/*------------------------------------------------------------------------- * * indxpath.c * Routines to determine which indices are usable for scanning a * given relation, and create IndexPaths accordingly. * * Copyright (c) 1994, Regents of the University of California * * * IDENTIFICATION * $Header: /cvsroot/pgsql/src/backend/optimizer/path/indxpath.c,v 1.67 1999/07/30 04:07:23 tgl Exp $ * *------------------------------------------------------------------------- */ #include #include #include "postgres.h" #include "access/heapam.h" #include "access/nbtree.h" #include "catalog/catname.h" #include "catalog/pg_amop.h" #include "catalog/pg_operator.h" #include "executor/executor.h" #include "nodes/makefuncs.h" #include "nodes/nodeFuncs.h" #include "optimizer/clauses.h" #include "optimizer/cost.h" #include "optimizer/keys.h" #include "optimizer/ordering.h" #include "optimizer/pathnode.h" #include "optimizer/paths.h" #include "optimizer/plancat.h" #include "optimizer/restrictinfo.h" #include "parser/parse_coerce.h" #include "parser/parse_expr.h" #include "parser/parse_oper.h" #include "parser/parsetree.h" #include "utils/builtins.h" #include "utils/lsyscache.h" #include "utils/syscache.h" typedef enum { Prefix_None, Prefix_Partial, Prefix_Exact } Prefix_Status; static void match_index_orclauses(RelOptInfo *rel, RelOptInfo *index, int indexkey, int xclass, List *restrictinfo_list); static List *match_index_orclause(RelOptInfo *rel, RelOptInfo *index, int indexkey, int xclass, List *or_clauses, List *other_matching_indices); static List *group_clauses_by_indexkey(RelOptInfo *rel, RelOptInfo *index, int *indexkeys, Oid *classes, List *restrictinfo_list); static List *group_clauses_by_ikey_for_joins(RelOptInfo *rel, RelOptInfo *index, int *indexkeys, Oid *classes, List *join_cinfo_list, List *restr_cinfo_list); static bool match_clause_to_indexkey(RelOptInfo *rel, RelOptInfo *index, int indexkey, int xclass, Expr *clause, bool join); static bool pred_test(List *predicate_list, List *restrictinfo_list, List *joininfo_list); static bool one_pred_test(Expr *predicate, List *restrictinfo_list); static bool one_pred_clause_expr_test(Expr *predicate, Node *clause); static bool one_pred_clause_test(Expr *predicate, Node *clause); static bool clause_pred_clause_test(Expr *predicate, Node *clause); static void indexable_joinclauses(RelOptInfo *rel, RelOptInfo *index, List *joininfo_list, List *restrictinfo_list, List **clausegroups, List **outerrelids); static List *index_innerjoin(Query *root, RelOptInfo *rel, RelOptInfo *index, List *clausegroup_list, List *outerrelids_list); static bool useful_for_mergejoin(RelOptInfo *index, List *clausegroup_list); static bool match_index_to_operand(int indexkey, Expr *operand, RelOptInfo *rel, RelOptInfo *index); static bool function_index_operand(Expr *funcOpnd, RelOptInfo *rel, RelOptInfo *index); static bool match_special_index_operator(Expr *clause, bool indexkey_on_left); static Prefix_Status like_fixed_prefix(char *patt, char **prefix); static Prefix_Status regex_fixed_prefix(char *patt, bool case_insensitive, char **prefix); static List *prefix_quals(Var *leftop, Oid expr_op, char *prefix, Prefix_Status pstatus); /* * create_index_paths() * Generate all interesting index paths for the given relation. * * To be considered for an index scan, an index must match one or more * restriction clauses or join clauses from the query's qual condition. * * There are two basic kinds of index scans. A "plain" index scan uses * only restriction clauses (possibly none at all) in its indexqual, * so it can be applied in any context. An "innerjoin" index scan uses * join clauses (plus restriction clauses, if available) in its indexqual. * Therefore it can only be used as the inner relation of a nestloop * join against an outer rel that includes all the other rels mentioned * in its join clauses. In that context, values for the other rels' * attributes are available and fixed during any one scan of the indexpath. * * This routine's return value is a list of plain IndexPaths for each * index the routine deems potentially interesting for the current query * (at most one IndexPath per index on the given relation). An innerjoin * path is also generated for each interesting combination of outer join * relations. The innerjoin paths are *not* in the return list, but are * appended to the "innerjoin" list of the relation itself. * * XXX An index scan might also be used simply to order the result. We * probably should create an index path for any index that matches the * query's ORDER BY condition, even if it doesn't seem useful for join * or restriction clauses. But currently, such a path would never * survive the path selection process, so there's no point. The selection * process needs to award bonus scores to indexscans that produce a * suitably-ordered result... * * 'rel' is the relation for which we want to generate index paths * 'indices' is a list of available indexes for 'rel' * 'restrictinfo_list' is a list of restrictinfo nodes for 'rel' * 'joininfo_list' is a list of joininfo nodes for 'rel' * * Returns a list of IndexPath access path descriptors. Additional * IndexPath nodes may also be added to the rel->innerjoin list. */ List * create_index_paths(Query *root, RelOptInfo *rel, List *indices, List *restrictinfo_list, List *joininfo_list) { List *retval = NIL; List *ilist; foreach(ilist, indices) { RelOptInfo *index = (RelOptInfo *) lfirst(ilist); List *restrictclauses; List *joinclausegroups; List *joinouterrelids; /* * If this is a partial index, we can only use it if it passes * the predicate test. */ if (index->indpred != NIL) if (!pred_test(index->indpred, restrictinfo_list, joininfo_list)) continue; /* * 1. Try matching the index against subclauses of restriction 'or' * clauses (ie, 'or' clauses that reference only this relation). * The restrictinfo nodes for the 'or' clauses are marked with lists * of the matching indices. No paths are actually created now; * that will be done in orindxpath.c after all indexes for the rel * have been examined. (We need to do it that way because we can * potentially use a different index for each subclause of an 'or', * so we can't build a path for an 'or' clause until all indexes have * been matched against it.) * * We currently only look to match the first key of each index against * 'or' subclauses. There are cases where a later key of a multi-key * index could be used (if other top-level clauses match earlier keys * of the index), but our poor brains are hurting already... * * We don't even think about special handling of 'or' clauses that * involve more than one relation (ie, are join clauses). * Can we do anything useful with those? */ match_index_orclauses(rel, index, index->indexkeys[0], index->classlist[0], restrictinfo_list); /* * 2. If the keys of this index match any of the available non-'or' * restriction clauses, then create a path using those clauses * as indexquals. */ restrictclauses = group_clauses_by_indexkey(rel, index, index->indexkeys, index->classlist, restrictinfo_list); if (restrictclauses != NIL) retval = lappend(retval, create_index_path(root, rel, index, restrictclauses)); /* * 3. If this index can be used with any join clause, then create * an index path for it even if there were no restriction clauses. * (If there were, there is no need to make another index path.) * This will allow the index to be considered as a base for a * mergejoin in later processing. * Also, create an innerjoin index path for each combination of * other rels used in available join clauses. These paths will * be considered as the inner side of nestloop joins against * those sets of other rels. * indexable_joinclauses() finds clauses that are potentially * applicable to either case. useful_for_mergejoin() tests to * see whether any of the join clauses might support a mergejoin. * index_innerjoin() builds an innerjoin index path for each * potential set of outer rels, which we add to the rel's * innerjoin list. */ indexable_joinclauses(rel, index, joininfo_list, restrictinfo_list, &joinclausegroups, &joinouterrelids); if (joinclausegroups != NIL) { /* no need to create a plain path if we already did */ if (restrictclauses == NIL && useful_for_mergejoin(index, joinclausegroups)) retval = lappend(retval, create_index_path(root, rel, index, NIL)); rel->innerjoin = nconc(rel->innerjoin, index_innerjoin(root, rel, index, joinclausegroups, joinouterrelids)); } } return retval; } /**************************************************************************** * ---- ROUTINES TO PROCESS 'OR' CLAUSES ---- ****************************************************************************/ /* * match_index_orclauses * Attempt to match an index against subclauses within 'or' clauses. * Each subclause that does match is marked with the index's node. * * Essentially, this adds 'index' to the list of subclause indices in * the RestrictInfo field of each of the 'or' clauses where it matches. * NOTE: we can use storage in the RestrictInfo for this purpose because * this processing is only done on single-relation restriction clauses. * Therefore, we will never have indexes for more than one relation * mentioned in the same RestrictInfo node's list. * * 'rel' is the node of the relation on which the index is defined. * 'index' is the index node. * 'indexkey' is the (single) key of the index that we will consider. * 'class' is the class of the operator corresponding to 'indexkey'. * 'restrictinfo_list' is the list of available restriction clauses. */ static void match_index_orclauses(RelOptInfo *rel, RelOptInfo *index, int indexkey, int xclass, List *restrictinfo_list) { List *i; foreach(i, restrictinfo_list) { RestrictInfo *restrictinfo = (RestrictInfo *) lfirst(i); if (restriction_is_or_clause(restrictinfo)) { /* * Add this index to the subclause index list for each * subclause that it matches. */ restrictinfo->indexids = match_index_orclause(rel, index, indexkey, xclass, restrictinfo->clause->args, restrictinfo->indexids); } } } /* * match_index_orclause * Attempts to match an index against the subclauses of an 'or' clause. * * A match means that: * (1) the operator within the subclause can be used with the * index's specified operator class, and * (2) the variable on one side of the subclause matches the index key. * * 'or_clauses' is the list of subclauses within the 'or' clause * 'other_matching_indices' is the list of information on other indices * that have already been matched to subclauses within this * particular 'or' clause (i.e., a list previously generated by * this routine), or NIL if this routine has not previously been * run for this 'or' clause. * * Returns a list of the form ((a b c) (d e f) nil (g h) ...) where * a,b,c are nodes of indices that match the first subclause in * 'or-clauses', d,e,f match the second subclause, no indices * match the third, g,h match the fourth, etc. */ static List * match_index_orclause(RelOptInfo *rel, RelOptInfo *index, int indexkey, int xclass, List *or_clauses, List *other_matching_indices) { List *matching_indices; List *index_list; List *clist; /* first time through, we create list of same length as OR clause, * containing an empty sublist for each subclause. */ if (!other_matching_indices) { matching_indices = NIL; foreach(clist, or_clauses) matching_indices = lcons(NIL, matching_indices); } else matching_indices = other_matching_indices; index_list = matching_indices; foreach(clist, or_clauses) { Expr *clause = lfirst(clist); if (match_clause_to_indexkey(rel, index, indexkey, xclass, clause, false)) { /* OK to add this index to sublist for this subclause */ lfirst(matching_indices) = lcons(index, lfirst(matching_indices)); } matching_indices = lnext(matching_indices); } return index_list; } /**************************************************************************** * ---- ROUTINES TO CHECK RESTRICTIONS ---- ****************************************************************************/ /* * DoneMatchingIndexKeys() - MACRO * * Determine whether we should continue matching index keys in a clause. * Depends on if there are more to match or if this is a functional index. * In the latter case we stop after the first match since the there can * be only key (i.e. the function's return value) and the attributes in * keys list represent the arguments to the function. -mer 3 Oct. 1991 */ #define DoneMatchingIndexKeys(indexkeys, index) \ (indexkeys[0] == 0 || \ (index->indproc != InvalidOid)) /* * group_clauses_by_indexkey * Generates a list of restriction clauses that can be used with an index. * * 'rel' is the node of the relation itself. * 'index' is a index on 'rel'. * 'indexkeys' are the index keys to be matched. * 'classes' are the classes of the index operators on those keys. * 'restrictinfo_list' is the list of available restriction clauses for 'rel'. * * Returns a list of all the RestrictInfo nodes for clauses that can be * used with this index. * * The list is ordered by index key (but as far as I can tell, this is * an implementation artifact of this routine, and is not depended on by * any user of the returned list --- tgl 7/99). * * Note that in a multi-key index, we stop if we find a key that cannot be * used with any clause. For example, given an index on (A,B,C), we might * return (C1 C2 C3 C4) if we find that clauses C1 and C2 use column A, * clauses C3 and C4 use column B, and no clauses use column C. But if * no clauses match B we will return (C1 C2), whether or not there are * clauses matching column C, because the executor couldn't use them anyway. */ static List * group_clauses_by_indexkey(RelOptInfo *rel, RelOptInfo *index, int *indexkeys, Oid *classes, List *restrictinfo_list) { List *clausegroup_list = NIL; if (restrictinfo_list == NIL || indexkeys[0] == 0) return NIL; do { int curIndxKey = indexkeys[0]; Oid curClass = classes[0]; List *clausegroup = NIL; List *curCinfo; foreach(curCinfo, restrictinfo_list) { RestrictInfo *rinfo = (RestrictInfo *) lfirst(curCinfo); if (match_clause_to_indexkey(rel, index, curIndxKey, curClass, rinfo->clause, false)) clausegroup = lappend(clausegroup, rinfo); } /* If no clauses match this key, we're done; we don't want to * look at keys to its right. */ if (clausegroup == NIL) break; clausegroup_list = nconc(clausegroup_list, clausegroup); indexkeys++; classes++; } while (!DoneMatchingIndexKeys(indexkeys, index)); /* clausegroup_list holds all matched clauses ordered by indexkeys */ return clausegroup_list; } /* * group_clauses_by_ikey_for_joins * Generates a list of join clauses that can be used with an index. * * This is much like group_clauses_by_indexkey(), but we consider both * join and restriction clauses. For each indexkey in the index, we * accept both join and restriction clauses that match it, since both * will make useful indexquals if the index is being used to scan the * inner side of a nestloop join. But there must be at least one matching * join clause, or we return NIL indicating that this index isn't useful * for joining. */ static List * group_clauses_by_ikey_for_joins(RelOptInfo *rel, RelOptInfo *index, int *indexkeys, Oid *classes, List *join_cinfo_list, List *restr_cinfo_list) { List *clausegroup_list = NIL; bool jfound = false; if (join_cinfo_list == NIL || indexkeys[0] == 0) return NIL; do { int curIndxKey = indexkeys[0]; Oid curClass = classes[0]; List *clausegroup = NIL; List *curCinfo; foreach(curCinfo, join_cinfo_list) { RestrictInfo *rinfo = (RestrictInfo *) lfirst(curCinfo); if (match_clause_to_indexkey(rel, index, curIndxKey, curClass, rinfo->clause, true)) { clausegroup = lappend(clausegroup, rinfo); jfound = true; } } foreach(curCinfo, restr_cinfo_list) { RestrictInfo *rinfo = (RestrictInfo *) lfirst(curCinfo); if (match_clause_to_indexkey(rel, index, curIndxKey, curClass, rinfo->clause, false)) clausegroup = lappend(clausegroup, rinfo); } /* If no clauses match this key, we're done; we don't want to * look at keys to its right. */ if (clausegroup == NIL) break; clausegroup_list = nconc(clausegroup_list, clausegroup); indexkeys++; classes++; } while (!DoneMatchingIndexKeys(indexkeys, index)); /* * if no join clause was matched then there ain't clauses for * joins at all. */ if (!jfound) { freeList(clausegroup_list); return NIL; } /* clausegroup_list holds all matched clauses ordered by indexkeys */ return clausegroup_list; } /* * match_clause_to_indexkey() * Determines whether a restriction or join clause matches * a key of an index. * * To match, the clause must: * (1) be in the form (var op const) for a restriction clause, * or (var op var) for a join clause, where the var or one * of the vars matches the index key; and * (2) contain an operator which is in the same class as the index * operator for this key, or is a "special" operator as recognized * by match_special_index_operator(). * * In the restriction case, we can cope with (const op var) by commuting * the clause to (var op const), if there is a commutator operator. * XXX why do we bother to commute? The executor doesn't care!! * * In the join case, later code will try to commute the clause if needed * to put the inner relation's var on the right. We have no idea here * which relation might wind up on the inside, so we just accept * a match for either var. * XXX is this right? We are making a list for this relation to * be an inner join relation, so if there is any commuting then * this rel must be on the right. But again, it's not really clear * that we have to commute at all! * * 'rel' is the relation of interest. * 'index' is an index on 'rel'. * 'indexkey' is a key of 'index'. * 'xclass' is the corresponding operator class. * 'clause' is the clause to be tested. * 'join' is true if we are considering this clause for joins. * * Returns true if the clause can be used with this index key. * * NOTE: returns false if clause is an or_clause; that's handled elsewhere. */ static bool match_clause_to_indexkey(RelOptInfo *rel, RelOptInfo *index, int indexkey, int xclass, Expr *clause, bool join) { bool isIndexable = false; Var *leftop, *rightop; Oid expr_op; if (! is_opclause((Node *) clause)) return false; leftop = get_leftop(clause); rightop = get_rightop(clause); if (! leftop || ! rightop) return false; expr_op = ((Oper *) clause->oper)->opno; if (!join) { /* * Not considering joins, so check for clauses of the form: * (var/func operator constant) and (constant operator var/func) */ /* * Check for standard s-argable clause */ if ((IsA(rightop, Const) || IsA(rightop, Param)) && match_index_to_operand(indexkey, (Expr *) leftop, rel, index)) { isIndexable = op_class(expr_op, xclass, index->relam); #ifndef IGNORE_BINARY_COMPATIBLE_INDICES /* * Didn't find an index? Then maybe we can find another * binary-compatible index instead... thomas 1998-08-14 */ if (!isIndexable) { Oid ltype = exprType((Node *) leftop); Oid rtype = exprType((Node *) rightop); /* * make sure we have two different binary-compatible * types... */ if (ltype != rtype && IS_BINARY_COMPATIBLE(ltype, rtype)) { char *opname = get_opname(expr_op); Operator newop = NULL; if (opname != NULL) newop = oper(opname, ltype, ltype, TRUE); /* actually have a different operator to try? */ if (HeapTupleIsValid(newop) && oprid(newop) != expr_op) { expr_op = oprid(newop); isIndexable = op_class(expr_op, xclass, index->relam); if (isIndexable) ((Oper *) clause->oper)->opno = expr_op; } } } #endif /* * If we didn't find a member of the index's opclass, * see whether it is a "special" indexable operator. */ if (!isIndexable) isIndexable = match_special_index_operator(clause, true); } /* * Must try to commute the clause to standard s-arg format. * XXX do we really have to commute it? The executor doesn't care! */ else if ((IsA(leftop, Const) || IsA(leftop, Param)) && match_index_to_operand(indexkey, (Expr *) rightop, rel, index)) { Oid commuted_op = get_commutator(expr_op); isIndexable = ((commuted_op != InvalidOid) && op_class(commuted_op, xclass, index->relam)); #ifndef IGNORE_BINARY_COMPATIBLE_INDICES if (!isIndexable) { Oid ltype = exprType((Node *) leftop); Oid rtype = exprType((Node *) rightop); if (ltype != rtype && IS_BINARY_COMPATIBLE(ltype, rtype)) { char *opname = get_opname(expr_op); Operator newop = NULL; /* note we use rtype, ie, the indexkey's type */ if (opname != NULL) newop = oper(opname, rtype, rtype, TRUE); if (HeapTupleIsValid(newop) && oprid(newop) != expr_op) { expr_op = get_commutator(oprid(newop)); isIndexable = (expr_op != InvalidOid) && op_class(expr_op, xclass, index->relam); if (isIndexable) ((Oper *) clause->oper)->opno = oprid(newop); } } } #endif if (isIndexable) { /* * In place list modification. (op const var/func) -> (op * var/func const) */ CommuteClause((Node *) clause); } else { /* * If we didn't find a member of the index's opclass, * see whether it is a "special" indexable operator. * (match_special_index_operator must commute the * clause itself, if it wants to.) */ isIndexable = match_special_index_operator(clause, false); } } } else { /* * Check for an indexable scan on one of the join relations. * clause is of the form (operator var/func var/func) * XXX this does not seem right. Should check other side * looks like var/func? do we really want to only consider * this rel on lefthand side?? */ Oid join_op = InvalidOid; if (match_index_to_operand(indexkey, (Expr *) leftop, rel, index)) join_op = expr_op; else if (match_index_to_operand(indexkey, (Expr *) rightop, rel, index)) join_op = get_commutator(expr_op); if (join_op && op_class(join_op, xclass, index->relam) && is_joinable((Node *) clause)) isIndexable = true; } return isIndexable; } /**************************************************************************** * ---- ROUTINES TO DO PARTIAL INDEX PREDICATE TESTS ---- ****************************************************************************/ /* * pred_test * Does the "predicate inclusion test" for partial indexes. * * Recursively checks whether the clauses in restrictinfo_list imply * that the given predicate is true. * * This routine (together with the routines it calls) iterates over * ANDs in the predicate first, then reduces the qualification * clauses down to their constituent terms, and iterates over ORs * in the predicate last. This order is important to make the test * succeed whenever possible (assuming the predicate has been * successfully cnfify()-ed). --Nels, Jan '93 */ static bool pred_test(List *predicate_list, List *restrictinfo_list, List *joininfo_list) { List *pred, *items, *item; /* * Note: if Postgres tried to optimize queries by forming equivalence * classes over equi-joined attributes (i.e., if it recognized that a * qualification such as "where a.b=c.d and a.b=5" could make use of * an index on c.d), then we could use that equivalence class info * here with joininfo_list to do more complete tests for the usability * of a partial index. For now, the test only uses restriction * clauses (those in restrictinfo_list). --Nels, Dec '92 */ if (predicate_list == NULL) return true; /* no predicate: the index is usable */ if (restrictinfo_list == NULL) return false; /* no restriction clauses: the test must * fail */ foreach(pred, predicate_list) { /* * if any clause is not implied, the whole predicate is not * implied */ if (and_clause(lfirst(pred))) { items = ((Expr *) lfirst(pred))->args; foreach(item, items) { if (!one_pred_test(lfirst(item), restrictinfo_list)) return false; } } else if (!one_pred_test(lfirst(pred), restrictinfo_list)) return false; } return true; } /* * one_pred_test * Does the "predicate inclusion test" for one conjunct of a predicate * expression. */ static bool one_pred_test(Expr *predicate, List *restrictinfo_list) { RestrictInfo *restrictinfo; List *item; Assert(predicate != NULL); foreach(item, restrictinfo_list) { restrictinfo = (RestrictInfo *) lfirst(item); /* if any clause implies the predicate, return true */ if (one_pred_clause_expr_test(predicate, (Node *) restrictinfo->clause)) return true; } return false; } /* * one_pred_clause_expr_test * Does the "predicate inclusion test" for a general restriction-clause * expression. */ static bool one_pred_clause_expr_test(Expr *predicate, Node *clause) { List *items, *item; if (is_opclause(clause)) return one_pred_clause_test(predicate, clause); else if (or_clause(clause)) { items = ((Expr *) clause)->args; foreach(item, items) { /* if any OR item doesn't imply the predicate, clause doesn't */ if (!one_pred_clause_expr_test(predicate, lfirst(item))) return false; } return true; } else if (and_clause(clause)) { items = ((Expr *) clause)->args; foreach(item, items) { /* * if any AND item implies the predicate, the whole clause * does */ if (one_pred_clause_expr_test(predicate, lfirst(item))) return true; } return false; } else { /* unknown clause type never implies the predicate */ return false; } } /* * one_pred_clause_test * Does the "predicate inclusion test" for one conjunct of a predicate * expression for a simple restriction clause. */ static bool one_pred_clause_test(Expr *predicate, Node *clause) { List *items, *item; if (is_opclause((Node *) predicate)) return clause_pred_clause_test(predicate, clause); else if (or_clause((Node *) predicate)) { items = predicate->args; foreach(item, items) { /* if any item is implied, the whole predicate is implied */ if (one_pred_clause_test(lfirst(item), clause)) return true; } return false; } else if (and_clause((Node *) predicate)) { items = predicate->args; foreach(item, items) { /* * if any item is not implied, the whole predicate is not * implied */ if (!one_pred_clause_test(lfirst(item), clause)) return false; } return true; } else { elog(DEBUG, "Unsupported predicate type, index will not be used"); return false; } } /* * Define an "operator implication table" for btree operators ("strategies"). * The "strategy numbers" are: (1) < (2) <= (3) = (4) >= (5) > * * The interpretation of: * * test_op = BT_implic_table[given_op-1][target_op-1] * * where test_op, given_op and target_op are strategy numbers (from 1 to 5) * of btree operators, is as follows: * * If you know, for some ATTR, that "ATTR given_op CONST1" is true, and you * want to determine whether "ATTR target_op CONST2" must also be true, then * you can use "CONST1 test_op CONST2" as a test. If this test returns true, * then the target expression must be true; if the test returns false, then * the target expression may be false. * * An entry where test_op==0 means the implication cannot be determined, i.e., * this test should always be considered false. */ static StrategyNumber BT_implic_table[BTMaxStrategyNumber][BTMaxStrategyNumber] = { {2, 2, 0, 0, 0}, {1, 2, 0, 0, 0}, {1, 2, 3, 4, 5}, {0, 0, 0, 4, 5}, {0, 0, 0, 4, 4} }; /* * clause_pred_clause_test * Use operator class info to check whether clause implies predicate. * * Does the "predicate inclusion test" for a "simple clause" predicate * for a single "simple clause" restriction. Currently, this only handles * (binary boolean) operators that are in some btree operator class. * Eventually, rtree operators could also be handled by defining an * appropriate "RT_implic_table" array. */ static bool clause_pred_clause_test(Expr *predicate, Node *clause) { Var *pred_var, *clause_var; Const *pred_const, *clause_const; Oid pred_op, clause_op, test_op; Oid opclass_id; StrategyNumber pred_strategy, clause_strategy, test_strategy; Oper *test_oper; Expr *test_expr; bool test_result, isNull; Relation relation; HeapScanDesc scan; HeapTuple tuple; ScanKeyData entry[3]; Form_pg_amop aform; pred_var = (Var *) get_leftop(predicate); pred_const = (Const *) get_rightop(predicate); clause_var = (Var *) get_leftop((Expr *) clause); clause_const = (Const *) get_rightop((Expr *) clause); /* Check the basic form; for now, only allow the simplest case */ if (!is_opclause(clause) || !IsA(clause_var, Var) || clause_const == NULL || !IsA(clause_const, Const) || !IsA(predicate->oper, Oper) || !IsA(pred_var, Var) || !IsA(pred_const, Const)) return false; /* * The implication can't be determined unless the predicate and the * clause refer to the same attribute. */ if (clause_var->varattno != pred_var->varattno) return false; /* Get the operators for the two clauses we're comparing */ pred_op = ((Oper *) ((Expr *) predicate)->oper)->opno; clause_op = ((Oper *) ((Expr *) clause)->oper)->opno; /* * 1. Find a "btree" strategy number for the pred_op */ ScanKeyEntryInitialize(&entry[0], 0, Anum_pg_amop_amopid, F_OIDEQ, ObjectIdGetDatum(BTREE_AM_OID)); ScanKeyEntryInitialize(&entry[1], 0, Anum_pg_amop_amopopr, F_OIDEQ, ObjectIdGetDatum(pred_op)); relation = heap_openr(AccessMethodOperatorRelationName); /* * The following assumes that any given operator will only be in a * single btree operator class. This is true at least for all the * pre-defined operator classes. If it isn't true, then whichever * operator class happens to be returned first for the given operator * will be used to find the associated strategy numbers for the test. * --Nels, Jan '93 */ scan = heap_beginscan(relation, false, SnapshotNow, 2, entry); tuple = heap_getnext(scan, 0); if (!HeapTupleIsValid(tuple)) { elog(DEBUG, "clause_pred_clause_test: unknown pred_op"); return false; } aform = (Form_pg_amop) GETSTRUCT(tuple); /* Get the predicate operator's strategy number (1 to 5) */ pred_strategy = (StrategyNumber) aform->amopstrategy; /* Remember which operator class this strategy number came from */ opclass_id = aform->amopclaid; heap_endscan(scan); /* * 2. From the same opclass, find a strategy num for the clause_op */ ScanKeyEntryInitialize(&entry[1], 0, Anum_pg_amop_amopclaid, F_OIDEQ, ObjectIdGetDatum(opclass_id)); ScanKeyEntryInitialize(&entry[2], 0, Anum_pg_amop_amopopr, F_OIDEQ, ObjectIdGetDatum(clause_op)); scan = heap_beginscan(relation, false, SnapshotNow, 3, entry); tuple = heap_getnext(scan, 0); if (!HeapTupleIsValid(tuple)) { elog(DEBUG, "clause_pred_clause_test: unknown clause_op"); return false; } aform = (Form_pg_amop) GETSTRUCT(tuple); /* Get the restriction clause operator's strategy number (1 to 5) */ clause_strategy = (StrategyNumber) aform->amopstrategy; heap_endscan(scan); /* * 3. Look up the "test" strategy number in the implication table */ test_strategy = BT_implic_table[clause_strategy - 1][pred_strategy - 1]; if (test_strategy == 0) return false; /* the implication cannot be determined */ /* * 4. From the same opclass, find the operator for the test strategy */ ScanKeyEntryInitialize(&entry[2], 0, Anum_pg_amop_amopstrategy, F_INT2EQ, Int16GetDatum(test_strategy)); scan = heap_beginscan(relation, false, SnapshotNow, 3, entry); tuple = heap_getnext(scan, 0); if (!HeapTupleIsValid(tuple)) { elog(DEBUG, "clause_pred_clause_test: unknown test_op"); return false; } aform = (Form_pg_amop) GETSTRUCT(tuple); /* Get the test operator */ test_op = aform->amopopr; heap_endscan(scan); /* * 5. Evaluate the test */ test_oper = makeOper(test_op, /* opno */ InvalidOid, /* opid */ BOOLOID, /* opresulttype */ 0, /* opsize */ NULL); /* op_fcache */ replace_opid(test_oper); test_expr = make_opclause(test_oper, copyObject(clause_const), copyObject(pred_const)); #ifndef OMIT_PARTIAL_INDEX test_result = ExecEvalExpr((Node *) test_expr, NULL, &isNull, NULL); #endif /* OMIT_PARTIAL_INDEX */ if (isNull) { elog(DEBUG, "clause_pred_clause_test: null test result"); return false; } return test_result; } /**************************************************************************** * ---- ROUTINES TO CHECK JOIN CLAUSES ---- ****************************************************************************/ /* * indexable_joinclauses * Finds all groups of join clauses from among 'joininfo_list' that can * be used in conjunction with 'index'. * * Each clause group comes from a single joininfo node plus the current * rel's restrictinfo list. Therefore, every clause in the group references * the current rel plus the same set of other rels (except for the restrict * clauses, which only reference the current rel). Therefore, this set * of clauses could be used as an indexqual if the relation is scanned * as the inner side of a nestloop join when the outer side contains * (at least) all those "other rels". * * XXX Actually, given that we are considering a join that requires an * outer rel set (A,B,C), we should use all qual clauses that reference * any subset of these rels, not just the full set or none. This is * doable with a doubly nested loop over joininfo_list; is it worth it? * * Returns two parallel lists of the same length: the clause groups, * and the required outer rel set for each one. * * 'rel' is the relation for which 'index' is defined * 'joininfo_list' is the list of JoinInfo nodes for 'rel' * 'restrictinfo_list' is the list of restriction clauses for 'rel' * '*clausegroups' receives a list of clause sublists * '*outerrelids' receives a list of relid lists */ static void indexable_joinclauses(RelOptInfo *rel, RelOptInfo *index, List *joininfo_list, List *restrictinfo_list, List **clausegroups, List **outerrelids) { List *cg_list = NIL; List *relid_list = NIL; List *i; foreach(i, joininfo_list) { JoinInfo *joininfo = (JoinInfo *) lfirst(i); List *clausegroup; clausegroup = group_clauses_by_ikey_for_joins(rel, index, index->indexkeys, index->classlist, joininfo->jinfo_restrictinfo, restrictinfo_list); if (clausegroup != NIL) { cg_list = lappend(cg_list, clausegroup); relid_list = lappend(relid_list, joininfo->unjoined_relids); } } *clausegroups = cg_list; *outerrelids = relid_list; } /**************************************************************************** * ---- PATH CREATION UTILITIES ---- ****************************************************************************/ /* * index_innerjoin * Creates index path nodes corresponding to paths to be used as inner * relations in nestloop joins. * * 'rel' is the relation for which 'index' is defined * 'clausegroup_list' is a list of lists of restrictinfo nodes which can use * 'index'. Each sublist refers to the same set of outer rels. * 'outerrelids_list' is a list of the required outer rels for each group * of join clauses. * * Returns a list of index pathnodes. */ static List * index_innerjoin(Query *root, RelOptInfo *rel, RelOptInfo *index, List *clausegroup_list, List *outerrelids_list) { List *path_list = NIL; List *i; foreach(i, clausegroup_list) { List *clausegroup = lfirst(i); IndexPath *pathnode = makeNode(IndexPath); List *indexquals; float npages; float selec; indexquals = get_actual_clauses(clausegroup); /* expand special operators to indexquals the executor can handle */ indexquals = expand_indexqual_conditions(indexquals); index_selectivity(root, lfirsti(rel->relids), lfirsti(index->relids), indexquals, &npages, &selec); /* XXX this code ought to be merged with create_index_path */ pathnode->path.pathtype = T_IndexScan; pathnode->path.parent = rel; pathnode->path.pathorder = makeNode(PathOrder); pathnode->path.pathorder->ordtype = SORTOP_ORDER; pathnode->path.pathorder->ord.sortop = index->ordering; pathnode->path.pathkeys = NIL; /* Note that we are making a pathnode for a single-scan indexscan; * therefore, both indexid and indexqual should be single-element * lists. */ Assert(length(index->relids) == 1); pathnode->indexid = index->relids; pathnode->indexqual = lcons(indexquals, NIL); pathnode->indexkeys = index->indexkeys; /* joinid saves the rels needed on the outer side of the join */ pathnode->path.joinid = lfirst(outerrelids_list); pathnode->path.path_cost = cost_index((Oid) lfirsti(index->relids), (int) npages, selec, rel->pages, rel->tuples, index->pages, index->tuples, true); path_list = lappend(path_list, pathnode); outerrelids_list = lnext(outerrelids_list); } return path_list; } /* * useful_for_mergejoin * Determine whether the given index can support a mergejoin based * on any join clause within the given list. The clauses have already * been found to be relevant to the index by indexable_joinclauses. * We just need to check whether any are mergejoin material. * * 'index' is the index of interest. * 'clausegroup_list' is a list of clause groups (sublists of restrictinfo * nodes) */ static bool useful_for_mergejoin(RelOptInfo *index, List *clausegroup_list) { List *i; foreach(i, clausegroup_list) { List *clausegroup = lfirst(i); List *j; foreach(j, clausegroup) { RestrictInfo *restrictinfo = (RestrictInfo *) lfirst(j); if (is_joinable((Node *) restrictinfo->clause) && equal_path_merge_ordering(index->ordering, restrictinfo->mergejoinorder)) return true; } } return false; } /**************************************************************************** * ---- ROUTINES TO CHECK OPERANDS ---- ****************************************************************************/ /* * match_index_to_operand() * Generalized test for a match between an index's key * and the operand on one side of a restriction or join clause. * Now check for functional indices as well. */ static bool match_index_to_operand(int indexkey, Expr *operand, RelOptInfo *rel, RelOptInfo *index) { if (index->indproc == InvalidOid) { /* * Normal index. */ return match_indexkey_operand(indexkey, (Var *) operand, rel); } /* * functional index check */ return function_index_operand(operand, rel, index); } static bool function_index_operand(Expr *funcOpnd, RelOptInfo *rel, RelOptInfo *index) { Oid heapRelid = (Oid) lfirsti(rel->relids); Func *function; List *funcargs; int *indexKeys = index->indexkeys; List *arg; int i; /* * sanity check, make sure we know what we're dealing with here. */ if (funcOpnd == NULL || nodeTag(funcOpnd) != T_Expr || funcOpnd->opType != FUNC_EXPR || funcOpnd->oper == NULL || indexKeys == NULL) return false; function = (Func *) funcOpnd->oper; funcargs = funcOpnd->args; if (function->funcid != index->indproc) return false; /* * Check that the arguments correspond to the same arguments used to * create the functional index. To do this we must check that 1. * refer to the right relatiion. 2. the args have the right attr. * numbers in the right order. * * Check all args refer to the correct relation (i.e. the one with the * functional index defined on it (rel). To do this we can simply * compare range table entry numbers, they must be the same. */ foreach(arg, funcargs) { if (heapRelid != ((Var *) lfirst(arg))->varno) return false; } /* * check attr numbers and order. */ i = 0; foreach(arg, funcargs) { if (indexKeys[i] == 0) return false; if (((Var *) lfirst(arg))->varattno != indexKeys[i]) return false; i++; } return true; } /**************************************************************************** * ---- ROUTINES FOR "SPECIAL" INDEXABLE OPERATORS ---- ****************************************************************************/ /*---------- * These routines handle special optimization of operators that can be * used with index scans even though they are not known to the executor's * indexscan machinery. The key idea is that these operators allow us * to derive approximate indexscan qual clauses, such that any tuples * that pass the operator clause itself must also satisfy the simpler * indexscan condition(s). Then we can use the indexscan machinery * to avoid scanning as much of the table as we'd otherwise have to, * while applying the original operator as a qpqual condition to ensure * we deliver only the tuples we want. (In essence, we're using a regular * index as if it were a lossy index.) * * An example of what we're doing is * textfield LIKE 'abc%' * from which we can generate the indexscanable conditions * textfield >= 'abc' AND textfield < 'abd' * which allow efficient scanning of an index on textfield. * (In reality, character set and collation issues make the transformation * from LIKE to indexscan limits rather harder than one might think ... * but that's the basic idea.) * * Two routines are provided here, match_special_index_operator() and * expand_indexqual_conditions(). match_special_index_operator() is * just an auxiliary function for match_clause_to_indexkey(); after * the latter fails to recognize a restriction opclause's operator * as a member of an index's opclass, it asks match_special_index_operator() * whether the clause should be considered an indexqual anyway. * expand_indexqual_conditions() converts a list of "raw" indexqual * conditions (with implicit AND semantics across list elements) into * a list that the executor can actually handle. For operators that * are members of the index's opclass this transformation is a no-op, * but operators recognized by match_special_index_operator() must be * converted into one or more "regular" indexqual conditions. *---------- */ /* * match_special_index_operator * Recognize restriction clauses that can be used to generate * additional indexscanable qualifications. * * The given clause is already known to be a binary opclause having * the form (indexkey OP const/param) or (const/param OP indexkey), * but the OP proved not to be one of the index's opclass operators. * Return 'true' if we can do something with it anyway. */ static bool match_special_index_operator(Expr *clause, bool indexkey_on_left) { bool isIndexable = false; Var *leftop, *rightop; Oid expr_op; Datum constvalue; char *patt; char *prefix; /* Currently, all known special operators require the indexkey * on the left, but this test could be pushed into the switch statement * if some are added that do not... */ if (! indexkey_on_left) return false; /* we know these will succeed */ leftop = get_leftop(clause); rightop = get_rightop(clause); expr_op = ((Oper *) clause->oper)->opno; /* again, required for all current special ops: */ if (! IsA(rightop, Const) || ((Const *) rightop)->constisnull) return false; constvalue = ((Const *) rightop)->constvalue; switch (expr_op) { case OID_TEXT_LIKE_OP: case OID_BPCHAR_LIKE_OP: case OID_VARCHAR_LIKE_OP: case OID_NAME_LIKE_OP: /* the right-hand const is type text for all of these */ patt = textout((text *) DatumGetPointer(constvalue)); isIndexable = like_fixed_prefix(patt, &prefix) != Prefix_None; if (prefix) pfree(prefix); pfree(patt); break; case OID_TEXT_REGEXEQ_OP: case OID_BPCHAR_REGEXEQ_OP: case OID_VARCHAR_REGEXEQ_OP: case OID_NAME_REGEXEQ_OP: /* the right-hand const is type text for all of these */ patt = textout((text *) DatumGetPointer(constvalue)); isIndexable = regex_fixed_prefix(patt, false, &prefix) != Prefix_None; if (prefix) pfree(prefix); pfree(patt); break; case OID_TEXT_ICREGEXEQ_OP: case OID_BPCHAR_ICREGEXEQ_OP: case OID_VARCHAR_ICREGEXEQ_OP: case OID_NAME_ICREGEXEQ_OP: /* the right-hand const is type text for all of these */ patt = textout((text *) DatumGetPointer(constvalue)); isIndexable = regex_fixed_prefix(patt, true, &prefix) != Prefix_None; if (prefix) pfree(prefix); pfree(patt); break; } return isIndexable; } /* * expand_indexqual_conditions * Given a list of (implicitly ANDed) indexqual clauses, * expand any "special" index operators into clauses that the indexscan * machinery will know what to do with. Clauses that were not * recognized by match_special_index_operator() must be passed through * unchanged. */ List * expand_indexqual_conditions(List *indexquals) { List *resultquals = NIL; List *q; foreach(q, indexquals) { Expr *clause = (Expr *) lfirst(q); /* we know these will succeed */ Var *leftop = get_leftop(clause); Var *rightop = get_rightop(clause); Oid expr_op = ((Oper *) clause->oper)->opno; Datum constvalue; char *patt; char *prefix; Prefix_Status pstatus; switch (expr_op) { /* * LIKE and regex operators are not members of any index opclass, * so if we find one in an indexqual list we can assume that * it was accepted by match_special_index_operator(). */ case OID_TEXT_LIKE_OP: case OID_BPCHAR_LIKE_OP: case OID_VARCHAR_LIKE_OP: case OID_NAME_LIKE_OP: /* the right-hand const is type text for all of these */ constvalue = ((Const *) rightop)->constvalue; patt = textout((text *) DatumGetPointer(constvalue)); pstatus = like_fixed_prefix(patt, &prefix); resultquals = nconc(resultquals, prefix_quals(leftop, expr_op, prefix, pstatus)); if (prefix) pfree(prefix); pfree(patt); break; case OID_TEXT_REGEXEQ_OP: case OID_BPCHAR_REGEXEQ_OP: case OID_VARCHAR_REGEXEQ_OP: case OID_NAME_REGEXEQ_OP: /* the right-hand const is type text for all of these */ constvalue = ((Const *) rightop)->constvalue; patt = textout((text *) DatumGetPointer(constvalue)); pstatus = regex_fixed_prefix(patt, false, &prefix); resultquals = nconc(resultquals, prefix_quals(leftop, expr_op, prefix, pstatus)); if (prefix) pfree(prefix); pfree(patt); break; case OID_TEXT_ICREGEXEQ_OP: case OID_BPCHAR_ICREGEXEQ_OP: case OID_VARCHAR_ICREGEXEQ_OP: case OID_NAME_ICREGEXEQ_OP: /* the right-hand const is type text for all of these */ constvalue = ((Const *) rightop)->constvalue; patt = textout((text *) DatumGetPointer(constvalue)); pstatus = regex_fixed_prefix(patt, true, &prefix); resultquals = nconc(resultquals, prefix_quals(leftop, expr_op, prefix, pstatus)); if (prefix) pfree(prefix); pfree(patt); break; default: resultquals = lappend(resultquals, clause); break; } } return resultquals; } /* * Extract the fixed prefix, if any, for a LIKE pattern. * *prefix is set to a palloc'd prefix string with 1 spare byte, * or to NULL if no fixed prefix exists for the pattern. * The return value distinguishes no fixed prefix, a partial prefix, * or an exact-match-only pattern. */ static Prefix_Status like_fixed_prefix(char *patt, char **prefix) { char *match; int pos, match_pos; *prefix = match = palloc(strlen(patt)+2); match_pos = 0; for (pos = 0; patt[pos]; pos++) { /* % and _ are wildcard characters in LIKE */ if (patt[pos] == '%' || patt[pos] == '_') break; /* Backslash quotes the next character */ if (patt[pos] == '\\') { pos++; if (patt[pos] == '\0') break; } /* * NOTE: this code used to think that %% meant a literal %, * but textlike() itself does not think that, and the SQL92 * spec doesn't say any such thing either. */ match[match_pos++] = patt[pos]; } match[match_pos] = '\0'; /* in LIKE, an empty pattern is an exact match! */ if (patt[pos] == '\0') return Prefix_Exact; /* reached end of pattern, so exact */ if (match_pos > 0) return Prefix_Partial; return Prefix_None; } /* * Extract the fixed prefix, if any, for a regex pattern. * *prefix is set to a palloc'd prefix string with 1 spare byte, * or to NULL if no fixed prefix exists for the pattern. * The return value distinguishes no fixed prefix, a partial prefix, * or an exact-match-only pattern. */ static Prefix_Status regex_fixed_prefix(char *patt, bool case_insensitive, char **prefix) { char *match; int pos, match_pos; *prefix = NULL; /* Pattern must be anchored left */ if (patt[0] != '^') return Prefix_None; /* Cannot optimize if unquoted | { } is present in pattern */ for (pos = 1; patt[pos]; pos++) { if (patt[pos] == '|' || patt[pos] == '{' || patt[pos] == '}') return Prefix_None; if (patt[pos] == '\\') { pos++; if (patt[pos] == '\0') break; } } /* OK, allocate space for pattern */ *prefix = match = palloc(strlen(patt)+2); match_pos = 0; /* note start at pos 1 to skip leading ^ */ for (pos = 1; patt[pos]; pos++) { if (patt[pos] == '.' || patt[pos] == '?' || patt[pos] == '*' || patt[pos] == '[' || patt[pos] == '$' || /* XXX I suspect isalpha() is not an adequately locale-sensitive * test for characters that can vary under case folding? */ (case_insensitive && isalpha(patt[pos]))) break; if (patt[pos] == '\\') { pos++; if (patt[pos] == '\0') break; } match[match_pos++] = patt[pos]; } match[match_pos] = '\0'; if (patt[pos] == '$' && patt[pos+1] == '\0') return Prefix_Exact; /* pattern specifies exact match */ if (match_pos > 0) return Prefix_Partial; return Prefix_None; } /* * Given a fixed prefix that all the "leftop" values must have, * generate suitable indexqual condition(s). expr_op is the original * LIKE or regex operator; we use it to deduce the appropriate comparison * operators. */ static List * prefix_quals(Var *leftop, Oid expr_op, char *prefix, Prefix_Status pstatus) { List *result; Oid datatype; HeapTuple optup; void *conval; Const *con; Oper *op; Expr *expr; int prefixlen; Assert(pstatus != Prefix_None); switch (expr_op) { case OID_TEXT_LIKE_OP: case OID_TEXT_REGEXEQ_OP: case OID_TEXT_ICREGEXEQ_OP: datatype = TEXTOID; break; case OID_BPCHAR_LIKE_OP: case OID_BPCHAR_REGEXEQ_OP: case OID_BPCHAR_ICREGEXEQ_OP: datatype = BPCHAROID; break; case OID_VARCHAR_LIKE_OP: case OID_VARCHAR_REGEXEQ_OP: case OID_VARCHAR_ICREGEXEQ_OP: datatype = VARCHAROID; break; case OID_NAME_LIKE_OP: case OID_NAME_REGEXEQ_OP: case OID_NAME_ICREGEXEQ_OP: datatype = NAMEOID; break; default: elog(ERROR, "prefix_quals: unexpected operator %u", expr_op); return NIL; } /* * If we found an exact-match pattern, generate an "=" indexqual. */ if (pstatus == Prefix_Exact) { optup = SearchSysCacheTuple(OPRNAME, PointerGetDatum("="), ObjectIdGetDatum(datatype), ObjectIdGetDatum(datatype), CharGetDatum('b')); if (!HeapTupleIsValid(optup)) elog(ERROR, "prefix_quals: no = operator for type %u", datatype); /* Note: we cheat a little by assuming that textin() will do for * bpchar and varchar constants too... */ conval = (datatype == NAMEOID) ? (void*) namein(prefix) : (void*) textin(prefix); con = makeConst(datatype, ((datatype == NAMEOID) ? NAMEDATALEN : -1), PointerGetDatum(conval), false, false, false, false); op = makeOper(optup->t_data->t_oid, InvalidOid, BOOLOID, 0, NULL); expr = make_opclause(op, leftop, (Var *) con); result = lcons(expr, NIL); return result; } /* * Otherwise, we have a nonempty required prefix of the values. * * We can always say "x >= prefix". */ optup = SearchSysCacheTuple(OPRNAME, PointerGetDatum(">="), ObjectIdGetDatum(datatype), ObjectIdGetDatum(datatype), CharGetDatum('b')); if (!HeapTupleIsValid(optup)) elog(ERROR, "prefix_quals: no >= operator for type %u", datatype); conval = (datatype == NAMEOID) ? (void*) namein(prefix) : (void*) textin(prefix); con = makeConst(datatype, ((datatype == NAMEOID) ? NAMEDATALEN : -1), PointerGetDatum(conval), false, false, false, false); op = makeOper(optup->t_data->t_oid, InvalidOid, BOOLOID, 0, NULL); expr = make_opclause(op, leftop, (Var *) con); result = lcons(expr, NIL); /* * In ASCII locale we say "x <= prefix\377". This does not * work for non-ASCII collation orders, and it's not really * right even for ASCII. FIX ME! * Note we assume the passed prefix string is workspace with * an extra byte, as created by the xxx_fixed_prefix routines above. */ #ifndef USE_LOCALE prefixlen = strlen(prefix); prefix[prefixlen] = '\377'; prefix[prefixlen+1] = '\0'; optup = SearchSysCacheTuple(OPRNAME, PointerGetDatum("<="), ObjectIdGetDatum(datatype), ObjectIdGetDatum(datatype), CharGetDatum('b')); if (!HeapTupleIsValid(optup)) elog(ERROR, "prefix_quals: no <= operator for type %u", datatype); conval = (datatype == NAMEOID) ? (void*) namein(prefix) : (void*) textin(prefix); con = makeConst(datatype, ((datatype == NAMEOID) ? NAMEDATALEN : -1), PointerGetDatum(conval), false, false, false, false); op = makeOper(optup->t_data->t_oid, InvalidOid, BOOLOID, 0, NULL); expr = make_opclause(op, leftop, (Var *) con); result = lappend(result, expr); #endif return result; }