mirror of
https://github.com/postgres/postgres.git
synced 2025-05-01 01:04:50 +03:00
logic in indxpath.c, avoid generation of redundant indexscan paths for the same relation and index.
1850 lines
54 KiB
C
1850 lines
54 KiB
C
/*-------------------------------------------------------------------------
|
|
*
|
|
* indxpath.c
|
|
* Routines to determine which indices are usable for scanning a
|
|
* given relation, and create IndexPaths accordingly.
|
|
*
|
|
* Copyright (c) 1994, Regents of the University of California
|
|
*
|
|
*
|
|
* IDENTIFICATION
|
|
* $Header: /cvsroot/pgsql/src/backend/optimizer/path/indxpath.c,v 1.67 1999/07/30 04:07:23 tgl Exp $
|
|
*
|
|
*-------------------------------------------------------------------------
|
|
*/
|
|
#include <ctype.h>
|
|
#include <math.h>
|
|
|
|
#include "postgres.h"
|
|
|
|
#include "access/heapam.h"
|
|
#include "access/nbtree.h"
|
|
#include "catalog/catname.h"
|
|
#include "catalog/pg_amop.h"
|
|
#include "catalog/pg_operator.h"
|
|
#include "executor/executor.h"
|
|
#include "nodes/makefuncs.h"
|
|
#include "nodes/nodeFuncs.h"
|
|
#include "optimizer/clauses.h"
|
|
#include "optimizer/cost.h"
|
|
#include "optimizer/keys.h"
|
|
#include "optimizer/ordering.h"
|
|
#include "optimizer/pathnode.h"
|
|
#include "optimizer/paths.h"
|
|
#include "optimizer/plancat.h"
|
|
#include "optimizer/restrictinfo.h"
|
|
#include "parser/parse_coerce.h"
|
|
#include "parser/parse_expr.h"
|
|
#include "parser/parse_oper.h"
|
|
#include "parser/parsetree.h"
|
|
#include "utils/builtins.h"
|
|
#include "utils/lsyscache.h"
|
|
#include "utils/syscache.h"
|
|
|
|
typedef enum {
|
|
Prefix_None, Prefix_Partial, Prefix_Exact
|
|
} Prefix_Status;
|
|
|
|
static void match_index_orclauses(RelOptInfo *rel, RelOptInfo *index, int indexkey,
|
|
int xclass, List *restrictinfo_list);
|
|
static List *match_index_orclause(RelOptInfo *rel, RelOptInfo *index, int indexkey,
|
|
int xclass, List *or_clauses, List *other_matching_indices);
|
|
static List *group_clauses_by_indexkey(RelOptInfo *rel, RelOptInfo *index,
|
|
int *indexkeys, Oid *classes, List *restrictinfo_list);
|
|
static List *group_clauses_by_ikey_for_joins(RelOptInfo *rel, RelOptInfo *index,
|
|
int *indexkeys, Oid *classes, List *join_cinfo_list, List *restr_cinfo_list);
|
|
static bool match_clause_to_indexkey(RelOptInfo *rel, RelOptInfo *index,
|
|
int indexkey, int xclass,
|
|
Expr *clause, bool join);
|
|
static bool pred_test(List *predicate_list, List *restrictinfo_list,
|
|
List *joininfo_list);
|
|
static bool one_pred_test(Expr *predicate, List *restrictinfo_list);
|
|
static bool one_pred_clause_expr_test(Expr *predicate, Node *clause);
|
|
static bool one_pred_clause_test(Expr *predicate, Node *clause);
|
|
static bool clause_pred_clause_test(Expr *predicate, Node *clause);
|
|
static void indexable_joinclauses(RelOptInfo *rel, RelOptInfo *index,
|
|
List *joininfo_list, List *restrictinfo_list,
|
|
List **clausegroups, List **outerrelids);
|
|
static List *index_innerjoin(Query *root, RelOptInfo *rel, RelOptInfo *index,
|
|
List *clausegroup_list, List *outerrelids_list);
|
|
static bool useful_for_mergejoin(RelOptInfo *index, List *clausegroup_list);
|
|
static bool match_index_to_operand(int indexkey, Expr *operand,
|
|
RelOptInfo *rel, RelOptInfo *index);
|
|
static bool function_index_operand(Expr *funcOpnd, RelOptInfo *rel, RelOptInfo *index);
|
|
static bool match_special_index_operator(Expr *clause, bool indexkey_on_left);
|
|
static Prefix_Status like_fixed_prefix(char *patt, char **prefix);
|
|
static Prefix_Status regex_fixed_prefix(char *patt, bool case_insensitive,
|
|
char **prefix);
|
|
static List *prefix_quals(Var *leftop, Oid expr_op,
|
|
char *prefix, Prefix_Status pstatus);
|
|
|
|
|
|
/*
|
|
* create_index_paths()
|
|
* Generate all interesting index paths for the given relation.
|
|
*
|
|
* To be considered for an index scan, an index must match one or more
|
|
* restriction clauses or join clauses from the query's qual condition.
|
|
*
|
|
* There are two basic kinds of index scans. A "plain" index scan uses
|
|
* only restriction clauses (possibly none at all) in its indexqual,
|
|
* so it can be applied in any context. An "innerjoin" index scan uses
|
|
* join clauses (plus restriction clauses, if available) in its indexqual.
|
|
* Therefore it can only be used as the inner relation of a nestloop
|
|
* join against an outer rel that includes all the other rels mentioned
|
|
* in its join clauses. In that context, values for the other rels'
|
|
* attributes are available and fixed during any one scan of the indexpath.
|
|
*
|
|
* This routine's return value is a list of plain IndexPaths for each
|
|
* index the routine deems potentially interesting for the current query
|
|
* (at most one IndexPath per index on the given relation). An innerjoin
|
|
* path is also generated for each interesting combination of outer join
|
|
* relations. The innerjoin paths are *not* in the return list, but are
|
|
* appended to the "innerjoin" list of the relation itself.
|
|
*
|
|
* XXX An index scan might also be used simply to order the result. We
|
|
* probably should create an index path for any index that matches the
|
|
* query's ORDER BY condition, even if it doesn't seem useful for join
|
|
* or restriction clauses. But currently, such a path would never
|
|
* survive the path selection process, so there's no point. The selection
|
|
* process needs to award bonus scores to indexscans that produce a
|
|
* suitably-ordered result...
|
|
*
|
|
* 'rel' is the relation for which we want to generate index paths
|
|
* 'indices' is a list of available indexes for 'rel'
|
|
* 'restrictinfo_list' is a list of restrictinfo nodes for 'rel'
|
|
* 'joininfo_list' is a list of joininfo nodes for 'rel'
|
|
*
|
|
* Returns a list of IndexPath access path descriptors. Additional
|
|
* IndexPath nodes may also be added to the rel->innerjoin list.
|
|
*/
|
|
List *
|
|
create_index_paths(Query *root,
|
|
RelOptInfo *rel,
|
|
List *indices,
|
|
List *restrictinfo_list,
|
|
List *joininfo_list)
|
|
{
|
|
List *retval = NIL;
|
|
List *ilist;
|
|
|
|
foreach(ilist, indices)
|
|
{
|
|
RelOptInfo *index = (RelOptInfo *) lfirst(ilist);
|
|
List *restrictclauses;
|
|
List *joinclausegroups;
|
|
List *joinouterrelids;
|
|
|
|
/*
|
|
* If this is a partial index, we can only use it if it passes
|
|
* the predicate test.
|
|
*/
|
|
if (index->indpred != NIL)
|
|
if (!pred_test(index->indpred, restrictinfo_list, joininfo_list))
|
|
continue;
|
|
|
|
/*
|
|
* 1. Try matching the index against subclauses of restriction 'or'
|
|
* clauses (ie, 'or' clauses that reference only this relation).
|
|
* The restrictinfo nodes for the 'or' clauses are marked with lists
|
|
* of the matching indices. No paths are actually created now;
|
|
* that will be done in orindxpath.c after all indexes for the rel
|
|
* have been examined. (We need to do it that way because we can
|
|
* potentially use a different index for each subclause of an 'or',
|
|
* so we can't build a path for an 'or' clause until all indexes have
|
|
* been matched against it.)
|
|
*
|
|
* We currently only look to match the first key of each index against
|
|
* 'or' subclauses. There are cases where a later key of a multi-key
|
|
* index could be used (if other top-level clauses match earlier keys
|
|
* of the index), but our poor brains are hurting already...
|
|
*
|
|
* We don't even think about special handling of 'or' clauses that
|
|
* involve more than one relation (ie, are join clauses).
|
|
* Can we do anything useful with those?
|
|
*/
|
|
match_index_orclauses(rel,
|
|
index,
|
|
index->indexkeys[0],
|
|
index->classlist[0],
|
|
restrictinfo_list);
|
|
|
|
/*
|
|
* 2. If the keys of this index match any of the available non-'or'
|
|
* restriction clauses, then create a path using those clauses
|
|
* as indexquals.
|
|
*/
|
|
restrictclauses = group_clauses_by_indexkey(rel,
|
|
index,
|
|
index->indexkeys,
|
|
index->classlist,
|
|
restrictinfo_list);
|
|
|
|
if (restrictclauses != NIL)
|
|
retval = lappend(retval,
|
|
create_index_path(root, rel, index,
|
|
restrictclauses));
|
|
|
|
/*
|
|
* 3. If this index can be used with any join clause, then create
|
|
* an index path for it even if there were no restriction clauses.
|
|
* (If there were, there is no need to make another index path.)
|
|
* This will allow the index to be considered as a base for a
|
|
* mergejoin in later processing.
|
|
* Also, create an innerjoin index path for each combination of
|
|
* other rels used in available join clauses. These paths will
|
|
* be considered as the inner side of nestloop joins against
|
|
* those sets of other rels.
|
|
* indexable_joinclauses() finds clauses that are potentially
|
|
* applicable to either case. useful_for_mergejoin() tests to
|
|
* see whether any of the join clauses might support a mergejoin.
|
|
* index_innerjoin() builds an innerjoin index path for each
|
|
* potential set of outer rels, which we add to the rel's
|
|
* innerjoin list.
|
|
*/
|
|
indexable_joinclauses(rel, index,
|
|
joininfo_list, restrictinfo_list,
|
|
&joinclausegroups,
|
|
&joinouterrelids);
|
|
|
|
if (joinclausegroups != NIL)
|
|
{
|
|
/* no need to create a plain path if we already did */
|
|
if (restrictclauses == NIL &&
|
|
useful_for_mergejoin(index, joinclausegroups))
|
|
retval = lappend(retval,
|
|
create_index_path(root, rel, index,
|
|
NIL));
|
|
|
|
rel->innerjoin = nconc(rel->innerjoin,
|
|
index_innerjoin(root, rel, index,
|
|
joinclausegroups,
|
|
joinouterrelids));
|
|
}
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
|
|
/****************************************************************************
|
|
* ---- ROUTINES TO PROCESS 'OR' CLAUSES ----
|
|
****************************************************************************/
|
|
|
|
|
|
/*
|
|
* match_index_orclauses
|
|
* Attempt to match an index against subclauses within 'or' clauses.
|
|
* Each subclause that does match is marked with the index's node.
|
|
*
|
|
* Essentially, this adds 'index' to the list of subclause indices in
|
|
* the RestrictInfo field of each of the 'or' clauses where it matches.
|
|
* NOTE: we can use storage in the RestrictInfo for this purpose because
|
|
* this processing is only done on single-relation restriction clauses.
|
|
* Therefore, we will never have indexes for more than one relation
|
|
* mentioned in the same RestrictInfo node's list.
|
|
*
|
|
* 'rel' is the node of the relation on which the index is defined.
|
|
* 'index' is the index node.
|
|
* 'indexkey' is the (single) key of the index that we will consider.
|
|
* 'class' is the class of the operator corresponding to 'indexkey'.
|
|
* 'restrictinfo_list' is the list of available restriction clauses.
|
|
*/
|
|
static void
|
|
match_index_orclauses(RelOptInfo *rel,
|
|
RelOptInfo *index,
|
|
int indexkey,
|
|
int xclass,
|
|
List *restrictinfo_list)
|
|
{
|
|
List *i;
|
|
|
|
foreach(i, restrictinfo_list)
|
|
{
|
|
RestrictInfo *restrictinfo = (RestrictInfo *) lfirst(i);
|
|
|
|
if (restriction_is_or_clause(restrictinfo))
|
|
{
|
|
/*
|
|
* Add this index to the subclause index list for each
|
|
* subclause that it matches.
|
|
*/
|
|
restrictinfo->indexids =
|
|
match_index_orclause(rel, index,
|
|
indexkey, xclass,
|
|
restrictinfo->clause->args,
|
|
restrictinfo->indexids);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* match_index_orclause
|
|
* Attempts to match an index against the subclauses of an 'or' clause.
|
|
*
|
|
* A match means that:
|
|
* (1) the operator within the subclause can be used with the
|
|
* index's specified operator class, and
|
|
* (2) the variable on one side of the subclause matches the index key.
|
|
*
|
|
* 'or_clauses' is the list of subclauses within the 'or' clause
|
|
* 'other_matching_indices' is the list of information on other indices
|
|
* that have already been matched to subclauses within this
|
|
* particular 'or' clause (i.e., a list previously generated by
|
|
* this routine), or NIL if this routine has not previously been
|
|
* run for this 'or' clause.
|
|
*
|
|
* Returns a list of the form ((a b c) (d e f) nil (g h) ...) where
|
|
* a,b,c are nodes of indices that match the first subclause in
|
|
* 'or-clauses', d,e,f match the second subclause, no indices
|
|
* match the third, g,h match the fourth, etc.
|
|
*/
|
|
static List *
|
|
match_index_orclause(RelOptInfo *rel,
|
|
RelOptInfo *index,
|
|
int indexkey,
|
|
int xclass,
|
|
List *or_clauses,
|
|
List *other_matching_indices)
|
|
{
|
|
List *matching_indices;
|
|
List *index_list;
|
|
List *clist;
|
|
|
|
/* first time through, we create list of same length as OR clause,
|
|
* containing an empty sublist for each subclause.
|
|
*/
|
|
if (!other_matching_indices)
|
|
{
|
|
matching_indices = NIL;
|
|
foreach(clist, or_clauses)
|
|
matching_indices = lcons(NIL, matching_indices);
|
|
}
|
|
else
|
|
matching_indices = other_matching_indices;
|
|
|
|
index_list = matching_indices;
|
|
|
|
foreach(clist, or_clauses)
|
|
{
|
|
Expr *clause = lfirst(clist);
|
|
|
|
if (match_clause_to_indexkey(rel, index, indexkey, xclass,
|
|
clause, false))
|
|
{
|
|
/* OK to add this index to sublist for this subclause */
|
|
lfirst(matching_indices) = lcons(index,
|
|
lfirst(matching_indices));
|
|
}
|
|
|
|
matching_indices = lnext(matching_indices);
|
|
}
|
|
|
|
return index_list;
|
|
}
|
|
|
|
/****************************************************************************
|
|
* ---- ROUTINES TO CHECK RESTRICTIONS ----
|
|
****************************************************************************/
|
|
|
|
|
|
/*
|
|
* DoneMatchingIndexKeys() - MACRO
|
|
*
|
|
* Determine whether we should continue matching index keys in a clause.
|
|
* Depends on if there are more to match or if this is a functional index.
|
|
* In the latter case we stop after the first match since the there can
|
|
* be only key (i.e. the function's return value) and the attributes in
|
|
* keys list represent the arguments to the function. -mer 3 Oct. 1991
|
|
*/
|
|
#define DoneMatchingIndexKeys(indexkeys, index) \
|
|
(indexkeys[0] == 0 || \
|
|
(index->indproc != InvalidOid))
|
|
|
|
/*
|
|
* group_clauses_by_indexkey
|
|
* Generates a list of restriction clauses that can be used with an index.
|
|
*
|
|
* 'rel' is the node of the relation itself.
|
|
* 'index' is a index on 'rel'.
|
|
* 'indexkeys' are the index keys to be matched.
|
|
* 'classes' are the classes of the index operators on those keys.
|
|
* 'restrictinfo_list' is the list of available restriction clauses for 'rel'.
|
|
*
|
|
* Returns a list of all the RestrictInfo nodes for clauses that can be
|
|
* used with this index.
|
|
*
|
|
* The list is ordered by index key (but as far as I can tell, this is
|
|
* an implementation artifact of this routine, and is not depended on by
|
|
* any user of the returned list --- tgl 7/99).
|
|
*
|
|
* Note that in a multi-key index, we stop if we find a key that cannot be
|
|
* used with any clause. For example, given an index on (A,B,C), we might
|
|
* return (C1 C2 C3 C4) if we find that clauses C1 and C2 use column A,
|
|
* clauses C3 and C4 use column B, and no clauses use column C. But if
|
|
* no clauses match B we will return (C1 C2), whether or not there are
|
|
* clauses matching column C, because the executor couldn't use them anyway.
|
|
*/
|
|
static List *
|
|
group_clauses_by_indexkey(RelOptInfo *rel,
|
|
RelOptInfo *index,
|
|
int *indexkeys,
|
|
Oid *classes,
|
|
List *restrictinfo_list)
|
|
{
|
|
List *clausegroup_list = NIL;
|
|
|
|
if (restrictinfo_list == NIL || indexkeys[0] == 0)
|
|
return NIL;
|
|
|
|
do
|
|
{
|
|
int curIndxKey = indexkeys[0];
|
|
Oid curClass = classes[0];
|
|
List *clausegroup = NIL;
|
|
List *curCinfo;
|
|
|
|
foreach(curCinfo, restrictinfo_list)
|
|
{
|
|
RestrictInfo *rinfo = (RestrictInfo *) lfirst(curCinfo);
|
|
|
|
if (match_clause_to_indexkey(rel,
|
|
index,
|
|
curIndxKey,
|
|
curClass,
|
|
rinfo->clause,
|
|
false))
|
|
clausegroup = lappend(clausegroup, rinfo);
|
|
}
|
|
|
|
/* If no clauses match this key, we're done; we don't want to
|
|
* look at keys to its right.
|
|
*/
|
|
if (clausegroup == NIL)
|
|
break;
|
|
|
|
clausegroup_list = nconc(clausegroup_list, clausegroup);
|
|
|
|
indexkeys++;
|
|
classes++;
|
|
|
|
} while (!DoneMatchingIndexKeys(indexkeys, index));
|
|
|
|
/* clausegroup_list holds all matched clauses ordered by indexkeys */
|
|
return clausegroup_list;
|
|
}
|
|
|
|
/*
|
|
* group_clauses_by_ikey_for_joins
|
|
* Generates a list of join clauses that can be used with an index.
|
|
*
|
|
* This is much like group_clauses_by_indexkey(), but we consider both
|
|
* join and restriction clauses. For each indexkey in the index, we
|
|
* accept both join and restriction clauses that match it, since both
|
|
* will make useful indexquals if the index is being used to scan the
|
|
* inner side of a nestloop join. But there must be at least one matching
|
|
* join clause, or we return NIL indicating that this index isn't useful
|
|
* for joining.
|
|
*/
|
|
static List *
|
|
group_clauses_by_ikey_for_joins(RelOptInfo *rel,
|
|
RelOptInfo *index,
|
|
int *indexkeys,
|
|
Oid *classes,
|
|
List *join_cinfo_list,
|
|
List *restr_cinfo_list)
|
|
{
|
|
List *clausegroup_list = NIL;
|
|
bool jfound = false;
|
|
|
|
if (join_cinfo_list == NIL || indexkeys[0] == 0)
|
|
return NIL;
|
|
|
|
do
|
|
{
|
|
int curIndxKey = indexkeys[0];
|
|
Oid curClass = classes[0];
|
|
List *clausegroup = NIL;
|
|
List *curCinfo;
|
|
|
|
foreach(curCinfo, join_cinfo_list)
|
|
{
|
|
RestrictInfo *rinfo = (RestrictInfo *) lfirst(curCinfo);
|
|
|
|
if (match_clause_to_indexkey(rel,
|
|
index,
|
|
curIndxKey,
|
|
curClass,
|
|
rinfo->clause,
|
|
true))
|
|
{
|
|
clausegroup = lappend(clausegroup, rinfo);
|
|
jfound = true;
|
|
}
|
|
}
|
|
foreach(curCinfo, restr_cinfo_list)
|
|
{
|
|
RestrictInfo *rinfo = (RestrictInfo *) lfirst(curCinfo);
|
|
|
|
if (match_clause_to_indexkey(rel,
|
|
index,
|
|
curIndxKey,
|
|
curClass,
|
|
rinfo->clause,
|
|
false))
|
|
clausegroup = lappend(clausegroup, rinfo);
|
|
}
|
|
|
|
/* If no clauses match this key, we're done; we don't want to
|
|
* look at keys to its right.
|
|
*/
|
|
if (clausegroup == NIL)
|
|
break;
|
|
|
|
clausegroup_list = nconc(clausegroup_list, clausegroup);
|
|
|
|
indexkeys++;
|
|
classes++;
|
|
|
|
} while (!DoneMatchingIndexKeys(indexkeys, index));
|
|
|
|
/*
|
|
* if no join clause was matched then there ain't clauses for
|
|
* joins at all.
|
|
*/
|
|
if (!jfound)
|
|
{
|
|
freeList(clausegroup_list);
|
|
return NIL;
|
|
}
|
|
|
|
/* clausegroup_list holds all matched clauses ordered by indexkeys */
|
|
return clausegroup_list;
|
|
}
|
|
|
|
|
|
/*
|
|
* match_clause_to_indexkey()
|
|
* Determines whether a restriction or join clause matches
|
|
* a key of an index.
|
|
*
|
|
* To match, the clause must:
|
|
* (1) be in the form (var op const) for a restriction clause,
|
|
* or (var op var) for a join clause, where the var or one
|
|
* of the vars matches the index key; and
|
|
* (2) contain an operator which is in the same class as the index
|
|
* operator for this key, or is a "special" operator as recognized
|
|
* by match_special_index_operator().
|
|
*
|
|
* In the restriction case, we can cope with (const op var) by commuting
|
|
* the clause to (var op const), if there is a commutator operator.
|
|
* XXX why do we bother to commute? The executor doesn't care!!
|
|
*
|
|
* In the join case, later code will try to commute the clause if needed
|
|
* to put the inner relation's var on the right. We have no idea here
|
|
* which relation might wind up on the inside, so we just accept
|
|
* a match for either var.
|
|
* XXX is this right? We are making a list for this relation to
|
|
* be an inner join relation, so if there is any commuting then
|
|
* this rel must be on the right. But again, it's not really clear
|
|
* that we have to commute at all!
|
|
*
|
|
* 'rel' is the relation of interest.
|
|
* 'index' is an index on 'rel'.
|
|
* 'indexkey' is a key of 'index'.
|
|
* 'xclass' is the corresponding operator class.
|
|
* 'clause' is the clause to be tested.
|
|
* 'join' is true if we are considering this clause for joins.
|
|
*
|
|
* Returns true if the clause can be used with this index key.
|
|
*
|
|
* NOTE: returns false if clause is an or_clause; that's handled elsewhere.
|
|
*/
|
|
static bool
|
|
match_clause_to_indexkey(RelOptInfo *rel,
|
|
RelOptInfo *index,
|
|
int indexkey,
|
|
int xclass,
|
|
Expr *clause,
|
|
bool join)
|
|
{
|
|
bool isIndexable = false;
|
|
Var *leftop,
|
|
*rightop;
|
|
Oid expr_op;
|
|
|
|
if (! is_opclause((Node *) clause))
|
|
return false;
|
|
leftop = get_leftop(clause);
|
|
rightop = get_rightop(clause);
|
|
if (! leftop || ! rightop)
|
|
return false;
|
|
expr_op = ((Oper *) clause->oper)->opno;
|
|
|
|
if (!join)
|
|
{
|
|
/*
|
|
* Not considering joins, so check for clauses of the form:
|
|
* (var/func operator constant) and (constant operator var/func)
|
|
*/
|
|
|
|
/*
|
|
* Check for standard s-argable clause
|
|
*/
|
|
if ((IsA(rightop, Const) || IsA(rightop, Param)) &&
|
|
match_index_to_operand(indexkey, (Expr *) leftop,
|
|
rel, index))
|
|
{
|
|
isIndexable = op_class(expr_op, xclass, index->relam);
|
|
|
|
#ifndef IGNORE_BINARY_COMPATIBLE_INDICES
|
|
/*
|
|
* Didn't find an index? Then maybe we can find another
|
|
* binary-compatible index instead... thomas 1998-08-14
|
|
*/
|
|
if (!isIndexable)
|
|
{
|
|
Oid ltype = exprType((Node *) leftop);
|
|
Oid rtype = exprType((Node *) rightop);
|
|
|
|
/*
|
|
* make sure we have two different binary-compatible
|
|
* types...
|
|
*/
|
|
if (ltype != rtype && IS_BINARY_COMPATIBLE(ltype, rtype))
|
|
{
|
|
char *opname = get_opname(expr_op);
|
|
Operator newop = NULL;
|
|
|
|
if (opname != NULL)
|
|
newop = oper(opname, ltype, ltype, TRUE);
|
|
|
|
/* actually have a different operator to try? */
|
|
if (HeapTupleIsValid(newop) && oprid(newop) != expr_op)
|
|
{
|
|
expr_op = oprid(newop);
|
|
isIndexable = op_class(expr_op, xclass, index->relam);
|
|
if (isIndexable)
|
|
((Oper *) clause->oper)->opno = expr_op;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* If we didn't find a member of the index's opclass,
|
|
* see whether it is a "special" indexable operator.
|
|
*/
|
|
if (!isIndexable)
|
|
isIndexable = match_special_index_operator(clause, true);
|
|
|
|
}
|
|
|
|
/*
|
|
* Must try to commute the clause to standard s-arg format.
|
|
* XXX do we really have to commute it? The executor doesn't care!
|
|
*/
|
|
else if ((IsA(leftop, Const) || IsA(leftop, Param)) &&
|
|
match_index_to_operand(indexkey, (Expr *) rightop,
|
|
rel, index))
|
|
{
|
|
Oid commuted_op = get_commutator(expr_op);
|
|
|
|
isIndexable = ((commuted_op != InvalidOid) &&
|
|
op_class(commuted_op, xclass, index->relam));
|
|
|
|
#ifndef IGNORE_BINARY_COMPATIBLE_INDICES
|
|
if (!isIndexable)
|
|
{
|
|
Oid ltype = exprType((Node *) leftop);
|
|
Oid rtype = exprType((Node *) rightop);
|
|
|
|
if (ltype != rtype && IS_BINARY_COMPATIBLE(ltype, rtype))
|
|
{
|
|
char *opname = get_opname(expr_op);
|
|
Operator newop = NULL;
|
|
|
|
/* note we use rtype, ie, the indexkey's type */
|
|
if (opname != NULL)
|
|
newop = oper(opname, rtype, rtype, TRUE);
|
|
|
|
if (HeapTupleIsValid(newop) && oprid(newop) != expr_op)
|
|
{
|
|
expr_op = get_commutator(oprid(newop));
|
|
isIndexable = (expr_op != InvalidOid) &&
|
|
op_class(expr_op, xclass, index->relam);
|
|
if (isIndexable)
|
|
((Oper *) clause->oper)->opno = oprid(newop);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
if (isIndexable)
|
|
{
|
|
/*
|
|
* In place list modification. (op const var/func) -> (op
|
|
* var/func const)
|
|
*/
|
|
CommuteClause((Node *) clause);
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* If we didn't find a member of the index's opclass,
|
|
* see whether it is a "special" indexable operator.
|
|
* (match_special_index_operator must commute the
|
|
* clause itself, if it wants to.)
|
|
*/
|
|
isIndexable = match_special_index_operator(clause, false);
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* Check for an indexable scan on one of the join relations.
|
|
* clause is of the form (operator var/func var/func)
|
|
* XXX this does not seem right. Should check other side
|
|
* looks like var/func? do we really want to only consider
|
|
* this rel on lefthand side??
|
|
*/
|
|
Oid join_op = InvalidOid;
|
|
|
|
if (match_index_to_operand(indexkey, (Expr *) leftop,
|
|
rel, index))
|
|
join_op = expr_op;
|
|
else if (match_index_to_operand(indexkey, (Expr *) rightop,
|
|
rel, index))
|
|
join_op = get_commutator(expr_op);
|
|
|
|
if (join_op && op_class(join_op, xclass, index->relam) &&
|
|
is_joinable((Node *) clause))
|
|
isIndexable = true;
|
|
}
|
|
|
|
return isIndexable;
|
|
}
|
|
|
|
/****************************************************************************
|
|
* ---- ROUTINES TO DO PARTIAL INDEX PREDICATE TESTS ----
|
|
****************************************************************************/
|
|
|
|
/*
|
|
* pred_test
|
|
* Does the "predicate inclusion test" for partial indexes.
|
|
*
|
|
* Recursively checks whether the clauses in restrictinfo_list imply
|
|
* that the given predicate is true.
|
|
*
|
|
* This routine (together with the routines it calls) iterates over
|
|
* ANDs in the predicate first, then reduces the qualification
|
|
* clauses down to their constituent terms, and iterates over ORs
|
|
* in the predicate last. This order is important to make the test
|
|
* succeed whenever possible (assuming the predicate has been
|
|
* successfully cnfify()-ed). --Nels, Jan '93
|
|
*/
|
|
static bool
|
|
pred_test(List *predicate_list, List *restrictinfo_list, List *joininfo_list)
|
|
{
|
|
List *pred,
|
|
*items,
|
|
*item;
|
|
|
|
/*
|
|
* Note: if Postgres tried to optimize queries by forming equivalence
|
|
* classes over equi-joined attributes (i.e., if it recognized that a
|
|
* qualification such as "where a.b=c.d and a.b=5" could make use of
|
|
* an index on c.d), then we could use that equivalence class info
|
|
* here with joininfo_list to do more complete tests for the usability
|
|
* of a partial index. For now, the test only uses restriction
|
|
* clauses (those in restrictinfo_list). --Nels, Dec '92
|
|
*/
|
|
|
|
if (predicate_list == NULL)
|
|
return true; /* no predicate: the index is usable */
|
|
if (restrictinfo_list == NULL)
|
|
return false; /* no restriction clauses: the test must
|
|
* fail */
|
|
|
|
foreach(pred, predicate_list)
|
|
{
|
|
|
|
/*
|
|
* if any clause is not implied, the whole predicate is not
|
|
* implied
|
|
*/
|
|
if (and_clause(lfirst(pred)))
|
|
{
|
|
items = ((Expr *) lfirst(pred))->args;
|
|
foreach(item, items)
|
|
{
|
|
if (!one_pred_test(lfirst(item), restrictinfo_list))
|
|
return false;
|
|
}
|
|
}
|
|
else if (!one_pred_test(lfirst(pred), restrictinfo_list))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
/*
|
|
* one_pred_test
|
|
* Does the "predicate inclusion test" for one conjunct of a predicate
|
|
* expression.
|
|
*/
|
|
static bool
|
|
one_pred_test(Expr *predicate, List *restrictinfo_list)
|
|
{
|
|
RestrictInfo *restrictinfo;
|
|
List *item;
|
|
|
|
Assert(predicate != NULL);
|
|
foreach(item, restrictinfo_list)
|
|
{
|
|
restrictinfo = (RestrictInfo *) lfirst(item);
|
|
/* if any clause implies the predicate, return true */
|
|
if (one_pred_clause_expr_test(predicate, (Node *) restrictinfo->clause))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
/*
|
|
* one_pred_clause_expr_test
|
|
* Does the "predicate inclusion test" for a general restriction-clause
|
|
* expression.
|
|
*/
|
|
static bool
|
|
one_pred_clause_expr_test(Expr *predicate, Node *clause)
|
|
{
|
|
List *items,
|
|
*item;
|
|
|
|
if (is_opclause(clause))
|
|
return one_pred_clause_test(predicate, clause);
|
|
else if (or_clause(clause))
|
|
{
|
|
items = ((Expr *) clause)->args;
|
|
foreach(item, items)
|
|
{
|
|
/* if any OR item doesn't imply the predicate, clause doesn't */
|
|
if (!one_pred_clause_expr_test(predicate, lfirst(item)))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
else if (and_clause(clause))
|
|
{
|
|
items = ((Expr *) clause)->args;
|
|
foreach(item, items)
|
|
{
|
|
|
|
/*
|
|
* if any AND item implies the predicate, the whole clause
|
|
* does
|
|
*/
|
|
if (one_pred_clause_expr_test(predicate, lfirst(item)))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
else
|
|
{
|
|
/* unknown clause type never implies the predicate */
|
|
return false;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* one_pred_clause_test
|
|
* Does the "predicate inclusion test" for one conjunct of a predicate
|
|
* expression for a simple restriction clause.
|
|
*/
|
|
static bool
|
|
one_pred_clause_test(Expr *predicate, Node *clause)
|
|
{
|
|
List *items,
|
|
*item;
|
|
|
|
if (is_opclause((Node *) predicate))
|
|
return clause_pred_clause_test(predicate, clause);
|
|
else if (or_clause((Node *) predicate))
|
|
{
|
|
items = predicate->args;
|
|
foreach(item, items)
|
|
{
|
|
/* if any item is implied, the whole predicate is implied */
|
|
if (one_pred_clause_test(lfirst(item), clause))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
else if (and_clause((Node *) predicate))
|
|
{
|
|
items = predicate->args;
|
|
foreach(item, items)
|
|
{
|
|
|
|
/*
|
|
* if any item is not implied, the whole predicate is not
|
|
* implied
|
|
*/
|
|
if (!one_pred_clause_test(lfirst(item), clause))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
else
|
|
{
|
|
elog(DEBUG, "Unsupported predicate type, index will not be used");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Define an "operator implication table" for btree operators ("strategies").
|
|
* The "strategy numbers" are: (1) < (2) <= (3) = (4) >= (5) >
|
|
*
|
|
* The interpretation of:
|
|
*
|
|
* test_op = BT_implic_table[given_op-1][target_op-1]
|
|
*
|
|
* where test_op, given_op and target_op are strategy numbers (from 1 to 5)
|
|
* of btree operators, is as follows:
|
|
*
|
|
* If you know, for some ATTR, that "ATTR given_op CONST1" is true, and you
|
|
* want to determine whether "ATTR target_op CONST2" must also be true, then
|
|
* you can use "CONST1 test_op CONST2" as a test. If this test returns true,
|
|
* then the target expression must be true; if the test returns false, then
|
|
* the target expression may be false.
|
|
*
|
|
* An entry where test_op==0 means the implication cannot be determined, i.e.,
|
|
* this test should always be considered false.
|
|
*/
|
|
|
|
static StrategyNumber
|
|
BT_implic_table[BTMaxStrategyNumber][BTMaxStrategyNumber] = {
|
|
{2, 2, 0, 0, 0},
|
|
{1, 2, 0, 0, 0},
|
|
{1, 2, 3, 4, 5},
|
|
{0, 0, 0, 4, 5},
|
|
{0, 0, 0, 4, 4}
|
|
};
|
|
|
|
|
|
/*
|
|
* clause_pred_clause_test
|
|
* Use operator class info to check whether clause implies predicate.
|
|
*
|
|
* Does the "predicate inclusion test" for a "simple clause" predicate
|
|
* for a single "simple clause" restriction. Currently, this only handles
|
|
* (binary boolean) operators that are in some btree operator class.
|
|
* Eventually, rtree operators could also be handled by defining an
|
|
* appropriate "RT_implic_table" array.
|
|
*/
|
|
static bool
|
|
clause_pred_clause_test(Expr *predicate, Node *clause)
|
|
{
|
|
Var *pred_var,
|
|
*clause_var;
|
|
Const *pred_const,
|
|
*clause_const;
|
|
Oid pred_op,
|
|
clause_op,
|
|
test_op;
|
|
Oid opclass_id;
|
|
StrategyNumber pred_strategy,
|
|
clause_strategy,
|
|
test_strategy;
|
|
Oper *test_oper;
|
|
Expr *test_expr;
|
|
bool test_result,
|
|
isNull;
|
|
Relation relation;
|
|
HeapScanDesc scan;
|
|
HeapTuple tuple;
|
|
ScanKeyData entry[3];
|
|
Form_pg_amop aform;
|
|
|
|
pred_var = (Var *) get_leftop(predicate);
|
|
pred_const = (Const *) get_rightop(predicate);
|
|
clause_var = (Var *) get_leftop((Expr *) clause);
|
|
clause_const = (Const *) get_rightop((Expr *) clause);
|
|
|
|
/* Check the basic form; for now, only allow the simplest case */
|
|
if (!is_opclause(clause) ||
|
|
!IsA(clause_var, Var) ||
|
|
clause_const == NULL ||
|
|
!IsA(clause_const, Const) ||
|
|
!IsA(predicate->oper, Oper) ||
|
|
!IsA(pred_var, Var) ||
|
|
!IsA(pred_const, Const))
|
|
return false;
|
|
|
|
/*
|
|
* The implication can't be determined unless the predicate and the
|
|
* clause refer to the same attribute.
|
|
*/
|
|
if (clause_var->varattno != pred_var->varattno)
|
|
return false;
|
|
|
|
/* Get the operators for the two clauses we're comparing */
|
|
pred_op = ((Oper *) ((Expr *) predicate)->oper)->opno;
|
|
clause_op = ((Oper *) ((Expr *) clause)->oper)->opno;
|
|
|
|
|
|
/*
|
|
* 1. Find a "btree" strategy number for the pred_op
|
|
*/
|
|
ScanKeyEntryInitialize(&entry[0], 0,
|
|
Anum_pg_amop_amopid,
|
|
F_OIDEQ,
|
|
ObjectIdGetDatum(BTREE_AM_OID));
|
|
|
|
ScanKeyEntryInitialize(&entry[1], 0,
|
|
Anum_pg_amop_amopopr,
|
|
F_OIDEQ,
|
|
ObjectIdGetDatum(pred_op));
|
|
|
|
relation = heap_openr(AccessMethodOperatorRelationName);
|
|
|
|
/*
|
|
* The following assumes that any given operator will only be in a
|
|
* single btree operator class. This is true at least for all the
|
|
* pre-defined operator classes. If it isn't true, then whichever
|
|
* operator class happens to be returned first for the given operator
|
|
* will be used to find the associated strategy numbers for the test.
|
|
* --Nels, Jan '93
|
|
*/
|
|
scan = heap_beginscan(relation, false, SnapshotNow, 2, entry);
|
|
tuple = heap_getnext(scan, 0);
|
|
if (!HeapTupleIsValid(tuple))
|
|
{
|
|
elog(DEBUG, "clause_pred_clause_test: unknown pred_op");
|
|
return false;
|
|
}
|
|
aform = (Form_pg_amop) GETSTRUCT(tuple);
|
|
|
|
/* Get the predicate operator's strategy number (1 to 5) */
|
|
pred_strategy = (StrategyNumber) aform->amopstrategy;
|
|
|
|
/* Remember which operator class this strategy number came from */
|
|
opclass_id = aform->amopclaid;
|
|
|
|
heap_endscan(scan);
|
|
|
|
|
|
/*
|
|
* 2. From the same opclass, find a strategy num for the clause_op
|
|
*/
|
|
ScanKeyEntryInitialize(&entry[1], 0,
|
|
Anum_pg_amop_amopclaid,
|
|
F_OIDEQ,
|
|
ObjectIdGetDatum(opclass_id));
|
|
|
|
ScanKeyEntryInitialize(&entry[2], 0,
|
|
Anum_pg_amop_amopopr,
|
|
F_OIDEQ,
|
|
ObjectIdGetDatum(clause_op));
|
|
|
|
scan = heap_beginscan(relation, false, SnapshotNow, 3, entry);
|
|
tuple = heap_getnext(scan, 0);
|
|
if (!HeapTupleIsValid(tuple))
|
|
{
|
|
elog(DEBUG, "clause_pred_clause_test: unknown clause_op");
|
|
return false;
|
|
}
|
|
aform = (Form_pg_amop) GETSTRUCT(tuple);
|
|
|
|
/* Get the restriction clause operator's strategy number (1 to 5) */
|
|
clause_strategy = (StrategyNumber) aform->amopstrategy;
|
|
heap_endscan(scan);
|
|
|
|
|
|
/*
|
|
* 3. Look up the "test" strategy number in the implication table
|
|
*/
|
|
|
|
test_strategy = BT_implic_table[clause_strategy - 1][pred_strategy - 1];
|
|
if (test_strategy == 0)
|
|
return false; /* the implication cannot be determined */
|
|
|
|
|
|
/*
|
|
* 4. From the same opclass, find the operator for the test strategy
|
|
*/
|
|
|
|
ScanKeyEntryInitialize(&entry[2], 0,
|
|
Anum_pg_amop_amopstrategy,
|
|
F_INT2EQ,
|
|
Int16GetDatum(test_strategy));
|
|
|
|
scan = heap_beginscan(relation, false, SnapshotNow, 3, entry);
|
|
tuple = heap_getnext(scan, 0);
|
|
if (!HeapTupleIsValid(tuple))
|
|
{
|
|
elog(DEBUG, "clause_pred_clause_test: unknown test_op");
|
|
return false;
|
|
}
|
|
aform = (Form_pg_amop) GETSTRUCT(tuple);
|
|
|
|
/* Get the test operator */
|
|
test_op = aform->amopopr;
|
|
heap_endscan(scan);
|
|
|
|
|
|
/*
|
|
* 5. Evaluate the test
|
|
*/
|
|
test_oper = makeOper(test_op, /* opno */
|
|
InvalidOid, /* opid */
|
|
BOOLOID, /* opresulttype */
|
|
0, /* opsize */
|
|
NULL); /* op_fcache */
|
|
replace_opid(test_oper);
|
|
|
|
test_expr = make_opclause(test_oper,
|
|
copyObject(clause_const),
|
|
copyObject(pred_const));
|
|
|
|
#ifndef OMIT_PARTIAL_INDEX
|
|
test_result = ExecEvalExpr((Node *) test_expr, NULL, &isNull, NULL);
|
|
#endif /* OMIT_PARTIAL_INDEX */
|
|
if (isNull)
|
|
{
|
|
elog(DEBUG, "clause_pred_clause_test: null test result");
|
|
return false;
|
|
}
|
|
return test_result;
|
|
}
|
|
|
|
|
|
/****************************************************************************
|
|
* ---- ROUTINES TO CHECK JOIN CLAUSES ----
|
|
****************************************************************************/
|
|
|
|
/*
|
|
* indexable_joinclauses
|
|
* Finds all groups of join clauses from among 'joininfo_list' that can
|
|
* be used in conjunction with 'index'.
|
|
*
|
|
* Each clause group comes from a single joininfo node plus the current
|
|
* rel's restrictinfo list. Therefore, every clause in the group references
|
|
* the current rel plus the same set of other rels (except for the restrict
|
|
* clauses, which only reference the current rel). Therefore, this set
|
|
* of clauses could be used as an indexqual if the relation is scanned
|
|
* as the inner side of a nestloop join when the outer side contains
|
|
* (at least) all those "other rels".
|
|
*
|
|
* XXX Actually, given that we are considering a join that requires an
|
|
* outer rel set (A,B,C), we should use all qual clauses that reference
|
|
* any subset of these rels, not just the full set or none. This is
|
|
* doable with a doubly nested loop over joininfo_list; is it worth it?
|
|
*
|
|
* Returns two parallel lists of the same length: the clause groups,
|
|
* and the required outer rel set for each one.
|
|
*
|
|
* 'rel' is the relation for which 'index' is defined
|
|
* 'joininfo_list' is the list of JoinInfo nodes for 'rel'
|
|
* 'restrictinfo_list' is the list of restriction clauses for 'rel'
|
|
* '*clausegroups' receives a list of clause sublists
|
|
* '*outerrelids' receives a list of relid lists
|
|
*/
|
|
static void
|
|
indexable_joinclauses(RelOptInfo *rel, RelOptInfo *index,
|
|
List *joininfo_list, List *restrictinfo_list,
|
|
List **clausegroups, List **outerrelids)
|
|
{
|
|
List *cg_list = NIL;
|
|
List *relid_list = NIL;
|
|
List *i;
|
|
|
|
foreach(i, joininfo_list)
|
|
{
|
|
JoinInfo *joininfo = (JoinInfo *) lfirst(i);
|
|
List *clausegroup;
|
|
|
|
clausegroup = group_clauses_by_ikey_for_joins(rel,
|
|
index,
|
|
index->indexkeys,
|
|
index->classlist,
|
|
joininfo->jinfo_restrictinfo,
|
|
restrictinfo_list);
|
|
|
|
if (clausegroup != NIL)
|
|
{
|
|
cg_list = lappend(cg_list, clausegroup);
|
|
relid_list = lappend(relid_list, joininfo->unjoined_relids);
|
|
}
|
|
}
|
|
|
|
*clausegroups = cg_list;
|
|
*outerrelids = relid_list;
|
|
}
|
|
|
|
/****************************************************************************
|
|
* ---- PATH CREATION UTILITIES ----
|
|
****************************************************************************/
|
|
|
|
/*
|
|
* index_innerjoin
|
|
* Creates index path nodes corresponding to paths to be used as inner
|
|
* relations in nestloop joins.
|
|
*
|
|
* 'rel' is the relation for which 'index' is defined
|
|
* 'clausegroup_list' is a list of lists of restrictinfo nodes which can use
|
|
* 'index'. Each sublist refers to the same set of outer rels.
|
|
* 'outerrelids_list' is a list of the required outer rels for each group
|
|
* of join clauses.
|
|
*
|
|
* Returns a list of index pathnodes.
|
|
*/
|
|
static List *
|
|
index_innerjoin(Query *root, RelOptInfo *rel, RelOptInfo *index,
|
|
List *clausegroup_list, List *outerrelids_list)
|
|
{
|
|
List *path_list = NIL;
|
|
List *i;
|
|
|
|
foreach(i, clausegroup_list)
|
|
{
|
|
List *clausegroup = lfirst(i);
|
|
IndexPath *pathnode = makeNode(IndexPath);
|
|
List *indexquals;
|
|
float npages;
|
|
float selec;
|
|
|
|
indexquals = get_actual_clauses(clausegroup);
|
|
/* expand special operators to indexquals the executor can handle */
|
|
indexquals = expand_indexqual_conditions(indexquals);
|
|
|
|
index_selectivity(root,
|
|
lfirsti(rel->relids),
|
|
lfirsti(index->relids),
|
|
indexquals,
|
|
&npages,
|
|
&selec);
|
|
|
|
/* XXX this code ought to be merged with create_index_path */
|
|
|
|
pathnode->path.pathtype = T_IndexScan;
|
|
pathnode->path.parent = rel;
|
|
pathnode->path.pathorder = makeNode(PathOrder);
|
|
pathnode->path.pathorder->ordtype = SORTOP_ORDER;
|
|
pathnode->path.pathorder->ord.sortop = index->ordering;
|
|
pathnode->path.pathkeys = NIL;
|
|
|
|
/* Note that we are making a pathnode for a single-scan indexscan;
|
|
* therefore, both indexid and indexqual should be single-element
|
|
* lists.
|
|
*/
|
|
Assert(length(index->relids) == 1);
|
|
pathnode->indexid = index->relids;
|
|
pathnode->indexqual = lcons(indexquals, NIL);
|
|
|
|
pathnode->indexkeys = index->indexkeys;
|
|
|
|
/* joinid saves the rels needed on the outer side of the join */
|
|
pathnode->path.joinid = lfirst(outerrelids_list);
|
|
|
|
pathnode->path.path_cost = cost_index((Oid) lfirsti(index->relids),
|
|
(int) npages,
|
|
selec,
|
|
rel->pages,
|
|
rel->tuples,
|
|
index->pages,
|
|
index->tuples,
|
|
true);
|
|
|
|
path_list = lappend(path_list, pathnode);
|
|
outerrelids_list = lnext(outerrelids_list);
|
|
}
|
|
return path_list;
|
|
}
|
|
|
|
/*
|
|
* useful_for_mergejoin
|
|
* Determine whether the given index can support a mergejoin based
|
|
* on any join clause within the given list. The clauses have already
|
|
* been found to be relevant to the index by indexable_joinclauses.
|
|
* We just need to check whether any are mergejoin material.
|
|
*
|
|
* 'index' is the index of interest.
|
|
* 'clausegroup_list' is a list of clause groups (sublists of restrictinfo
|
|
* nodes)
|
|
*/
|
|
static bool
|
|
useful_for_mergejoin(RelOptInfo *index,
|
|
List *clausegroup_list)
|
|
{
|
|
List *i;
|
|
|
|
foreach(i, clausegroup_list)
|
|
{
|
|
List *clausegroup = lfirst(i);
|
|
List *j;
|
|
|
|
foreach(j, clausegroup)
|
|
{
|
|
RestrictInfo *restrictinfo = (RestrictInfo *) lfirst(j);
|
|
|
|
if (is_joinable((Node *) restrictinfo->clause) &&
|
|
equal_path_merge_ordering(index->ordering,
|
|
restrictinfo->mergejoinorder))
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/****************************************************************************
|
|
* ---- ROUTINES TO CHECK OPERANDS ----
|
|
****************************************************************************/
|
|
|
|
/*
|
|
* match_index_to_operand()
|
|
* Generalized test for a match between an index's key
|
|
* and the operand on one side of a restriction or join clause.
|
|
* Now check for functional indices as well.
|
|
*/
|
|
static bool
|
|
match_index_to_operand(int indexkey,
|
|
Expr *operand,
|
|
RelOptInfo *rel,
|
|
RelOptInfo *index)
|
|
{
|
|
if (index->indproc == InvalidOid)
|
|
{
|
|
/*
|
|
* Normal index.
|
|
*/
|
|
return match_indexkey_operand(indexkey, (Var *) operand, rel);
|
|
}
|
|
|
|
/*
|
|
* functional index check
|
|
*/
|
|
return function_index_operand(operand, rel, index);
|
|
}
|
|
|
|
static bool
|
|
function_index_operand(Expr *funcOpnd, RelOptInfo *rel, RelOptInfo *index)
|
|
{
|
|
Oid heapRelid = (Oid) lfirsti(rel->relids);
|
|
Func *function;
|
|
List *funcargs;
|
|
int *indexKeys = index->indexkeys;
|
|
List *arg;
|
|
int i;
|
|
|
|
/*
|
|
* sanity check, make sure we know what we're dealing with here.
|
|
*/
|
|
if (funcOpnd == NULL ||
|
|
nodeTag(funcOpnd) != T_Expr || funcOpnd->opType != FUNC_EXPR ||
|
|
funcOpnd->oper == NULL || indexKeys == NULL)
|
|
return false;
|
|
|
|
function = (Func *) funcOpnd->oper;
|
|
funcargs = funcOpnd->args;
|
|
|
|
if (function->funcid != index->indproc)
|
|
return false;
|
|
|
|
/*
|
|
* Check that the arguments correspond to the same arguments used to
|
|
* create the functional index. To do this we must check that 1.
|
|
* refer to the right relatiion. 2. the args have the right attr.
|
|
* numbers in the right order.
|
|
*
|
|
* Check all args refer to the correct relation (i.e. the one with the
|
|
* functional index defined on it (rel). To do this we can simply
|
|
* compare range table entry numbers, they must be the same.
|
|
*/
|
|
foreach(arg, funcargs)
|
|
{
|
|
if (heapRelid != ((Var *) lfirst(arg))->varno)
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* check attr numbers and order.
|
|
*/
|
|
i = 0;
|
|
foreach(arg, funcargs)
|
|
{
|
|
if (indexKeys[i] == 0)
|
|
return false;
|
|
|
|
if (((Var *) lfirst(arg))->varattno != indexKeys[i])
|
|
return false;
|
|
|
|
i++;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/****************************************************************************
|
|
* ---- ROUTINES FOR "SPECIAL" INDEXABLE OPERATORS ----
|
|
****************************************************************************/
|
|
|
|
/*----------
|
|
* These routines handle special optimization of operators that can be
|
|
* used with index scans even though they are not known to the executor's
|
|
* indexscan machinery. The key idea is that these operators allow us
|
|
* to derive approximate indexscan qual clauses, such that any tuples
|
|
* that pass the operator clause itself must also satisfy the simpler
|
|
* indexscan condition(s). Then we can use the indexscan machinery
|
|
* to avoid scanning as much of the table as we'd otherwise have to,
|
|
* while applying the original operator as a qpqual condition to ensure
|
|
* we deliver only the tuples we want. (In essence, we're using a regular
|
|
* index as if it were a lossy index.)
|
|
*
|
|
* An example of what we're doing is
|
|
* textfield LIKE 'abc%'
|
|
* from which we can generate the indexscanable conditions
|
|
* textfield >= 'abc' AND textfield < 'abd'
|
|
* which allow efficient scanning of an index on textfield.
|
|
* (In reality, character set and collation issues make the transformation
|
|
* from LIKE to indexscan limits rather harder than one might think ...
|
|
* but that's the basic idea.)
|
|
*
|
|
* Two routines are provided here, match_special_index_operator() and
|
|
* expand_indexqual_conditions(). match_special_index_operator() is
|
|
* just an auxiliary function for match_clause_to_indexkey(); after
|
|
* the latter fails to recognize a restriction opclause's operator
|
|
* as a member of an index's opclass, it asks match_special_index_operator()
|
|
* whether the clause should be considered an indexqual anyway.
|
|
* expand_indexqual_conditions() converts a list of "raw" indexqual
|
|
* conditions (with implicit AND semantics across list elements) into
|
|
* a list that the executor can actually handle. For operators that
|
|
* are members of the index's opclass this transformation is a no-op,
|
|
* but operators recognized by match_special_index_operator() must be
|
|
* converted into one or more "regular" indexqual conditions.
|
|
*----------
|
|
*/
|
|
|
|
/*
|
|
* match_special_index_operator
|
|
* Recognize restriction clauses that can be used to generate
|
|
* additional indexscanable qualifications.
|
|
*
|
|
* The given clause is already known to be a binary opclause having
|
|
* the form (indexkey OP const/param) or (const/param OP indexkey),
|
|
* but the OP proved not to be one of the index's opclass operators.
|
|
* Return 'true' if we can do something with it anyway.
|
|
*/
|
|
static bool
|
|
match_special_index_operator(Expr *clause, bool indexkey_on_left)
|
|
{
|
|
bool isIndexable = false;
|
|
Var *leftop,
|
|
*rightop;
|
|
Oid expr_op;
|
|
Datum constvalue;
|
|
char *patt;
|
|
char *prefix;
|
|
|
|
/* Currently, all known special operators require the indexkey
|
|
* on the left, but this test could be pushed into the switch statement
|
|
* if some are added that do not...
|
|
*/
|
|
if (! indexkey_on_left)
|
|
return false;
|
|
|
|
/* we know these will succeed */
|
|
leftop = get_leftop(clause);
|
|
rightop = get_rightop(clause);
|
|
expr_op = ((Oper *) clause->oper)->opno;
|
|
|
|
/* again, required for all current special ops: */
|
|
if (! IsA(rightop, Const) ||
|
|
((Const *) rightop)->constisnull)
|
|
return false;
|
|
constvalue = ((Const *) rightop)->constvalue;
|
|
|
|
switch (expr_op)
|
|
{
|
|
case OID_TEXT_LIKE_OP:
|
|
case OID_BPCHAR_LIKE_OP:
|
|
case OID_VARCHAR_LIKE_OP:
|
|
case OID_NAME_LIKE_OP:
|
|
/* the right-hand const is type text for all of these */
|
|
patt = textout((text *) DatumGetPointer(constvalue));
|
|
isIndexable = like_fixed_prefix(patt, &prefix) != Prefix_None;
|
|
if (prefix) pfree(prefix);
|
|
pfree(patt);
|
|
break;
|
|
|
|
case OID_TEXT_REGEXEQ_OP:
|
|
case OID_BPCHAR_REGEXEQ_OP:
|
|
case OID_VARCHAR_REGEXEQ_OP:
|
|
case OID_NAME_REGEXEQ_OP:
|
|
/* the right-hand const is type text for all of these */
|
|
patt = textout((text *) DatumGetPointer(constvalue));
|
|
isIndexable = regex_fixed_prefix(patt, false, &prefix) != Prefix_None;
|
|
if (prefix) pfree(prefix);
|
|
pfree(patt);
|
|
break;
|
|
|
|
case OID_TEXT_ICREGEXEQ_OP:
|
|
case OID_BPCHAR_ICREGEXEQ_OP:
|
|
case OID_VARCHAR_ICREGEXEQ_OP:
|
|
case OID_NAME_ICREGEXEQ_OP:
|
|
/* the right-hand const is type text for all of these */
|
|
patt = textout((text *) DatumGetPointer(constvalue));
|
|
isIndexable = regex_fixed_prefix(patt, true, &prefix) != Prefix_None;
|
|
if (prefix) pfree(prefix);
|
|
pfree(patt);
|
|
break;
|
|
}
|
|
|
|
return isIndexable;
|
|
}
|
|
|
|
/*
|
|
* expand_indexqual_conditions
|
|
* Given a list of (implicitly ANDed) indexqual clauses,
|
|
* expand any "special" index operators into clauses that the indexscan
|
|
* machinery will know what to do with. Clauses that were not
|
|
* recognized by match_special_index_operator() must be passed through
|
|
* unchanged.
|
|
*/
|
|
List *
|
|
expand_indexqual_conditions(List *indexquals)
|
|
{
|
|
List *resultquals = NIL;
|
|
List *q;
|
|
|
|
foreach(q, indexquals)
|
|
{
|
|
Expr *clause = (Expr *) lfirst(q);
|
|
/* we know these will succeed */
|
|
Var *leftop = get_leftop(clause);
|
|
Var *rightop = get_rightop(clause);
|
|
Oid expr_op = ((Oper *) clause->oper)->opno;
|
|
Datum constvalue;
|
|
char *patt;
|
|
char *prefix;
|
|
Prefix_Status pstatus;
|
|
|
|
switch (expr_op)
|
|
{
|
|
/*
|
|
* LIKE and regex operators are not members of any index opclass,
|
|
* so if we find one in an indexqual list we can assume that
|
|
* it was accepted by match_special_index_operator().
|
|
*/
|
|
case OID_TEXT_LIKE_OP:
|
|
case OID_BPCHAR_LIKE_OP:
|
|
case OID_VARCHAR_LIKE_OP:
|
|
case OID_NAME_LIKE_OP:
|
|
/* the right-hand const is type text for all of these */
|
|
constvalue = ((Const *) rightop)->constvalue;
|
|
patt = textout((text *) DatumGetPointer(constvalue));
|
|
pstatus = like_fixed_prefix(patt, &prefix);
|
|
resultquals = nconc(resultquals,
|
|
prefix_quals(leftop, expr_op,
|
|
prefix, pstatus));
|
|
if (prefix) pfree(prefix);
|
|
pfree(patt);
|
|
break;
|
|
|
|
case OID_TEXT_REGEXEQ_OP:
|
|
case OID_BPCHAR_REGEXEQ_OP:
|
|
case OID_VARCHAR_REGEXEQ_OP:
|
|
case OID_NAME_REGEXEQ_OP:
|
|
/* the right-hand const is type text for all of these */
|
|
constvalue = ((Const *) rightop)->constvalue;
|
|
patt = textout((text *) DatumGetPointer(constvalue));
|
|
pstatus = regex_fixed_prefix(patt, false, &prefix);
|
|
resultquals = nconc(resultquals,
|
|
prefix_quals(leftop, expr_op,
|
|
prefix, pstatus));
|
|
if (prefix) pfree(prefix);
|
|
pfree(patt);
|
|
break;
|
|
|
|
case OID_TEXT_ICREGEXEQ_OP:
|
|
case OID_BPCHAR_ICREGEXEQ_OP:
|
|
case OID_VARCHAR_ICREGEXEQ_OP:
|
|
case OID_NAME_ICREGEXEQ_OP:
|
|
/* the right-hand const is type text for all of these */
|
|
constvalue = ((Const *) rightop)->constvalue;
|
|
patt = textout((text *) DatumGetPointer(constvalue));
|
|
pstatus = regex_fixed_prefix(patt, true, &prefix);
|
|
resultquals = nconc(resultquals,
|
|
prefix_quals(leftop, expr_op,
|
|
prefix, pstatus));
|
|
if (prefix) pfree(prefix);
|
|
pfree(patt);
|
|
break;
|
|
|
|
default:
|
|
resultquals = lappend(resultquals, clause);
|
|
break;
|
|
}
|
|
}
|
|
|
|
return resultquals;
|
|
}
|
|
|
|
/*
|
|
* Extract the fixed prefix, if any, for a LIKE pattern.
|
|
* *prefix is set to a palloc'd prefix string with 1 spare byte,
|
|
* or to NULL if no fixed prefix exists for the pattern.
|
|
* The return value distinguishes no fixed prefix, a partial prefix,
|
|
* or an exact-match-only pattern.
|
|
*/
|
|
static Prefix_Status
|
|
like_fixed_prefix(char *patt, char **prefix)
|
|
{
|
|
char *match;
|
|
int pos,
|
|
match_pos;
|
|
|
|
*prefix = match = palloc(strlen(patt)+2);
|
|
match_pos = 0;
|
|
|
|
for (pos = 0; patt[pos]; pos++)
|
|
{
|
|
/* % and _ are wildcard characters in LIKE */
|
|
if (patt[pos] == '%' ||
|
|
patt[pos] == '_')
|
|
break;
|
|
/* Backslash quotes the next character */
|
|
if (patt[pos] == '\\')
|
|
{
|
|
pos++;
|
|
if (patt[pos] == '\0')
|
|
break;
|
|
}
|
|
/*
|
|
* NOTE: this code used to think that %% meant a literal %,
|
|
* but textlike() itself does not think that, and the SQL92
|
|
* spec doesn't say any such thing either.
|
|
*/
|
|
match[match_pos++] = patt[pos];
|
|
}
|
|
|
|
match[match_pos] = '\0';
|
|
|
|
/* in LIKE, an empty pattern is an exact match! */
|
|
if (patt[pos] == '\0')
|
|
return Prefix_Exact; /* reached end of pattern, so exact */
|
|
|
|
if (match_pos > 0)
|
|
return Prefix_Partial;
|
|
return Prefix_None;
|
|
}
|
|
|
|
/*
|
|
* Extract the fixed prefix, if any, for a regex pattern.
|
|
* *prefix is set to a palloc'd prefix string with 1 spare byte,
|
|
* or to NULL if no fixed prefix exists for the pattern.
|
|
* The return value distinguishes no fixed prefix, a partial prefix,
|
|
* or an exact-match-only pattern.
|
|
*/
|
|
static Prefix_Status
|
|
regex_fixed_prefix(char *patt, bool case_insensitive,
|
|
char **prefix)
|
|
{
|
|
char *match;
|
|
int pos,
|
|
match_pos;
|
|
|
|
*prefix = NULL;
|
|
|
|
/* Pattern must be anchored left */
|
|
if (patt[0] != '^')
|
|
return Prefix_None;
|
|
|
|
/* Cannot optimize if unquoted | { } is present in pattern */
|
|
for (pos = 1; patt[pos]; pos++)
|
|
{
|
|
if (patt[pos] == '|' ||
|
|
patt[pos] == '{' ||
|
|
patt[pos] == '}')
|
|
return Prefix_None;
|
|
if (patt[pos] == '\\')
|
|
{
|
|
pos++;
|
|
if (patt[pos] == '\0')
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* OK, allocate space for pattern */
|
|
*prefix = match = palloc(strlen(patt)+2);
|
|
match_pos = 0;
|
|
|
|
/* note start at pos 1 to skip leading ^ */
|
|
for (pos = 1; patt[pos]; pos++)
|
|
{
|
|
if (patt[pos] == '.' ||
|
|
patt[pos] == '?' ||
|
|
patt[pos] == '*' ||
|
|
patt[pos] == '[' ||
|
|
patt[pos] == '$' ||
|
|
/* XXX I suspect isalpha() is not an adequately locale-sensitive
|
|
* test for characters that can vary under case folding?
|
|
*/
|
|
(case_insensitive && isalpha(patt[pos])))
|
|
break;
|
|
if (patt[pos] == '\\')
|
|
{
|
|
pos++;
|
|
if (patt[pos] == '\0')
|
|
break;
|
|
}
|
|
match[match_pos++] = patt[pos];
|
|
}
|
|
|
|
match[match_pos] = '\0';
|
|
|
|
if (patt[pos] == '$' && patt[pos+1] == '\0')
|
|
return Prefix_Exact; /* pattern specifies exact match */
|
|
|
|
if (match_pos > 0)
|
|
return Prefix_Partial;
|
|
return Prefix_None;
|
|
}
|
|
|
|
/*
|
|
* Given a fixed prefix that all the "leftop" values must have,
|
|
* generate suitable indexqual condition(s). expr_op is the original
|
|
* LIKE or regex operator; we use it to deduce the appropriate comparison
|
|
* operators.
|
|
*/
|
|
static List *
|
|
prefix_quals(Var *leftop, Oid expr_op,
|
|
char *prefix, Prefix_Status pstatus)
|
|
{
|
|
List *result;
|
|
Oid datatype;
|
|
HeapTuple optup;
|
|
void *conval;
|
|
Const *con;
|
|
Oper *op;
|
|
Expr *expr;
|
|
int prefixlen;
|
|
|
|
Assert(pstatus != Prefix_None);
|
|
|
|
switch (expr_op)
|
|
{
|
|
case OID_TEXT_LIKE_OP:
|
|
case OID_TEXT_REGEXEQ_OP:
|
|
case OID_TEXT_ICREGEXEQ_OP:
|
|
datatype = TEXTOID;
|
|
break;
|
|
|
|
case OID_BPCHAR_LIKE_OP:
|
|
case OID_BPCHAR_REGEXEQ_OP:
|
|
case OID_BPCHAR_ICREGEXEQ_OP:
|
|
datatype = BPCHAROID;
|
|
break;
|
|
|
|
case OID_VARCHAR_LIKE_OP:
|
|
case OID_VARCHAR_REGEXEQ_OP:
|
|
case OID_VARCHAR_ICREGEXEQ_OP:
|
|
datatype = VARCHAROID;
|
|
break;
|
|
|
|
case OID_NAME_LIKE_OP:
|
|
case OID_NAME_REGEXEQ_OP:
|
|
case OID_NAME_ICREGEXEQ_OP:
|
|
datatype = NAMEOID;
|
|
break;
|
|
|
|
default:
|
|
elog(ERROR, "prefix_quals: unexpected operator %u", expr_op);
|
|
return NIL;
|
|
}
|
|
|
|
/*
|
|
* If we found an exact-match pattern, generate an "=" indexqual.
|
|
*/
|
|
if (pstatus == Prefix_Exact)
|
|
{
|
|
optup = SearchSysCacheTuple(OPRNAME,
|
|
PointerGetDatum("="),
|
|
ObjectIdGetDatum(datatype),
|
|
ObjectIdGetDatum(datatype),
|
|
CharGetDatum('b'));
|
|
if (!HeapTupleIsValid(optup))
|
|
elog(ERROR, "prefix_quals: no = operator for type %u", datatype);
|
|
/* Note: we cheat a little by assuming that textin() will do for
|
|
* bpchar and varchar constants too...
|
|
*/
|
|
conval = (datatype == NAMEOID) ?
|
|
(void*) namein(prefix) : (void*) textin(prefix);
|
|
con = makeConst(datatype, ((datatype == NAMEOID) ? NAMEDATALEN : -1),
|
|
PointerGetDatum(conval),
|
|
false, false, false, false);
|
|
op = makeOper(optup->t_data->t_oid, InvalidOid, BOOLOID, 0, NULL);
|
|
expr = make_opclause(op, leftop, (Var *) con);
|
|
result = lcons(expr, NIL);
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Otherwise, we have a nonempty required prefix of the values.
|
|
*
|
|
* We can always say "x >= prefix".
|
|
*/
|
|
optup = SearchSysCacheTuple(OPRNAME,
|
|
PointerGetDatum(">="),
|
|
ObjectIdGetDatum(datatype),
|
|
ObjectIdGetDatum(datatype),
|
|
CharGetDatum('b'));
|
|
if (!HeapTupleIsValid(optup))
|
|
elog(ERROR, "prefix_quals: no >= operator for type %u", datatype);
|
|
conval = (datatype == NAMEOID) ?
|
|
(void*) namein(prefix) : (void*) textin(prefix);
|
|
con = makeConst(datatype, ((datatype == NAMEOID) ? NAMEDATALEN : -1),
|
|
PointerGetDatum(conval),
|
|
false, false, false, false);
|
|
op = makeOper(optup->t_data->t_oid, InvalidOid, BOOLOID, 0, NULL);
|
|
expr = make_opclause(op, leftop, (Var *) con);
|
|
result = lcons(expr, NIL);
|
|
|
|
/*
|
|
* In ASCII locale we say "x <= prefix\377". This does not
|
|
* work for non-ASCII collation orders, and it's not really
|
|
* right even for ASCII. FIX ME!
|
|
* Note we assume the passed prefix string is workspace with
|
|
* an extra byte, as created by the xxx_fixed_prefix routines above.
|
|
*/
|
|
#ifndef USE_LOCALE
|
|
prefixlen = strlen(prefix);
|
|
prefix[prefixlen] = '\377';
|
|
prefix[prefixlen+1] = '\0';
|
|
|
|
optup = SearchSysCacheTuple(OPRNAME,
|
|
PointerGetDatum("<="),
|
|
ObjectIdGetDatum(datatype),
|
|
ObjectIdGetDatum(datatype),
|
|
CharGetDatum('b'));
|
|
if (!HeapTupleIsValid(optup))
|
|
elog(ERROR, "prefix_quals: no <= operator for type %u", datatype);
|
|
conval = (datatype == NAMEOID) ?
|
|
(void*) namein(prefix) : (void*) textin(prefix);
|
|
con = makeConst(datatype, ((datatype == NAMEOID) ? NAMEDATALEN : -1),
|
|
PointerGetDatum(conval),
|
|
false, false, false, false);
|
|
op = makeOper(optup->t_data->t_oid, InvalidOid, BOOLOID, 0, NULL);
|
|
expr = make_opclause(op, leftop, (Var *) con);
|
|
result = lappend(result, expr);
|
|
#endif
|
|
|
|
return result;
|
|
}
|