Recursion into the FILTER clause was mis-implemented, such that a
relevant Var or Aggref at the very top of the FILTER clause would
be ignored. (Of course, that'd have to be a plain boolean Var or
boolean-returning aggregate.) The consequence would be
mis-identification of the correct semantic level of the aggregate,
which could lead to not-per-spec query behavior. If the FILTER
expression is an aggregate, this could also lead to failure to issue
an expected "aggregate function calls cannot be nested" error, which
would likely result in a core dump later on, since the planner and
executor aren't expecting such cases to appear.
The root cause is that commit b560ec1b0 blindly copied some code
that assumed it's recursing into a List, and thus didn't examine the
top-level node. To forestall questions about why this call doesn't
look like the others, as well as possible future copy-and-paste
mistakes, let's change all three check_agg_arguments_walker calls in
check_agg_arguments, even though only the one for the filter clause
is really broken.
Per bug #17152 from Zhiyong Wu. This has been wrong since we
implemented FILTER, so back-patch to all supported versions.
(Testing suggests that pre-v11 branches manage to avoid crashing
in the bad-Aggref case, thanks to "redundant" checks in ExecInitAgg.
But I'm not sure how thorough that protection is, and anyway the
wrong-behavior issue remains, so fix 9.6 and 10 too.)
Discussion: https://postgr.es/m/17152-c7f906cc1a88e61b@postgresql.org
We have a dozen or so places that need to iterate over all but the
first cell of a List. Prior to v13 this was typically written as
for_each_cell(lc, lnext(list_head(list)))
Commit 1cff1b95a changed these to
for_each_cell(lc, list, list_second_cell(list))
This patch introduces a new macro for_each_from() which expresses
the start point as a list index, allowing these to be written as
for_each_from(lc, list, 1)
This is marginally more efficient, since ForEachState.i can be
initialized directly instead of backing into it from a ListCell
address. It also seems clearer and less typo-prone.
Some of the remaining uses of for_each_cell() look like they could
profitably be changed to for_each_from(), but here I confined myself
to changing uses of list_second_cell().
Also, fix for_each_cell_setup() and for_both_cell_setup() to
const-ify their arguments; that's a simple oversight in 1cff1b95a.
Back-patch into v13, on the grounds that (1) the const-ification
is a minor bug fix, and (2) it's better for back-patching purposes
if we only have two ways to write these loops rather than three.
In HEAD, also remove list_third_cell() and list_fourth_cell(),
which were also introduced in 1cff1b95a, and are unused as of
cc99baa43. It seems unlikely that any third-party code would
have started to use them already; anyone who has can be directed
to list_nth_cell instead.
Discussion: https://postgr.es/m/CAApHDvpo1zj9KhEpU2cCRZfSM3Q6XGdhzuAS2v79PH7WJBkYVA@mail.gmail.com
Thomas Munro fixed a longstanding annoyance in pg_bsd_indent, that
it would misformat lines containing IsA() macros on the assumption
that the IsA() call should be treated like a cast. This improves
some other cases involving field/variable names that match typedefs,
too. The only places that get worse are a couple of uses of the
OpenSSL macro STACK_OF(); we'll gladly take that trade-off.
Discussion: https://postgr.es/m/20200114221814.GA19630@alvherre.pgsql
In the wake of commit 1cff1b95a, the result of list_concat no longer
shares the ListCells of the second input. Therefore, we can replace
"list_concat(x, list_copy(y))" with just "list_concat(x, y)".
To improve call sites that were list_copy'ing the first argument,
or both arguments, invent "list_concat_copy()" which produces a new
list sharing no ListCells with either input. (This is a bit faster
than "list_concat(list_copy(x), y)" because it makes the result list
the right size to start with.)
In call sites that were not list_copy'ing the second argument, the new
semantics mean that we are usually leaking the second List's storage,
since typically there is no remaining pointer to it. We considered
inventing another list_copy variant that would list_free the second
input, but concluded that for most call sites it isn't worth worrying
about, given the relative compactness of the new List representation.
(Note that in cases where such leakage would happen, the old code
already leaked the second List's header; so we're only discussing
the size of the leak not whether there is one. I did adjust two or
three places that had been troubling to free that header so that
they manually free the whole second List.)
Patch by me; thanks to David Rowley for review.
Discussion: https://postgr.es/m/11587.1550975080@sss.pgh.pa.us
Formerly, lcons was about the same speed as lappend, but with the new
List implementation, that's not so; with a long List, data movement
imposes an O(N) cost on lcons and list_delete_first, but not lappend.
Hence, invent list_delete_last with semantics parallel to
list_delete_first (but O(1) cost), and change various places to use
lappend and list_delete_last where this can be done without much
violence to the code logic.
There are quite a few places that construct result lists using lcons not
lappend. Some have semantic rationales for that; I added comments about
it to a couple that didn't have them already. In many such places though,
I think the coding is that way only because back in the dark ages lcons
was faster than lappend. Hence, switch to lappend where this can be done
without causing semantic changes.
In ExecInitExprRec(), this results in aggregates and window functions that
are in the same plan node being executed in a different order than before.
Generally, the executions of such functions ought to be independent of
each other, so this shouldn't result in visibly different query results.
But if you push it, as one regression test case does, you can show that
the order is different. The new order seems saner; it's closer to
the order of the functions in the query text. And we never documented
or promised anything about this, anyway.
Also, in gistfinishsplit(), don't bother building a reverse-order list;
it's easy now to iterate backwards through the original list.
It'd be possible to go further towards removing uses of lcons and
list_delete_first, but it'd require more extensive logic changes,
and I'm not convinced it's worth it. Most of the remaining uses
deal with queues that probably never get long enough to be worth
sweating over. (Actually, I doubt that any of the changes in this
patch will have measurable performance effects either. But better
to have good examples than bad ones in the code base.)
Patch by me, thanks to David Rowley and Daniel Gustafsson for review.
Discussion: https://postgr.es/m/21272.1563318411@sss.pgh.pa.us
In the wake of commit 1cff1b95a, the obvious way to sort a List
is to apply qsort() directly to the array of ListCells. list_qsort
was building an intermediate array of pointers-to-ListCells, which
we no longer need, but getting rid of it forces an API change:
the comparator functions need to do one less level of indirection.
Since we're having to touch the callers anyway, let's do two additional
changes: sort the given list in-place rather than making a copy (as
none of the existing callers have any use for the copying behavior),
and rename list_qsort to list_sort. It was argued that the old name
exposes more about the implementation than it should, which I find
pretty questionable, but a better reason to rename it is to be sure
we get the attention of any external callers about the need to fix
their comparator functions.
While we're at it, change four existing callers of qsort() to use
list_sort instead; previously, they all had local reinventions
of list_qsort, ie build-an-array-from-a-List-and-qsort-it.
(There are some other places where changing to list_sort perhaps
would be worthwhile, but they're less obviously wins.)
Discussion: https://postgr.es/m/29361.1563220190@sss.pgh.pa.us
This is numbered take 7, and addresses a set of issues around:
- Fixes for typos and incorrect reference names.
- Removal of unneeded comments.
- Removal of unreferenced functions and structures.
- Fixes regarding variable name consistency.
Author: Alexander Lakhin
Discussion: https://postgr.es/m/10bfd4ac-3e7c-40ab-2b2e-355ed15495e8@gmail.com
Originally, Postgres Lists were a more or less exact reimplementation of
Lisp lists, which consist of chains of separately-allocated cons cells,
each having a value and a next-cell link. We'd hacked that once before
(commit d0b4399d8) to add a separate List header, but the data was still
in cons cells. That makes some operations -- notably list_nth() -- O(N),
and it's bulky because of the next-cell pointers and per-cell palloc
overhead, and it's very cache-unfriendly if the cons cells end up
scattered around rather than being adjacent.
In this rewrite, we still have List headers, but the data is in a
resizable array of values, with no next-cell links. Now we need at
most two palloc's per List, and often only one, since we can allocate
some values in the same palloc call as the List header. (Of course,
extending an existing List may require repalloc's to enlarge the array.
But this involves just O(log N) allocations not O(N).)
Of course this is not without downsides. The key difficulty is that
addition or deletion of a list entry may now cause other entries to
move, which it did not before.
For example, that breaks foreach() and sister macros, which historically
used a pointer to the current cons-cell as loop state. We can repair
those macros transparently by making their actual loop state be an
integer list index; the exposed "ListCell *" pointer is no longer state
carried across loop iterations, but is just a derived value. (In
practice, modern compilers can optimize things back to having just one
loop state value, at least for simple cases with inline loop bodies.)
In principle, this is a semantics change for cases where the loop body
inserts or deletes list entries ahead of the current loop index; but
I found no such cases in the Postgres code.
The change is not at all transparent for code that doesn't use foreach()
but chases lists "by hand" using lnext(). The largest share of such
code in the backend is in loops that were maintaining "prev" and "next"
variables in addition to the current-cell pointer, in order to delete
list cells efficiently using list_delete_cell(). However, we no longer
need a previous-cell pointer to delete a list cell efficiently. Keeping
a next-cell pointer doesn't work, as explained above, but we can improve
matters by changing such code to use a regular foreach() loop and then
using the new macro foreach_delete_current() to delete the current cell.
(This macro knows how to update the associated foreach loop's state so
that no cells will be missed in the traversal.)
There remains a nontrivial risk of code assuming that a ListCell *
pointer will remain good over an operation that could now move the list
contents. To help catch such errors, list.c can be compiled with a new
define symbol DEBUG_LIST_MEMORY_USAGE that forcibly moves list contents
whenever that could possibly happen. This makes list operations
significantly more expensive so it's not normally turned on (though it
is on by default if USE_VALGRIND is on).
There are two notable API differences from the previous code:
* lnext() now requires the List's header pointer in addition to the
current cell's address.
* list_delete_cell() no longer requires a previous-cell argument.
These changes are somewhat unfortunate, but on the other hand code using
either function needs inspection to see if it is assuming anything
it shouldn't, so it's not all bad.
Programmers should be aware of these significant performance changes:
* list_nth() and related functions are now O(1); so there's no
major access-speed difference between a list and an array.
* Inserting or deleting a list element now takes time proportional to
the distance to the end of the list, due to moving the array elements.
(However, it typically *doesn't* require palloc or pfree, so except in
long lists it's probably still faster than before.) Notably, lcons()
used to be about the same cost as lappend(), but that's no longer true
if the list is long. Code that uses lcons() and list_delete_first()
to maintain a stack might usefully be rewritten to push and pop at the
end of the list rather than the beginning.
* There are now list_insert_nth...() and list_delete_nth...() functions
that add or remove a list cell identified by index. These have the
data-movement penalty explained above, but there's no search penalty.
* list_concat() and variants now copy the second list's data into
storage belonging to the first list, so there is no longer any
sharing of cells between the input lists. The second argument is
now declared "const List *" to reflect that it isn't changed.
This patch just does the minimum needed to get the new implementation
in place and fix bugs exposed by the regression tests. As suggested
by the foregoing, there's a fair amount of followup work remaining to
do.
Also, the ENABLE_LIST_COMPAT macros are finally removed in this
commit. Code using those should have been gone a dozen years ago.
Patch by me; thanks to David Rowley, Jesper Pedersen, and others
for review.
Discussion: https://postgr.es/m/11587.1550975080@sss.pgh.pa.us
This is an SQL-standard feature that allows creating columns that are
computed from expressions rather than assigned, similar to a view or
materialized view but on a column basis.
This implements one kind of generated column: stored (computed on
write). Another kind, virtual (computed on read), is planned for the
future, and some room is left for it.
Reviewed-by: Michael Paquier <michael@paquier.xyz>
Reviewed-by: Pavel Stehule <pavel.stehule@gmail.com>
Discussion: https://www.postgresql.org/message-id/flat/b151f851-4019-bdb1-699e-ebab07d2f40a@2ndquadrant.com
Create a new header optimizer/optimizer.h, which exposes just the
planner functions that can be used "at arm's length", without need
to access Paths or the other planner-internal data structures defined
in nodes/relation.h. This is intended to provide the whole planner
API seen by most of the rest of the system; although FDWs still need
to use additional stuff, and more thought is also needed about just
what selfuncs.c should rely on.
The main point of doing this now is to limit the amount of new
#include baggage that will be needed by "planner support functions",
which I expect to introduce later, and which will be in relevant
datatype modules rather than anywhere near the planner.
This commit just moves relevant declarations into optimizer.h from
other header files (a couple of which go away because everything
got moved), and adjusts #include lists to match. There's further
cleanup that could be done if we want to decide that some stuff
being exposed by optimizer.h doesn't belong in the planner at all,
but I'll leave that for another day.
Discussion: https://postgr.es/m/11460.1548706639@sss.pgh.pa.us
Move a few very simple node-creation and node-type-testing functions
from the planner's clauses.c to nodes/makefuncs and nodes/nodeFuncs.
There's nothing planner-specific about them, as evidenced by the
number of other places that were using them.
While at it, rename and_clause() etc to is_andclause() etc, to clarify
that they are node-type-testing functions not node-creation functions.
And use "static inline" implementations for the shortest ones.
Also, modify flatten_join_alias_vars() and some subsidiary functions
to take a Query not a PlannerInfo to define the join structure that
Vars should be translated according to. They were only using the
"parse" field of the PlannerInfo anyway, so this just requires removing
one level of indirection. The advantage is that now parse_agg.c can
use flatten_join_alias_vars() without the horrid kluge of creating an
incomplete PlannerInfo, which will allow that file to be decoupled from
relation.h in a subsequent patch.
Discussion: https://postgr.es/m/11460.1548706639@sss.pgh.pa.us
Previously, only literals were allowed. This change allows general
expressions, including functions calls, which are evaluated at the
time the DDL command is executed.
Besides offering some more functionality, it simplifies the parser
structures and removes some inconsistencies in how the literals were
handled.
Author: Kyotaro Horiguchi, Tom Lane, Amit Langote
Reviewed-by: Peter Eisentraut <peter.eisentraut@2ndquadrant.com>
Discussion: https://www.postgresql.org/message-id/flat/9f88b5e0-6da2-5227-20d0-0d7012beaa1c@lab.ntt.co.jp/
Extends the COPY FROM command with a WHERE condition, which allows doing
various types of filtering while importing the data (random sampling,
condition on a data column, etc.). Until now such filtering required
either preprocessing of the input data, or importing all data and then
filtering in the database. COPY FROM ... WHERE is an easy-to-use and
low-overhead alternative for most simple cases.
Author: Surafel Temesgen
Reviewed-by: Tomas Vondra, Masahiko Sawada, Lim Myungkyu
Discussion: https://www.postgresql.org/message-id/flat/CALAY4q_DdpWDuB5-Zyi-oTtO2uSk8pmy+dupiRe3AvAc++1imA@mail.gmail.com
This reverts commits d204ef63776b8a00ca220adec23979091564e465,
83454e3c2b28141c0db01c7d2027e01040df5249 and a few more commits thereafter
(complete list at the end) related to MERGE feature.
While the feature was fully functional, with sufficient test coverage and
necessary documentation, it was felt that some parts of the executor and
parse-analyzer can use a different design and it wasn't possible to do that in
the available time. So it was decided to revert the patch for PG11 and retry
again in the future.
Thanks again to all reviewers and bug reporters.
List of commits reverted, in reverse chronological order:
f1464c5380 Improve parse representation for MERGE
ddb4158579 MERGE syntax diagram correction
530e69e59b Allow cpluspluscheck to pass by renaming variable
01b88b4df5 MERGE minor errata
3af7b2b0d4 MERGE fix variable warning in non-assert builds
a5d86181ec MERGE INSERT allows only one VALUES clause
4b2d44031f MERGE post-commit review
4923550c20 Tab completion for MERGE
aa3faa3c7a WITH support in MERGE
83454e3c2b New files for MERGE
d204ef6377 MERGE SQL Command following SQL:2016
Author: Pavan Deolasee
Reviewed-by: Michael Paquier
Traditionally, include/catalog/pg_foo.h contains extern declarations
for functions in backend/catalog/pg_foo.c, in addition to its function
as the authoritative definition of the pg_foo catalog's rowtype.
In some cases, we'd been forced to split out those extern declarations
into separate pg_foo_fn.h headers so that the catalog definitions
could be #include'd by frontend code. That problem is gone as of
commit 9c0a0de4c, so let's undo the splits to make things less
confusing.
Discussion: https://postgr.es/m/23690.1523031777@sss.pgh.pa.us
MERGE performs actions that modify rows in the target table
using a source table or query. MERGE provides a single SQL
statement that can conditionally INSERT/UPDATE/DELETE rows
a task that would other require multiple PL statements.
e.g.
MERGE INTO target AS t
USING source AS s
ON t.tid = s.sid
WHEN MATCHED AND t.balance > s.delta THEN
UPDATE SET balance = t.balance - s.delta
WHEN MATCHED THEN
DELETE
WHEN NOT MATCHED AND s.delta > 0 THEN
INSERT VALUES (s.sid, s.delta)
WHEN NOT MATCHED THEN
DO NOTHING;
MERGE works with regular and partitioned tables, including
column and row security enforcement, as well as support for
row, statement and transition triggers.
MERGE is optimized for OLTP and is parameterizable, though
also useful for large scale ETL/ELT. MERGE is not intended
to be used in preference to existing single SQL commands
for INSERT, UPDATE or DELETE since there is some overhead.
MERGE can be used statically from PL/pgSQL.
MERGE does not yet support inheritance, write rules,
RETURNING clauses, updatable views or foreign tables.
MERGE follows SQL Standard per the most recent SQL:2016.
Includes full tests and documentation, including full
isolation tests to demonstrate the concurrent behavior.
This version written from scratch in 2017 by Simon Riggs,
using docs and tests originally written in 2009. Later work
from Pavan Deolasee has been both complex and deep, leaving
the lead author credit now in his hands.
Extensive discussion of concurrency from Peter Geoghegan,
with thanks for the time and effort contributed.
Various issues reported via sqlsmith by Andreas Seltenreich
Authors: Pavan Deolasee, Simon Riggs
Reviewer: Peter Geoghegan, Amit Langote, Tomas Vondra, Simon Riggs
Discussion:
https://postgr.es/m/CANP8+jKitBSrB7oTgT9CY2i1ObfOt36z0XMraQc+Xrz8QB0nXA@mail.gmail.comhttps://postgr.es/m/CAH2-WzkJdBuxj9PO=2QaO9-3h3xGbQPZ34kJH=HukRekwM-GZg@mail.gmail.com
CALL statements cannot support sub-SELECTs in the arguments of the called
procedure, since they just use ExecEvalExpr to evaluate such arguments.
Teach transformSubLink() to reject the case, as it already does for other
contexts in which subqueries are not supported.
In passing, s/EXPR_KIND_CALL/EXPR_KIND_CALL_ARGUMENT/ to make that enum
symbol line up more closely with the phrasing of the error messages it is
associated with. And fix someone's weak grasp of English grammar in the
preceding EXPR_KIND_PARTITION_EXPRESSION addition. Also update an
incorrect comment in resolve_unique_index_expr (possibly it was correct
when written, but nowadays transformExpr definitely does reject SRFs here).
Per report from Pavel Stehule --- but this resolves only one of the bugs
he mentions.
Discussion: https://postgr.es/m/CAFj8pRDxOwPPzpA8i+AQeDQFj7bhVw-dR2==rfWZ3zMGkm568Q@mail.gmail.com
This patch adds the ability to use "RANGE offset PRECEDING/FOLLOWING"
frame boundaries in window functions. We'd punted on that back in the
original patch to add window functions, because it was not clear how to
do it in a reasonably data-type-extensible fashion. That problem is
resolved here by adding the ability for btree operator classes to provide
an "in_range" support function that defines how to add or subtract the
RANGE offset value. Factoring it this way also allows the operator class
to avoid overflow problems near the ends of the datatype's range, if it
wishes to expend effort on that. (In the committed patch, the integer
opclasses handle that issue, but it did not seem worth the trouble to
avoid overflow failures for datetime types.)
The patch includes in_range support for the integer_ops opfamily
(int2/int4/int8) as well as the standard datetime types. Support for
other numeric types has been requested, but that seems like suitable
material for a follow-on patch.
In addition, the patch adds GROUPS mode which counts the offset in
ORDER-BY peer groups rather than rows, and it adds the frame_exclusion
options specified by SQL:2011. As far as I can see, we are now fully
up to spec on window framing options.
Existing behaviors remain unchanged, except that I changed the errcode
for a couple of existing error reports to meet the SQL spec's expectation
that negative "offset" values should be reported as SQLSTATE 22013.
Internally and in relevant parts of the documentation, we now consistently
use the terminology "offset PRECEDING/FOLLOWING" rather than "value
PRECEDING/FOLLOWING", since the term "value" is confusingly vague.
Oliver Ford, reviewed and whacked around some by me
Discussion: https://postgr.es/m/CAGMVOdu9sivPAxbNN0X+q19Sfv9edEPv=HibOJhB14TJv_RCQg@mail.gmail.com
This adds a new object type "procedure" that is similar to a function
but does not have a return type and is invoked by the new CALL statement
instead of SELECT or similar. This implementation is aligned with the
SQL standard and compatible with or similar to other SQL implementations.
This commit adds new commands CALL, CREATE/ALTER/DROP PROCEDURE, as well
as ALTER/DROP ROUTINE that can refer to either a function or a
procedure (or an aggregate function, as an extension to SQL). There is
also support for procedures in various utility commands such as COMMENT
and GRANT, as well as support in pg_dump and psql. Support for defining
procedures is available in all the languages supplied by the core
distribution.
While this commit is mainly syntax sugar around existing functionality,
future features will rely on having procedures as a separate object
type.
Reviewed-by: Andrew Dunstan <andrew.dunstan@2ndquadrant.com>
check_agg_arguments_walker threw an error upon seeing a SRF or window
function, but that is too aggressive: if the function is within a
sub-select then it's perfectly fine. I broke the SRF case in commit
0436f6bde by copying the logic for window functions ... but that was
broken too, and had been since commit eaccfded9.
Repair both cases in HEAD, and the window function case back to 9.3.
9.2 gets this right.
Don't move parenthesized lines to the left, even if that means they
flow past the right margin.
By default, BSD indent lines up statement continuation lines that are
within parentheses so that they start just to the right of the preceding
left parenthesis. However, traditionally, if that resulted in the
continuation line extending to the right of the desired right margin,
then indent would push it left just far enough to not overrun the margin,
if it could do so without making the continuation line start to the left of
the current statement indent. That makes for a weird mix of indentations
unless one has been completely rigid about never violating the 80-column
limit.
This behavior has been pretty universally panned by Postgres developers.
Hence, disable it with indent's new -lpl switch, so that parenthesized
lines are always lined up with the preceding left paren.
This patch is much less interesting than the first round of indent
changes, but also bulkier, so I thought it best to separate the effects.
Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org
Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
Change pg_bsd_indent to follow upstream rules for placement of comments
to the right of code, and remove pgindent hack that caused comments
following #endif to not obey the general rule.
Commit e3860ffa4dd0dad0dd9eea4be9cc1412373a8c89 wasn't actually using
the published version of pg_bsd_indent, but a hacked-up version that
tried to minimize the amount of movement of comments to the right of
code. The situation of interest is where such a comment has to be
moved to the right of its default placement at column 33 because there's
code there. BSD indent has always moved right in units of tab stops
in such cases --- but in the previous incarnation, indent was working
in 8-space tab stops, while now it knows we use 4-space tabs. So the
net result is that in about half the cases, such comments are placed
one tab stop left of before. This is better all around: it leaves
more room on the line for comment text, and it means that in such
cases the comment uniformly starts at the next 4-space tab stop after
the code, rather than sometimes one and sometimes two tabs after.
Also, ensure that comments following #endif are indented the same
as comments following other preprocessor commands such as #else.
That inconsistency turns out to have been self-inflicted damage
from a poorly-thought-through post-indent "fixup" in pgindent.
This patch is much less interesting than the first round of indent
changes, but also bulkier, so I thought it best to separate the effects.
Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org
Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
When we reimplemented SRFs in commit 69f4b9c85, our initial choice was
to allow the behavior to vary from historical practice in cases where a
SRF call appeared within a conditional-execution construct (currently,
only CASE or COALESCE). But that was controversial to begin with, and
subsequent discussion has resulted in a consensus that it's better to
throw an error instead of executing the query differently from before,
so long as we can provide a reasonably clear error message and a way to
rewrite the query.
Hence, add a parser mechanism to allow detection of such cases during
parse analysis. The mechanism just requires storing, in the ParseState,
a pointer to the set-returning FuncExpr or OpExpr most recently emitted
by parse analysis. Then the parsing functions for CASE and COALESCE can
detect the presence of a SRF in their arguments by noting whether this
pointer changes while analyzing their arguments. Furthermore, if it does,
it provides a suitable error cursor location for the complaint. (This
means that if there's more than one SRF in the arguments, the error will
point at the last one to be analyzed not the first. While connoisseurs of
parsing behavior might find that odd, it's unlikely the average user would
ever notice.)
While at it, we can also provide more specific error messages than before
about some pre-existing restrictions, such as no-SRFs-within-aggregates.
Also, reject at parse time cases where a NULLIF or IS DISTINCT FROM
construct would need to return a set. We've never supported that, but the
restriction is depended on in more subtle ways now, so it seems wise to
detect it at the start.
Also, provide some documentation about how to rewrite a SRF-within-CASE
query using a custom wrapper SRF.
It turns out that the information_schema.user_mapping_options view
contained an instance of exactly the behavior we're now forbidding; but
rewriting it makes it more clear and safer too.
initdb forced because of user_mapping_options change.
Patch by me, with error message suggestions from Alvaro Herrera and
Andres Freund, pursuant to a complaint from Regina Obe.
Discussion: https://postgr.es/m/000001d2d5de$d8d66170$8a832450$@pcorp.us
There's really no situation where we don't want these unknown-to-text
conversions to happen. The alternative is failure anyway, and the one
caller that was passing "false" did so only because it expected the
case could not arise. Might as well simplify the code.
Discussion: https://postgr.es/m/CAH2L28uwwbL9HUM-WR=hromW1Cvamkn7O-g8fPY2m=_7muJ0oA@mail.gmail.com
INSERT ... VALUES with a single VALUES row is implemented quite differently
from the general VALUES case. A user-visible implication of that is that
we accept SRFs in the single-row case, but not in the multi-row case.
That's a historical artifact no doubt, but in view of the lack of field
complaints, I'm not excited about fixing it right now.
However, check_srf_call_placement() needs to know about this, first because
it should throw an error in the unsupported case, and second because it
should set p_hasTargetSRFs in the single-row case (because we treat that
like a SELECT tlist). That's an oversight in commit a4c35ea1c.
To fix, split EXPR_KIND_VALUES into two values. So far as I can see,
this is the only place where we need to distinguish the two cases at
present; but there might be more later.
Patch by me, per report from Andres Freund.
Discussion: https://postgr.es/m/20170116081548.zg63zltblwimpfgp@alap3.anarazel.de
Table partitioning is like table inheritance and reuses much of the
existing infrastructure, but there are some important differences.
The parent is called a partitioned table and is always empty; it may
not have indexes or non-inherited constraints, since those make no
sense for a relation with no data of its own. The children are called
partitions and contain all of the actual data. Each partition has an
implicit partitioning constraint. Multiple inheritance is not
allowed, and partitioning and inheritance can't be mixed. Partitions
can't have extra columns and may not allow nulls unless the parent
does. Tuples inserted into the parent are automatically routed to the
correct partition, so tuple-routing ON INSERT triggers are not needed.
Tuple routing isn't yet supported for partitions which are foreign
tables, and it doesn't handle updates that cross partition boundaries.
Currently, tables can be range-partitioned or list-partitioned. List
partitioning is limited to a single column, but range partitioning can
involve multiple columns. A partitioning "column" can be an
expression.
Because table partitioning is less general than table inheritance, it
is hoped that it will be easier to reason about properties of
partitions, and therefore that this will serve as a better foundation
for a variety of possible optimizations, including query planner
optimizations. The tuple routing based which this patch does based on
the implicit partitioning constraints is an example of this, but it
seems likely that many other useful optimizations are also possible.
Amit Langote, reviewed and tested by Robert Haas, Ashutosh Bapat,
Amit Kapila, Rajkumar Raghuwanshi, Corey Huinker, Jaime Casanova,
Rushabh Lathia, Erik Rijkers, among others. Minor revisions by me.
The original specification for this called for the deserialization function
to have signature "deserialize(serialtype) returns transtype", which is a
security violation if transtype is INTERNAL (which it always would be in
practice) and serialtype is not (which ditto). The patch blithely overrode
the opr_sanity check for that, which was sloppy-enough work in itself,
but the indisputable reason this cannot be allowed to stand is that CREATE
FUNCTION will reject such a signature and thus it'd be impossible for
extensions to create parallelizable aggregates.
The minimum fix to make the signature type-safe is to add a second, dummy
argument of type INTERNAL. But to lock it down a bit more and make misuse
of INTERNAL-accepting functions less likely, let's get rid of the ability
to specify a "serialtype" for an aggregate and just say that the only
useful serialtype is BYTEA --- which, in practice, is the only interesting
value anyway, due to the usefulness of the send/recv infrastructure for
this purpose. That means we only have to allow "serialize(internal)
returns bytea" and "deserialize(bytea, internal) returns internal" as
the signatures for these support functions.
In passing fix bogus signature of int4_avg_combine, which I found thanks
to adding an opr_sanity check on combinefunc signatures.
catversion bump due to removing pg_aggregate.aggserialtype and adjusting
signatures of assorted built-in functions.
David Rowley and Tom Lane
Discussion: <27247.1466185504@sss.pgh.pa.us>
When doing partial aggregation, the args list of the upper (combining)
Aggref node is replaced by a Var representing the output of the partial
aggregation steps, which has either the aggregate's transition data type
or a serialized representation of that. However, nodeAgg.c blindly
continued to use the args list as an indication of the user-level argument
types. This broke resolution of polymorphic transition datatypes at
executor startup (though it accidentally failed to fail for the ANYARRAY
case, which is likely the only one anyone had tested). Moreover, the
constructed FuncExpr passed to the finalfunc contained completely wrong
information, which would have led to bogus answers or crashes for any case
where the finalfunc examined that information (which is only likely to be
with polymorphic aggregates using a non-polymorphic transition type).
As an independent bug, apply_partialaggref_adjustment neglected to resolve
a polymorphic transition datatype before assigning it as the output type
of the lower-level Aggref node. This again accidentally failed to fail
for ANYARRAY but would be unlikely to work in other cases.
To fix the first problem, record the user-level argument types in a
separate OID-list field of Aggref, and look to that rather than the args
list when asking what the argument types were. (It turns out to be
convenient to include any "direct" arguments in this list too, although
those are not currently subject to being overwritten.)
Rather than adding yet another resolve_aggregate_transtype() call to fix
the second problem, add an aggtranstype field to Aggref, and store the
resolved transition type OID there when the planner first computes it.
(By doing this in the planner and not the parser, we can allow the
aggregate's transition type to change from time to time, although no DDL
support yet exists for that.) This saves nothing of consequence for
simple non-polymorphic aggregates, but for polymorphic transition types
we save a catalog lookup during executor startup as well as several
planner lookups that are new in 9.6 due to parallel query planning.
In passing, fix an error that was introduced into count_agg_clauses_walker
some time ago: it was applying exprTypmod() to something that wasn't an
expression node at all, but a TargetEntry. exprTypmod silently returned
-1 so that there was not an obvious failure, but this broke the intended
sensitivity of aggregate space consumption estimates to the typmod of
varchar and similar data types. This part needs to be back-patched.
Catversion bump due to change of stored Aggref nodes.
Discussion: <8229.1466109074@sss.pgh.pa.us>
This is necessary infrastructure for supporting parallel aggregation
for aggregates whose transition type is "internal". Such values
can't be passed between cooperating processes, because they are
just pointers.
David Rowley, reviewed by Tomas Vondra and by me.
In commit 1d97c19a0f748e94 and later c1d9579dd8bf3c92, we extended
pull_var_clause's API by adding enum-type arguments. That's sort of a pain
to maintain, though, because it means every time we add a new behavior we
must touch every last one of the call sites, even if there's a reasonable
default behavior that most of them could use. Let's switch over to using a
bitmask of flags, instead; that seems more maintainable and might save a
nanosecond or two as well. This commit changes no behavior in itself,
though I'm going to follow it up with one that does add a new behavior.
In passing, remove flatten_tlist(), which has not been used since 9.1
and would otherwise need the same API changes.
Removing these enums means that optimizer/tlist.h no longer needs to
depend on optimizer/var.h. Changing that caused a number of C files to
need addition of #include "optimizer/var.h" (probably we can thank old
runs of pgrminclude for that); but on balance it seems like a good change
anyway.
A pending patch requires exporting a function returning Bitmapset from
catalog/pg_constraint.c. As things stand, that would mean including
nodes/bitmapset.h in pg_constraint.h, which might be hazardous for the
client-side includability of that header. It's not entirely clear whether
any client-side code needs to include pg_constraint.h, but it seems prudent
to assume that there is some such code somewhere. Therefore, split off the
function definitions into a new file pg_constraint_fn.h, similarly to what
we've done for some other catalog header files.
Aggregate nodes now have two new modes: a "partial" mode where they
output the unfinalized transition state, and a "finalize" mode where
they accept unfinalized transition states rather than individual
values as input.
These new modes are not used anywhere yet, but they will be necessary
for parallel aggregation. The infrastructure also figures to be
useful for cases where we want to aggregate local data and remote
data via the FDW interface, and want to bring back partial aggregates
from the remote side that can then be combined with locally generated
partial aggregates to produce the final value. It may also be useful
even when neither FDWs nor parallelism are in play, as explained in
the comments in nodeAgg.c.
David Rowley and Simon Riggs, reviewed by KaiGai Kohei, Heikki
Linnakangas, Haribabu Kommi, and me.
If there are two different aggregates in the query with same inputs, and
the aggregates have the same initial condition and transition function,
only calculate the state value once, and only call the final functions
separately. For example, AVG(x) and SUM(x) aggregates have the same
transition function, which accumulates the sum and number of input tuples.
For a query like "SELECT AVG(x), SUM(x) FROM x", we can therefore
accumulate the state function only once, which gives a nice speedup.
David Rowley, reviewed and edited by me.
Policy USING and WITH CHECK expressions were using EXPR_KIND_WHERE for
parse analysis, which results in inappropriate ERROR messages when
the expression contains unsupported constructs such as aggregates.
Create a new ParseExprKind called EXPR_KIND_POLICY and tailor the
related messages to fit.
Reported by Noah Misch. Reviewed by Dean Rasheed, Alvaro Herrera,
and Robert Haas. Back-patch to 9.5 where RLS was introduced.
This SQL standard functionality allows to aggregate data by different
GROUP BY clauses at once. Each grouping set returns rows with columns
grouped by in other sets set to NULL.
This could previously be achieved by doing each grouping as a separate
query, conjoined by UNION ALLs. Besides being considerably more concise,
grouping sets will in many cases be faster, requiring only one scan over
the underlying data.
The current implementation of grouping sets only supports using sorting
for input. Individual sets that share a sort order are computed in one
pass. If there are sets that don't share a sort order, additional sort &
aggregation steps are performed. These additional passes are sourced by
the previous sort step; thus avoiding repeated scans of the source data.
The code is structured in a way that adding support for purely using
hash aggregation or a mix of hashing and sorting is possible. Sorting
was chosen to be supported first, as it is the most generic method of
implementation.
Instead of, as in an earlier versions of the patch, representing the
chain of sort and aggregation steps as full blown planner and executor
nodes, all but the first sort are performed inside the aggregation node
itself. This avoids the need to do some unusual gymnastics to handle
having to return aggregated and non-aggregated tuples from underlying
nodes, as well as having to shut down underlying nodes early to limit
memory usage. The optimizer still builds Sort/Agg node to describe each
phase, but they're not part of the plan tree, but instead additional
data for the aggregation node. They're a convenient and preexisting way
to describe aggregation and sorting. The first (and possibly only) sort
step is still performed as a separate execution step. That retains
similarity with existing group by plans, makes rescans fairly simple,
avoids very deep plans (leading to slow explains) and easily allows to
avoid the sorting step if the underlying data is sorted by other means.
A somewhat ugly side of this patch is having to deal with a grammar
ambiguity between the new CUBE keyword and the cube extension/functions
named cube (and rollup). To avoid breaking existing deployments of the
cube extension it has not been renamed, neither has cube been made a
reserved keyword. Instead precedence hacking is used to make GROUP BY
cube(..) refer to the CUBE grouping sets feature, and not the function
cube(). To actually group by a function cube(), unlikely as that might
be, the function name has to be quoted.
Needs a catversion bump because stored rules may change.
Author: Andrew Gierth and Atri Sharma, with contributions from Andres Freund
Reviewed-By: Andres Freund, Noah Misch, Tom Lane, Svenne Krap, Tomas
Vondra, Erik Rijkers, Marti Raudsepp, Pavel Stehule
Discussion: CAOeZVidmVRe2jU6aMk_5qkxnB7dfmPROzM7Ur8JPW5j8Y5X-Lw@mail.gmail.com
Before 9.4, such an aggregate couldn't be declared, because its final
function would have to have polymorphic result type but no polymorphic
argument, which CREATE FUNCTION would quite properly reject. The
ordered-set-aggregate patch found a workaround: allow the final function
to be declared as accepting additional dummy arguments that have types
matching the aggregate's regular input arguments. However, we failed
to notice that this problem applies just as much to regular aggregates,
despite the fact that we had a built-in regular aggregate array_agg()
that was known to be undeclarable in SQL because its final function
had an illegal signature. So what we should have done, and what this
patch does, is to decouple the extra-dummy-arguments behavior from
ordered-set aggregates and make it generally available for all aggregate
declarations. We have to put this into 9.4 rather than waiting till
later because it slightly alters the rules for declaring ordered-set
aggregates.
The patch turned out a bit bigger than I'd hoped because it proved
necessary to record the extra-arguments option in a new pg_aggregate
column. I'd thought we could just look at the final function's pronargs
at runtime, but that didn't work well for variadic final functions.
It's probably just as well though, because it simplifies life for pg_dump
to record the option explicitly.
While at it, fix array_agg() to have a valid final-function signature,
and add an opr_sanity test to notice future deviations from polymorphic
consistency. I also marked the percentile_cont() aggregates as not
needing extra arguments, since they don't.
Until now, when executing an aggregate function as a window function
within a window with moving frame start (that is, any frame start mode
except UNBOUNDED PRECEDING), we had to recalculate the aggregate from
scratch each time the frame head moved. This patch allows an aggregate
definition to include an alternate "moving aggregate" implementation
that includes an inverse transition function for removing rows from
the aggregate's running state. As long as this can be done successfully,
runtime is proportional to the total number of input rows, rather than
to the number of input rows times the average frame length.
This commit includes the core infrastructure, documentation, and regression
tests using user-defined aggregates. Follow-on commits will update some
of the built-in aggregates to use this feature.
David Rowley and Florian Pflug, reviewed by Dean Rasheed; additional
hacking by me