallel_scan;
Assert(parallel_scan);
btscan = (BTParallelScanDesc) OffsetToPointer((void *) parallel_scan,
parallel_scan->ps_offset);
/*
* In theory, we don't need to acquire the spinlock here, because there
* shouldn't be any other workers running at this point, but we do so for
* consistency.
*/
SpinLockAcquire(&btscan->btps_mutex);
btscan->btps_scanPage = InvalidBlockNumber;
btscan->btps_pageStatus = BTPARALLEL_NOT_INITIALIZED;
btscan->btps_arrayKeyCount = 0;
SpinLockRelease(&btscan->btps_mutex);
}
/*
* _bt_parallel_seize() -- Begin the process of advancing the scan to a new
* page. Other scans must wait until we call _bt_parallel_release()
* or _bt_parallel_done().
*
* The return value is true if we successfully seized the scan and false
* if we did not. The latter case occurs if no pages remain for the current
* set of scankeys.
*
* If the return value is true, *pageno returns the next or current page
* of the scan (depending on the scan direction). An invalid block number
* means the scan hasn't yet started, and P_NONE means we've reached the end.
* The first time a participating process reaches the last page, it will return
* true and set *pageno to P_NONE; after that, further attempts to seize the
* scan will return false.
*
* Callers should ignore the value of pageno if the return value is false.
*/
bool
_bt_parallel_seize(IndexScanDesc scan, BlockNumber *pageno)
{
BTScanOpaque so = (BTScanOpaque) scan->opaque;
BTPS_State pageStatus;
bool exit_loop = false;
bool status = true;
ParallelIndexScanDesc parallel_scan = scan->parallel_scan;
BTParallelScanDesc btscan;
*pageno = P_NONE;
btscan = (BTParallelScanDesc) OffsetToPointer((void *) parallel_scan,
parallel_scan->ps_offset);
while (1)
{
SpinLockAcquire(&btscan->btps_mutex);
pageStatus = btscan->btps_pageStatus;
if (so->arrayKeyCount < btscan->btps_arrayKeyCount)
{
/* Parallel scan has already advanced to a new set of scankeys. */
status = false;
}
else if (pageStatus == BTPARALLEL_DONE)
{
/*
* We're done with this set of scankeys. This may be the end, or
* there could be more sets to try.
*/
status = false;
}
else if (pageStatus != BTPARALLEL_ADVANCING)
{
/*
* We have successfully seized control of the scan for the purpose
* of advancing it to a new page!
*/
btscan->btps_pageStatus = BTPARALLEL_ADVANCING;
*pageno = btscan->btps_scanPage;
exit_loop = true;
}
SpinLockRelease(&btscan->btps_mutex);
if (exit_loop || !status)
break;
ConditionVariableSleep(&btscan->btps_cv, WAIT_EVENT_BTREE_PAGE);
}
ConditionVariableCancelSleep();
return status;
}
/*
* _bt_parallel_release() -- Complete the process of advancing the scan to a
* new page. We now have the new value btps_scanPage; some other backend
* can now begin advancing the scan.
*/
void
_bt_parallel_release(IndexScanDesc scan, BlockNumber scan_page)
{
ParallelIndexScanDesc parallel_scan = scan->parallel_scan;
BTParallelScanDesc btscan;
btscan = (BTParallelScanDesc) OffsetToPointer((void *) parallel_scan,
parallel_scan->ps_offset);
SpinLockAcquire(&btscan->btps_mutex);
btscan->btps_scanPage = scan_page;
btscan->btps_pageStatus = BTPARALLEL_IDLE;
SpinLockRelease(&btscan->btps_mutex);
ConditionVariableSignal(&btscan->btps_cv);
}
/*
* _bt_parallel_done() -- Mark the parallel scan as complete.
*
* When there are no pages left to scan, this function should be called to
* notify other workers. Otherwise, they might wait forever for the scan to
* advance to the next page.
*/
void
_bt_parallel_done(IndexScanDesc scan)
{
BTScanOpaque so = (BTScanOpaque) scan->opaque;
ParallelIndexScanDesc parallel_scan = scan->parallel_scan;
BTParallelScanDesc btscan;
bool status_changed = false;
/* Do nothing, for non-parallel scans */
if (parallel_scan == NULL)
return;
btscan = (BTParallelScanDesc) OffsetToPointer((void *) parallel_scan,
parallel_scan->ps_offset);
/*
* Mark the parallel scan as done for this combination of scan keys,
* unless some other process already did so. See also
* _bt_advance_array_keys.
*/
SpinLockAcquire(&btscan->btps_mutex);
if (so->arrayKeyCount >= btscan->btps_arrayKeyCount &&
btscan->btps_pageStatus != BTPARALLEL_DONE)
{
btscan->btps_pageStatus = BTPARALLEL_DONE;
status_changed = true;
}
SpinLockRelease(&btscan->btps_mutex);
/* wake up all the workers associated with this parallel scan */
if (status_changed)
ConditionVariableBroadcast(&btscan->btps_cv);
}
/*
* _bt_parallel_advance_array_keys() -- Advances the parallel scan for array
* keys.
*
* Updates the count of array keys processed for both local and parallel
* scans.
*/
void
_bt_parallel_advance_array_keys(IndexScanDesc scan)
{
BTScanOpaque so = (BTScanOpaque) scan->opaque;
ParallelIndexScanDesc parallel_scan = scan->parallel_scan;
BTParallelScanDesc btscan;
btscan = (BTParallelScanDesc) OffsetToPointer((void *) parallel_scan,
parallel_scan->ps_offset);
so->arrayKeyCount++;
SpinLockAcquire(&btscan->btps_mutex);
if (btscan->btps_pageStatus == BTPARALLEL_DONE)
{
btscan->btps_scanPage = InvalidBlockNumber;
btscan->btps_pageStatus = BTPARALLEL_NOT_INITIALIZED;
btscan->btps_arrayKeyCount++;
}
SpinLockRelease(&btscan->btps_mutex);
}
/*
* Bulk deletion of all index entries pointing to a set of heap tuples.
* The set of target tuples is specified via a callback routine that tells
* whether any given heap tuple (identified by ItemPointer) is being deleted.
*
* Result: a palloc'd struct containing statistical info for VACUUM displays.
*/
IndexBulkDeleteResult *
btbulkdelete(IndexVacuumInfo *info, IndexBulkDeleteResult *stats,
IndexBulkDeleteCallback callback, void *callback_state)
{
Relation rel = info->index;
BTCycleId cycleid;
/* allocate stats if first time through, else re-use existing struct */
if (stats == NULL)
stats = (IndexBulkDeleteResult *) palloc0(sizeof(IndexBulkDeleteResult));
/* Establish the vacuum cycle ID to use for this scan */
/* The ENSURE stuff ensures we clean up shared memory on failure */
PG_ENSURE_ERROR_CLEANUP(_bt_end_vacuum_callback, PointerGetDatum(rel));
{
cycleid = _bt_start_vacuum(rel);
btvacuumscan(info, stats, callback, callback_state, cycleid);
}
PG_END_ENSURE_ERROR_CLEANUP(_bt_end_vacuum_callback, PointerGetDatum(rel));
_bt_end_vacuum(rel);
return stats;
}
/*
* Post-VACUUM cleanup.
*
* Result: a palloc'd struct containing statistical info for VACUUM displays.
*/
IndexBulkDeleteResult *
btvacuumcleanup(IndexVacuumInfo *info, IndexBulkDeleteResult *stats)
{
BlockNumber num_delpages;
/* No-op in ANALYZE ONLY mode */
if (info->analyze_only)
return stats;
/*
* If btbulkdelete was called, we need not do anything (we just maintain
* the information used within _bt_vacuum_needs_cleanup() by calling
* _bt_set_cleanup_info() below).
*
* If btbulkdelete was _not_ called, then we have a choice to make: we
* must decide whether or not a btvacuumscan() call is needed now (i.e.
* whether the ongoing VACUUM operation can entirely avoid a physical scan
* of the index). A call to _bt_vacuum_needs_cleanup() decides it for us
* now.
*/
if (stats == NULL)
{
/* Check if VACUUM operation can entirely avoid btvacuumscan() call */
if (!_bt_vacuum_needs_cleanup(info->index))
return NULL;
/*
* Since we aren't going to actually delete any leaf items, there's no
* need to go through all the vacuum-cycle-ID pushups here.
*
* Posting list tuples are a source of inaccuracy for cleanup-only
* scans. btvacuumscan() will assume that the number of index tuples
* from each page can be used as num_index_tuples, even though
* num_index_tuples is supposed to represent the number of TIDs in the
* index. This naive approach can underestimate the number of tuples
* in the index significantly.
*
* We handle the problem by making num_index_tuples an estimate in
* cleanup-only case.
*/
stats = (IndexBulkDeleteResult *) palloc0(sizeof(IndexBulkDeleteResult));
btvacuumscan(info, stats, NULL, NULL, 0);
stats->estimated_count = true;
}
/*
* Maintain num_delpages value in metapage for _bt_vacuum_needs_cleanup().
*
* num_delpages is the number of deleted pages now in the index that were
* not safe to place in the FSM to be recycled just yet. num_delpages is
* greater than 0 only when _bt_pagedel() actually deleted pages during
* our call to btvacuumscan(). Even then, _bt_pendingfsm_finalize() must
* have failed to place any newly deleted pages in the FSM just moments
* ago. (Actually, there are edge cases where recycling of the current
* VACUUM's newly deleted pages does not even become safe by the time the
* next VACUUM comes around. See nbtree/README.)
*/
Assert(stats->pages_deleted >= stats->pages_free);
num_delpages = stats->pages_deleted - stats->pages_free;
_bt_set_cleanup_info(info->index, num_delpages);
/*
* It's quite possible for us to be fooled by concurrent page splits into
* double-counting some index tuples, so disbelieve any total that exceeds
* the underlying heap's count ... if we know that accurately. Otherwise
* this might just make matters worse.
*/
if (!info->estimated_count)
{
if (stats->num_index_tuples > info->num_heap_tuples)
stats->num_index_tuples = info->num_heap_tuples;
}
return stats;
}
/*
* btvacuumscan --- scan the index for VACUUMing purposes
*
* This combines the functions of looking for leaf tuples that are deletable
* according to the vacuum callback, looking for empty pages that can be
* deleted, and looking for old deleted pages that can be recycled. Both
* btbulkdelete and btvacuumcleanup invoke this (the latter only if no
* btbulkdelete call occurred and _bt_vacuum_needs_cleanup returned true).
*
* The caller is responsible for initially allocating/zeroing a stats struct
* and for obtaining a vacuum cycle ID if necessary.
*/
static void
btvacuumscan(IndexVacuumInfo *info, IndexBulkDeleteResult *stats,
IndexBulkDeleteCallback callback, void *callback_state,
BTCycleId cycleid)
{
Relation rel = info->index;
BTVacState vstate;
BlockNumber num_pages;
BlockNumber scanblkno;
bool needLock;
/*
* Reset fields that track information about the entire index now. This
* avoids double-counting in the case where a single VACUUM command
* requires multiple scans of the index.
*
* Avoid resetting the tuples_removed and pages_newly_deleted fields here,
* since they track information about the VACUUM command, and so must last
* across each call to btvacuumscan().
*
* (Note that pages_free is treated as state about the whole index, not
* the current VACUUM. This is appropriate because RecordFreeIndexPage()
* calls are idempotent, and get repeated for the same deleted pages in
* some scenarios. The point for us is to track the number of recyclable
* pages in the index at the end of the VACUUM command.)
*/
stats->num_pages = 0;
stats->num_index_tuples = 0;
stats->pages_deleted = 0;
stats->pages_free = 0;
/* Set up info to pass down to btvacuumpage */
vstate.info = info;
vstate.stats = stats;
vstate.callback = callback;
vstate.callback_state = callback_state;
vstate.cycleid = cycleid;
/* Create a temporary memory context to run _bt_pagedel in */
vstate.pagedelcontext = AllocSetContextCreate(CurrentMemoryContext,
"_bt_pagedel",
ALLOCSET_DEFAULT_SIZES);
/* Initialize vstate fields used by _bt_pendingfsm_finalize */
vstate.bufsize = 0;
vstate.maxbufsize = 0;
vstate.pendingpages = NULL;
vstate.npendingpages = 0;
/* Consider applying _bt_pendingfsm_finalize optimization */
_bt_pendingfsm_init(rel, &vstate, (callback == NULL));
/*
* The outer loop iterates over all index pages except the metapage, in
* physical order (we hope the kernel will cooperate in providing
* read-ahead for speed). It is critical that we visit all leaf pages,
* including ones added after we start the scan, else we might fail to
* delete some deletable tuples. Hence, we must repeatedly check the
* relation length. We must acquire the relation-extension lock while
* doing so to avoid a race condition: if someone else is extending the
* relation, there is a window where bufmgr/smgr have created a new
* all-zero page but it hasn't yet been write-locked by _bt_getbuf(). If
* we manage to scan such a page here, we'll improperly assume it can be
* recycled. Taking the lock synchronizes things enough to prevent a
* problem: either num_pages won't include the new page, or _bt_getbuf
* already has write lock on the buffer and it will be fully initialized
* before we can examine it. (See also vacuumlazy.c, which has the same
* issue.) Also, we need not worry if a page is added immediately after
* we look; the page splitting code already has write-lock on the left
* page before it adds a right page, so we must already have processed any
* tuples due to be moved into such a page.
*
* We can skip locking for new or temp relations, however, since no one
* else could be accessing them.
*/
needLock = !RELATION_IS_LOCAL(rel);
scanblkno = BTREE_METAPAGE + 1;
for (;;)
{
/* Get the current relation length */
if (needLock)
LockRelationForExtension(rel, ExclusiveLock);
num_pages = RelationGetNumberOfBlocks(rel);
if (needLock)
UnlockRelationForExtension(rel, ExclusiveLock);
if (info->report_progress)
pgstat_progress_update_param(PROGRESS_SCAN_BLOCKS_TOTAL,
num_pages);
/* Quit if we've scanned the whole relation */
if (scanblkno >= num_pages)
break;
/* Iterate over pages, then loop back to recheck length */
for (; scanblkno < num_pages; scanblkno++)
{
btvacuumpage(&vstate, scanblkno);
if (info->report_progress)
pgstat_progress_update_param(PROGRESS_SCAN_BLOCKS_DONE,
scanblkno);
}
}
/* Set statistics num_pages field to final size of index */
stats->num_pages = num_pages;
MemoryContextDelete(vstate.pagedelcontext);
/*
* If there were any calls to _bt_pagedel() during scan of the index then
* see if any of the resulting pages can be placed in the FSM now. When
* it's not safe we'll have to leave it up to a future VACUUM operation.
*
* Finally, if we placed any pages in the FSM (either just now or during
* the scan), forcibly update the upper-level FSM pages to ensure that
* searchers can find them.
*/
_bt_pendingfsm_finalize(rel, &vstate);
if (stats->pages_free > 0)
IndexFreeSpaceMapVacuum(rel);
}
/*
* btvacuumpage --- VACUUM one page
*
* This processes a single page for btvacuumscan(). In some cases we must
* backtrack to re-examine and VACUUM pages that were the scanblkno during
* a previous call here. This is how we handle page splits (that happened
* after our cycleid was acquired) whose right half page happened to reuse
* a block that we might have processed at some point before it was
* recycled (i.e. before the page split).
*/
static void
btvacuumpage(BTVacState *vstate, BlockNumber scanblkno)
{
IndexVacuumInfo *info = vstate->info;
IndexBulkDeleteResult *stats = vstate->stats;
IndexBulkDeleteCallback callback = vstate->callback;
void *callback_state = vstate->callback_state;
Relation rel = info->index;
bool attempt_pagedel;
BlockNumber blkno,
backtrack_to;
Buffer buf;
Page page;
BTPageOpaque opaque;
blkno = scanblkno;
backtrack:
attempt_pagedel = false;
backtrack_to = P_NONE;
/* call vacuum_delay_point while not holding any buffer lock */
vacuum_delay_point();
/*
* We can't use _bt_getbuf() here because it always applies
* _bt_checkpage(), which will barf on an all-zero page. We want to
* recycle all-zero pages, not fail. Also, we want to use a nondefault
* buffer access strategy.
*/
buf = ReadBufferExtended(rel, MAIN_FORKNUM, blkno, RBM_NORMAL,
info->strategy);
_bt_lockbuf(rel, buf, BT_READ);
page = BufferGetPage(buf);
opaque = NULL;
if (!PageIsNew(page))
{
_bt_checkpage(rel, buf);
opaque = (BTPageOpaque) PageGetSpecialPointer(page);
}
Assert(blkno <= scanblkno);
if (blkno != scanblkno)
{
/*
* We're backtracking.
*
* We followed a right link to a sibling leaf page (a page that
* happens to be from a block located before scanblkno). The only
* case we want to do anything with is a live leaf page having the
* current vacuum cycle ID.
*
* The page had better be in a state that's consistent with what we
* expect. Check for conditions that imply corruption in passing. It
* can't be half-dead because only an interrupted VACUUM process can
* leave pages in that state, so we'd definitely have dealt with it
* back when the page was the scanblkno page (half-dead pages are
* always marked fully deleted by _bt_pagedel()). This assumes that
* there can be only one vacuum process running at a time.
*/
if (!opaque || !P_ISLEAF(opaque) || P_ISHALFDEAD(opaque))
{
Assert(false);
ereport(LOG,
(errcode(ERRCODE_INDEX_CORRUPTED),
errmsg_internal("right sibling %u of scanblkno %u unexpectedly in an inconsistent state in index \"%s\"",
blkno, scanblkno, RelationGetRelationName(rel))));
_bt_relbuf(rel, buf);
return;
}
/*
* We may have already processed the page in an earlier call, when the
* page was scanblkno. This happens when the leaf page split occurred
* after the scan began, but before the right sibling page became the
* scanblkno.
*
* Page may also have been deleted by current btvacuumpage() call,
* since _bt_pagedel() sometimes deletes the right sibling page of
* scanblkno in passing (it does so after we decided where to
* backtrack to). We don't need to process this page as a deleted
* page a second time now (in fact, it would be wrong to count it as a
* deleted page in the bulk delete statistics a second time).
*/
if (opaque->btpo_cycleid != vstate->cycleid || P_ISDELETED(opaque))
{
/* Done with current scanblkno (and all lower split pages) */
_bt_relbuf(rel, buf);
return;
}
}
if (!opaque || BTPageIsRecyclable(page))
{
/* Okay to recycle this page (which could be leaf or internal) */
RecordFreeIndexPage(rel, blkno);
stats->pages_deleted++;
stats->pages_free++;
}
else if (P_ISDELETED(opaque))
{
/*
* Already deleted page (which could be leaf or internal). Can't
* recycle yet.
*/
stats->pages_deleted++;
}
else if (P_ISHALFDEAD(opaque))
{
/* Half-dead leaf page (from interrupted VACUUM) -- finish deleting */
attempt_pagedel = true;
/*
* _bt_pagedel() will increment both pages_newly_deleted and
* pages_deleted stats in all cases (barring corruption)
*/
}
else if (P_ISLEAF(opaque))
{
OffsetNumber deletable[MaxIndexTuplesPerPage];
int ndeletable;
BTVacuumPosting updatable[MaxIndexTuplesPerPage];
int nupdatable;
OffsetNumber offnum,
minoff,
maxoff;
int nhtidsdead,
nhtidslive;
/*
* Trade in the initial read lock for a super-exclusive write lock on
* this page. We must get such a lock on every leaf page over the
* course of the vacuum scan, whether or not it actually contains any
* deletable tuples --- see nbtree/README.
*/
_bt_upgradelockbufcleanup(rel, buf);
/*
* Check whether we need to backtrack to earlier pages. What we are
* concerned about is a page split that happened since we started the
* vacuum scan. If the split moved tuples on the right half of the
* split (i.e. the tuples that sort high) to a block that we already
* passed over, then we might have missed the tuples. We need to
* backtrack now. (Must do this before possibly clearing btpo_cycleid
* or deleting scanblkno page below!)
*/
if (vstate->cycleid != 0 &&
opaque->btpo_cycleid == vstate->cycleid &&
!(opaque->btpo_flags & BTP_SPLIT_END) &&
!P_RIGHTMOST(opaque) &&
opaque->btpo_next < scanblkno)
backtrack_to = opaque->btpo_next;
/*
* When each VACUUM begins, it determines an OldestXmin cutoff value.
* Tuples before the cutoff are removed by VACUUM. Scan over all
* items to see which ones need to be deleted according to cutoff
* point using callback.
*/
ndeletable = 0;
nupdatable = 0;
minoff = P_FIRSTDATAKEY(opaque);
maxoff = PageGetMaxOffsetNumber(page);
nhtidsdead = 0;
nhtidslive = 0;
if (callback)
{
for (offnum = minoff;
offnum <= maxoff;
offnum = OffsetNumberNext(offnum))
{
IndexTuple itup;
itup = (IndexTuple) PageGetItem(page,
PageGetItemId(page, offnum));
/*
* Hot Standby assumes that it's okay that XLOG_BTREE_VACUUM
* records do not produce their own conflicts. This is safe
* as long as the callback function only considers whether the
* index tuple refers to pre-cutoff heap tuples that were
* certainly already pruned away during VACUUM's initial heap
* scan by the time we get here. (heapam's XLOG_HEAP2_PRUNE
* records produce conflicts using a latestRemovedXid value
* for the pointed-to heap tuples, so there is no need to
* produce our own conflict now.)
*
* Backends with snapshots acquired after a VACUUM starts but
* before it finishes could have visibility cutoff with a
* later xid than VACUUM's OldestXmin cutoff. These backends
* might happen to opportunistically mark some index tuples
* LP_DEAD before we reach them, even though they may be after
* our cutoff. We don't try to kill these "extra" index
* tuples in _bt_delitems_vacuum(). This keep things simple,
* and allows us to always avoid generating our own conflicts.
*/
Assert(!BTreeTupleIsPivot(itup));
if (!BTreeTupleIsPosting(itup))
{
/* Regular tuple, standard table TID representation */
if (callback(&itup->t_tid, callback_state))
{
deletable[ndeletable++] = offnum;
nhtidsdead++;
}
else
nhtidslive++;
}
else
{
BTVacuumPosting vacposting;
int nremaining;
/* Posting list tuple */
vacposting = btreevacuumposting(vstate, itup, offnum,
&nremaining);
if (vacposting == NULL)
{
/*
* All table TIDs from the posting tuple remain, so no
* delete or update required
*/
Assert(nremaining == BTreeTupleGetNPosting(itup));
}
else if (nremaining > 0)
{
/*
* Store metadata about posting list tuple in
* updatable array for entire page. Existing tuple
* will be updated during the later call to
* _bt_delitems_vacuum().
*/
Assert(nremaining < BTreeTupleGetNPosting(itup));
updatable[nupdatable++] = vacposting;
nhtidsdead += BTreeTupleGetNPosting(itup) - nremaining;
}
else
{
/*
* All table TIDs from the posting list must be
* deleted. We'll delete the index tuple completely
* (no update required).
*/
Assert(nremaining == 0);
deletable[ndeletable++] = offnum;
nhtidsdead += BTreeTupleGetNPosting(itup);
pfree(vacposting);
}
nhtidslive += nremaining;
}
}
}
/*
* Apply any needed deletes or updates. We issue just one
* _bt_delitems_vacuum() call per page, so as to minimize WAL traffic.
*/
if (ndeletable > 0 || nupdatable > 0)
{
Assert(nhtidsdead >= ndeletable + nupdatable);
_bt_delitems_vacuum(rel, buf, deletable, ndeletable, updatable,
nupdatable);
stats->tuples_removed += nhtidsdead;
/* must recompute maxoff */
maxoff = PageGetMaxOffsetNumber(page);
/* can't leak memory here */
for (int i = 0; i < nupdatable; i++)
pfree(updatable[i]);
}
else
{
/*
* If the leaf page has been split during this vacuum cycle, it
* seems worth expending a write to clear btpo_cycleid even if we
* don't have any deletions to do. (If we do, _bt_delitems_vacuum
* takes care of this.) This ensures we won't process the page
* again.
*
* We treat this like a hint-bit update because there's no need to
* WAL-log it.
*/
Assert(nhtidsdead == 0);
if (vstate->cycleid != 0 &&
opaque->btpo_cycleid == vstate->cycleid)
{
opaque->btpo_cycleid = 0;
MarkBufferDirtyHint(buf, true);
}
}
/*
* If the leaf page is now empty, try to delete it; else count the
* live tuples (live table TIDs in posting lists are counted as
* separate live tuples). We don't delete when backtracking, though,
* since that would require teaching _bt_pagedel() about backtracking
* (doesn't seem worth adding more complexity to deal with that).
*
* We don't count the number of live TIDs during cleanup-only calls to
* btvacuumscan (i.e. when callback is not set). We count the number
* of index tuples directly instead. This avoids the expense of
* directly examining all of the tuples on each page. VACUUM will
* treat num_index_tuples as an estimate in cleanup-only case, so it
* doesn't matter that this underestimates num_index_tuples
* significantly in some cases.
*/
if (minoff > maxoff)
attempt_pagedel = (blkno == scanblkno);
else if (callback)
stats->num_index_tuples += nhtidslive;
else
stats->num_index_tuples += maxoff - minoff + 1;
Assert(!attempt_pagedel || nhtidslive == 0);
}
if (attempt_pagedel)
{
MemoryContext oldcontext;
/* Run pagedel in a temp context to avoid memory leakage */
MemoryContextReset(vstate->pagedelcontext);
oldcontext = MemoryContextSwitchTo(vstate->pagedelcontext);
/*
* _bt_pagedel maintains the bulk delete stats on our behalf;
* pages_newly_deleted and pages_deleted are likely to be incremented
* during call
*/
Assert(blkno == scanblkno);
_bt_pagedel(rel, buf, vstate);
MemoryContextSwitchTo(oldcontext);
/* pagedel released buffer, so we shouldn't */
}
else
_bt_relbuf(rel, buf);
if (backtrack_to != P_NONE)
{
blkno = backtrack_to;
goto backtrack;
}
}
/*
* btreevacuumposting --- determine TIDs still needed in posting list
*
* Returns metadata describing how to build replacement tuple without the TIDs
* that VACUUM needs to delete. Returned value is NULL in the common case
* where no changes are needed to caller's posting list tuple (we avoid
* allocating memory here as an optimization).
*
* The number of TIDs that should remain in the posting list tuple is set for
* caller in *nremaining.
*/
static BTVacuumPosting
btreevacuumposting(BTVacState *vstate, IndexTuple posting,
OffsetNumber updatedoffset, int *nremaining)
{
int live = 0;
int nitem = BTreeTupleGetNPosting(posting);
ItemPointer items = BTreeTupleGetPosting(posting);
BTVacuumPosting vacposting = NULL;
for (int i = 0; i < nitem; i++)
{
if (!vstate->callback(items + i, vstate->callback_state))
{
/* Live table TID */
live++;
}
else if (vacposting == NULL)
{
/*
* First dead table TID encountered.
*
* It's now clear that we need to delete one or more dead table
* TIDs, so start maintaining metadata describing how to update
* existing posting list tuple.
*/
vacposting = palloc(offsetof(BTVacuumPostingData, deletetids) +
nitem * sizeof(uint16));
vacposting->itup = posting;
vacposting->updatedoffset = updatedoffset;
vacposting->ndeletedtids = 0;
vacposting->deletetids[vacposting->ndeletedtids++] = i;
}
else
{
/* Second or subsequent dead table TID */
vacposting->deletetids[vacposting->ndeletedtids++] = i;
}
}
*nremaining = live;
return vacposting;
}
/*
* btcanreturn() -- Check whether btree indexes support index-only scans.
*
* btrees always do, so this is trivial.
*/
bool
btcanreturn(Relation index, int attno)
{
return true;
}